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Trial wave functions such as the Moore-Read and Read-Rezayi states, which minimize short-range multibody
interactions, are candidate states for describing the fractional quantum Hall effects at filling factors ν = 1/2
and 2/5 in the second Landau level. These trial wave functions are unique zero-energy states of three-body and
four-body interaction Hamiltonians, respectively, but they are not close to the ground states of the Coulomb
interaction. Previous studies using extensive parameter scans have found optimal two-body interactions on the
sphere that produce states close to these. Here we focus on short-ranged four-body interaction and study two
mean-field approximations that reduce the four-body interactions to two-body interactions on the sphere by
replacing composite operators with their incompressible ground-state expectation values. We present the results
for pseudopotentials of these approximate interactions. A comparison of finite system spectra on the sphere of the
four-body and the approximate interactions at filling fraction ν = 3/5 shows that these approximations produce
good effective descriptions of the low-energy structure of the four-body interaction Hamiltonian. The approach
also independently reproduces the optimal two-body interaction inferred from parameter scans. We also show
that for n = 3, but not for n = 4, the mean-field approximations of the n-body interaction are equivalent to
particle-hole symmetrization of the interaction. Within the system sizes accessible, analysis of the spectrum of
the mean-field two-body Hamiltonian on the torus was inconclusive, and indicates a competing anisotropic state
in the system.

DOI: 10.1103/PhysRevB.99.235141

I. INTRODUCTION

The physics of electrons confined to two dimensions in the
limit of high magnetic fields is described by a Hamiltonian
that contains no kinetic energy but only the Coulomb inter-
action term, with the kinetic energy indirectly manifesting
itself through the holomorphic nature of the Hilbert space.
Interacting electrons in this Hilbert space exhibit a rich set
of topological and conventionally ordered phases [1–3]. The
phases in the lowest Landau level can be explained accurately
using composite fermion wave functions [4,5]. The structure
of the fractional quantum Hall effect in the second Landau
level has been harder to explain using variational studies.
Among the several candidate wave functions proposed to
describe these states are a set of clustered states including the
Pfaffian and the k = 3 Read-Rezayi states occurring at filling
fractions 1/2 and 3/5 in this Landau level [6,7]. The corre-
lations contained in these states are such that they minimize
certain model Hamiltonians [7,8] that penalize specific short-
range configurations of clusters of a few particles. These wave
functions do not have large overlaps with the physical two-
body Coulomb interaction ground states. The Moore-Read
state, for instance, has an overlap of 0.69 with the Coulomb
ground state in a system of size N = 14 [9]. However, it has
been argued that both states capture the topological properties
of the Coulomb ground states.

Since these states minimize a model interaction energy
rather than the physical two-body Coulomb interaction en-
ergy, it is interesting to ask whether there is a two-body
interaction that produces ground states that are close to these

clustered states. One approach to addressing this is to consider
general short-range two-body interactions parametrized by
Haldane pseudopotentials and scan the parameter space to
identify the optimal pseudopotentials that produce a homo-
geneous ground state with maximal overlap with the clustered
state [10,11]. Another approach suggested in Ref. [12] is to
make use of the model n-body interactions that annihilate
these clustered states to arrive at approximate two-body in-
teractions via a mean-field mapping. These two approaches
surprisingly produce the same optimal interaction in the case
of the Moore-Read state, which is annihilated by the three-
body interaction [10].

In this study, we explore an extension of the mean-field
approximation to the case of the four-body interaction that
produces the k = 3 Read-Rezayi state as the ground state.
There are two possible ways to map the four-body interaction
to a two-body interaction: (i) by replacing two pairs of com-
posite operators c†

i c j , or (ii) by replacing c†
i c†

j ckcl with their
ground-state expectation values. The former method is scal-
able to larger system sizes, allowing us to extrapolate to the
mean-field two-body pseudopotentials in the thermodynamic
limit. Interestingly, the mean-field interaction matches exactly
with what was obtained through an extensive parameter scan
in Ref. [10]. Note that, in addition to the interactions whose
influence we explore in this study, the state describing the
physical system can be qualitatively changed by the presence
of disorder, especially at filling fraction ν = 1

2 [13–16]. How-
ever, we consider spin-polarized systems that are disorder-
free for tractability using finite system studies. We also note
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that even though a purely two-body mean-field interaction at
filling fraction ν = 1/2 may show a Pfaffian ground state at
the right shift on the sphere, this may not stabilize a gapped
phase in the thermodynamic limit without explicit particle-
hole symmetry-breaking terms [17–19]. Such terms are not
needed for states away from half-filling that we consider in
this study.

The general n > 2-body interaction, and in particular
the three-body interaction, is not particle-hole symmetric.
Particle-hole symmetrization of the short-range three-body
interaction Hamiltonian produces a two-body interaction that
has a low-energy spectrum close to that of the original
three-body interaction [18,20]. It was found in Ref. [12] that
the mean-field two-body approximation reproduced the same
two-body interaction as the symmetrization. We explain why
the two interactions exactly reproduce the same spectra, and
we extend this analysis to the case of the four-body interaction
and show that this exact relation between symmetrization and
the mean-field approximation is restricted to the case of the
three-body interaction.

In Sec. II, we introduce the notion of Haldane pseu-
dopotentials for general n-body interactions, followed by a
description of the mean-field approximation, discussing the
idea for the case of three- and four-body interactions. The
mean-field approximation of the four-body interaction can be
defined to produce a three-body or a two-body interaction.
The latter can be arrived at in two ways. Every method results
in a rotationally symmetric interaction and therefore can be
specified in terms of the pseudopotentials. In Sec. III, we
present the results of the pseudopotentials of the mean-field
two- and three-body interactions for finite systems as well as
in the large system limit. In Sec. IV, we discuss the relation
between the mean-field approximation and the particle-hole
symmetrization/antisymmetrization of the interactions. We
show that the mean-field approximation to the three-body
interaction and symmetrization produce the same spectrum.
We show that this result does not generalize to the case of
the four-body interaction. In Sec. V, we compare the finite
system spectra of the mean-field interactions with that of the
exact four-body interaction. The results suggest that the mean-
field interaction closely reproduces the effective physics of
the incompressible and few quasiparticle/quasihole systems
in the spherical geometry. Results for the torus geometry
are presented indicating a possibly competing anisotropic
phase in the system. Approximate formulas for the mean-
field interaction pseudopotentials that could be used in further
numerical studies are presented in the Appendix A.

II. THE TYPES OF MEAN FIELD IN THE SPHERICAL
GEOMETRY

We use the standard Haldane spherical geometry [21,22],
in which N electrons are confined to the surface of a sphere of
radius R, with a uniform, perpendicular magnetic field B being
provided by a Dirac magnetic monopole of strength 2Qφ0 (2Q
is an integer) placed at the center of the sphere, where the flux
quanta φ0 is hc/e. The corresponding magnetic length has a
value �B = R/

√
Q. The N-electron Hilbert space is spanned

by the configurations |p〉 = |p1, p2, . . . , pN 〉 of electrons oc-
cupying orbitals pi (with pi ∈ {−Q,−Q + 1, . . . , Q}). The

general four-body Hamiltonian can be written as

H(4) =
∑
pi;qi

V (4)
q;k c†

p4
c†

p3
c†

p2
c†

p1
cq1 cq2 cq3 cq4 , (1)

where p = (p1, p2, p3, p4), q = (q1, q2, q3, q4), and the in-
dices correspond to an ordered set of Lz quantum numbers of
electrons (pi < pi+1 and qi < qi+1).

When the considered system has additional symmetries,
certain constraints can be imposed reducing the number of
independent parameters that describe the interaction. A rota-
tionally symmetric four-body interaction of spinless fermions
on the Haldane sphere can be described by a sequence of gen-
eralized Haldane four-body pseudopotentials {V (4)

l }l , where
Vl is the energy needed for four particles to be in a relative
angular momentum of 4Q − l . Thus the Hamiltonian has the
form

H(4) =
2Q∑
l=6

V (4)
l P(4)

4Q−l , (2)

where P(4)
4Q−l is a projector onto the relative angular momen-

tum 4Q − l subspace of four particles. This can be explicitly
written as follows:

P(4)
L =

∑
a

L∑
Lz=−L

∑
p,q

ψL,Lz,a(p)ψL,Lz(q)
4∏

i=1

c†
pi

4∏
i=1

cqi , (3)

where ψL,Lz,a(p1, p2, p3, p4) are the Clebsch-Gordan coeffi-
cients when the four-particle state of total angular momentum
L and z-component angular momentum Lz is expanded in the
single-particle basis |p1, p2, p3, p4〉, i.e.,

|ψL,Lz,a〉 =
∑

p

ψL,Lz,a(p1, p2, p3, p4)|p1, p2, p3, p4〉. (4)

Pauli exclusion implies that the allowed values of l = 4Q − L
for spinless fermions are l = 6, 8, 9, . . . . The index a cor-
responds to the possibility of different multiplets of angular
momentum L. Short-range interaction corresponds to smaller
values of l . Several independent angular momentum multi-
plets can occur for l > 9, and the additional quantum number
a is then required [8]. However, in this article, for simplicity,
we shall consider only those interactions for which l = 6 or
8, and the quantum number a will not be required. The wave
functions ψL,Lz

p can be obtained via exact diagonalization of
four particles in a generic rotationally symmetric two-body
interaction.

In Ref. [12], the authors introduced a mean-field mapping
of the three-body interaction to a two-body interaction by
replacing a single quadratic composite operator c†

q1
ck1 with

its expectation value. Analysis was restricted to states in
the vicinity of the incompressible ground states, for which
the expectation values take a simple form 〈c†

q1
ck1〉 = ν δq1,k1

because of angular momentum conservation. We can apply
this method here, resulting in a reduction of the four-body
interaction to a three-body interaction.

The general four-body Hamiltonian [Eq. (1)] can be written
without the restriction on the ordering of the single-particle
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FIG. 1. A schematic diagram of two possible methods of MF re-
duction of four-body interaction to two-body interaction. The MF2

〈c†c〉
method replaces a pair of creation and annihilation operators with
their expectation value twice. As an intermediate step, one obtains
the three-body operator H(3). The diagonal arrow corresponds to the
mean-field mapping using numerically obtained correlations from
Read-Rezayi state c†

q2
c†

q1
ck1 ck2 .

angular momenta as

H(4) =
Q∑

pi,qi=−Q

c†
p4

c†
p3

c†
p2

c†
p1

V (4)
p,q

4!4!
cq1 cq2 cq3 cq4 .

Antisymmetry of Vp,q is assumed under interchange of single-
particle indices within p and q. Upon applying the mean-field
approximation, we obtain a three-body interaction of the form

H(3) =
Q∑

pi,qi=−Q

c†
p3

c†
p2

c†
p1

V (3)
p1,p2,p3;q1,q2,q3

3!3!
cq1 cq2 cq3 , (5)

where V (3) is given by the partial trace over one pair of indices,

V (3)
p1,p2,p3;q1,q2,q3

= ν

Q∑
p4,q4=−Q

δp4q4V
(4)

p,q . (6)

The three-body pseudopotentials V (3)
l of the mean-field three-

body Hamiltonian can be obtained by numerically diagonaliz-
ing a system of three particles. The energy of the three-particle
cluster of angular momentum 4Q − l gives the pseudopoten-
tial V (3)

l .
A mean-field approximation of a similar kind applied now

to the above three-body Hamiltonian results in a two-body
interaction. The two-body pseudopotentials V (2)

l can now be
obtained by diagonalizing a two-particle system. Thus reduc-
tion (four- to two-body) is obtained by applying a “single”
mean-field approximation twice (see Fig. 1). Since we ap-
proximated operators c†c with an expected value νδq1,k1 , we
will denote this type of mean-field reduction by MF2

〈c†c〉. The
intermediate step of reduction of a four-body Hamiltonian to a
three-body one by applying the approximation once is denoted
MF〈c†c〉.

One can construct an alternative mean-field reduction of
four- to two-body Hamiltonians by replacing the composite
quartic operator c†

q2
c†

q1
ck1 ck2 with its expectation value in the

incompressible ground state. Such an expectation value is not
easy to calculate, even when one considers the homogeneous
ground state. So we approach the problem with numerical
calculations of correlations in the ground state. For each

pair of indexes (q1, q2) we calculate the expected value of
c†

q2
c†

q1
ck1 ck2 , which is later used to infer a mean-field two-

body Hamiltonian. We will denote this mean-field mapping
by MF〈c†c†cc〉. In this study, we will use the 3/5 filling fraction
to explore the mean field approximation, as an incompressible
state (k = 3 Read-Rezayi state) is produced by the short-range
four-body interaction at this filling fraction [7].

The mean-field Hamiltonian needs to be rotationally sym-
metric in order to be able to calculate the pseudopotentials. It
can be easily seen that the methods produce rotationally sym-
metric approximations. Due to the rotational symmetry of the
original four-body interaction, the interaction parameters Vpq
are elements of a linear combination of projections onto an-
gular momentum subspaces. Therefore, these interaction pa-
rameters form a rotationally invariant tensor. The mean-field
approximations MF〈c†c〉 and MF2

〈c†c〉 correspond to contraction
of indices of this tensor with the indices of the rotationally
invariant tensors δp4q4 [Eq. (6)] and δp4q4δp3q3 , respectively.
Therefore, the mean-field interaction parameters V (3)

p1 p2 p3;q1q2q3

and V (2)
p1 p2;q1q2

obtained in this way are rotationally invariant.
Rotational invariance implies that the interaction parameters
of the mean-field Hamiltonian are linear combinations of
angular momentum projection operators, the coefficients of
which give the pseudopotentials. In the case of MF〈c†c†cc〉,
Vpq is contracted with the correlation 〈c†

p1
c†

p2
cq1 cq2〉, which is

again rotationally symmetric due to the rotational symmetry
(L = 0) of the ground state. The information contained in
the correlation function can indeed be represented as linear
combinations of two-particle angular momentum projection
operators (such expansions for specific finite systems are
presented in Appendix B).

III. PSEUDOPOTENTIALS FOR THE MEAN-FIELD
MAPPED INTERACTIONS

In this section, we apply the mean-field mapping to the spe-
cific cases, and we present the results for the pseudopotentials
calculated from the different mean-field mappings. In addition
to the short-range four-body interaction (V6 = 1,Vl �=6 = 0),
we also consider the case of the longer-range four-body
interaction (V8 = 1,Vl �=8 = 0). The latter is a hollow-core
four-body interaction. Analogous hollow-core two- and three-
body interactions have been found to be useful in studies of
fractional quantum Hall states such as at ν = 4/11 [23–25].

A. MF2
〈c†c〉

As described before, MF〈c†c〉 applied twice (MF2
〈c†c〉) maps

the four-body interaction to a two-body interaction. Two-body
pseudopotentials are extracted using a direct diagonalization
of a system of only two particles. Since Hilbert space for
such systems is relatively small, it is possible to calculate
coefficients for systems with large 2Q. In Table I we present
values of the pseudopotentials for the two largest systems
that we have studied. Irrespective of system size, only the
first three allowed two-body pseudopotentials are nonzero
in the mean-field mapping of the V6 = 1,V8 = 0 interaction,
and only the first four allowed two-body pseudopotentials
are found to be nonzero in the mean-field mapping of the
V6 = 0,V8 = 1 interaction.
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TABLE I. Two-body pseudopotentials obtained by mean-field
mapping MF2

〈c†c〉 of the four-body interactions. Data are presented for
the two largest systems studied, and for the two types of interactions
first a short-range repulsion where a single four-body pseudopoten-
tial V6 is nonzero and second a longer-range interaction with only V8

being nonzero.

V (4)
6 = 1, V (4)

8 = 0 V (4)
6 = 0, V (4)

8 = 1

V (2)
n ↓ 2Q = 60 2Q = 62 2Q = 60 2Q = 62

V1 7.01312 7.02084 6.14707 6.15839
V3 3.46795 3.46901 2.68532 2.68741
V5 1.26689 1.26630 1.04738 1.04576
V7 0 0 1.81347 1.81125

The values of the two-body pseudopotentials for smaller
systems are presented in Figs. 2 and 3. The data allow an
extrapolation to the 2Q → ∞ limit using a simple func-
tion V (2Q) = a + b

c−2Q . Uncertainties of the coefficients
a, b, c are very small; we present them in Table V in
Appendix A. For the short-range four-body repulsion, the
two-body pseudopotentials in the 2Q → ∞ limit have val-
ues V1 : V3 : V5 = 7.249 75 : 3.500 13 : 1.249 96 ≈ 5.8 : 2.8 :
1. This mean-field two-body interaction is identical to the
optimal two-body interaction for the k = 3 Read-Rezayi state
obtained in Ref. [10], wherein the authors had studied systems
of sizes up to N = 21 and 2Q = 32 and found the ratio to be
6 : 3 : 1. At the same flux, the mean-field approximation gives
pseudopotentials in the ratio 5.3 : 2.6 : 1. When comparing
the pseudopotentials, we note that the numerical search for
the optimal interaction (Ref. [10]) was performed on a finite
grid in the parameter space, which is expected to result in
finite error bars on the optimal pseudopotentials. A similar
mean-field approximation to the V8 = 1 interaction gives the
ratios V1 : V3 : V5 : V7 ≈ 6.5 : 2.75 : 1 : 1.75 in the large-2Q
limit (Fig. 3).

Linearity of the mean-field mapping MF(H1) + MF(H2) =
MF(H1 + H2) implies that the mean-field pseudopotentials of

FIG. 2. Left: Two-body pseudopotentials obtained by the map-
ping MF2

〈c†c〉 of four-body short-range repulsion with V6 = 1,V8 =
0. Right: Same information shown as a function 1/2Q to show
convergence to the values in the 2Q → ∞ limit. The dotted lines
indicate the fitting function a + b/(c − 2Q).

FIG. 3. Left: Two-body pseudopotentials obtained by the map-
ping MF2

〈c†c〉 of longer-range four-body repulsion (V8 = 1,V6 = 0).
Right: Same information plotted as a function of 1/2Q. The vertical
axis shows the deviation from the values in the 2Q → ∞ limit. The
dotted lines indicate the fitting function a + b/(c − 2Q).

a four-body interaction with V6 = A,V8 = B can be obtained
as the corresponding linear combination of the mean-field
pseudopotentials of V6 = 1,V8 = 0 and V8 = 1,V6 = 0 given
in the previous tables.

B. MF〈c†c〉
When the mean-field mapping MF〈c†c〉 is applied to a four-

body interaction only once, we obtain a three-body interac-
tion. The three-body pseudopotentials obtained by diagonal-
izing a system of three particles are presented in Table II.

The values of the three-body pseudopotentials in the large
2Q limit can also be inferred using a fitting function a + b

c−2Q
(Figs. 4 and 5). For the values of the coefficients a, b, c and
their dispersion, see Table V.

C. MF〈c†c†cc〉
As described in Sec. II, one can directly map a four-body

interaction to an approximate two-body interaction by replac-
ing the composite quartic operator c†

i c†
j ckcl by the ground-

state expectation values. Unlike the previous two cases, where
the only information required to define the mapping came

TABLE II. Three-body pseudopotentials obtained by reduction
of four-body interactions to three body using the mapping MF〈c†c〉.
Data are presented for the two largest systems and for the two
types of interactions: short-range repulsion (V6 = 1,V8 = 0) and the
longer-range repulsion (V6 = 0,V8 = 1).

V (4)
6 = 1, V (4)

8 = 0 V (4)
6 = 0, V (4)

8 = 1

V (3)
n ↓ 2Q = 47 2Q = 52 2Q = 47 2Q = 52

V3 3.10234 3.10812 1.9913 2.0027
V5 1.19654 1.19537 0.6742 0.6726
V6 0.98568 0.98589 0.0783 0.0770
V7 0 0 1.6232 1.6187
V8 0 0 0.9067 0.9084
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FIG. 4. Three-body pseudopotentials obtained by MF〈c†c〉 map-
ping of the four-body short-range repulsion (V6 = 1,V8 = 0) to
three-body interaction. The dotted lines indicate the fitting function
a + b/(c − 2Q).

from an assumption of homogeneity and rotational symmetry
of the ground state (which implied 〈c†

i ck〉 ∝ δik), a definition
of the MF〈c†c†cc〉 mapping requires more specific knowledge
of the many-body state in which 〈c†

i c†
j ckcl〉 is calculated. This

prevents us from implementing and exploring this mean-field
calculation for systems larger than 2Q = 27.

We estimated 〈c†
i c†

j ckcl〉 in the incompressible ground state
(k = 3 Read-Rezayi state) of the short-range four-body inter-
action (V6 = 1,V8 = 0) of N = 15 and 18 particles at flux
2Q = 22 and 27, respectively. From the two-body interac-
tion obtained from this approximation, the pseudopotential
can again be estimated from the energies of two particles.
Table III contains pseudopotentials of reduced interaction for
the largest systems that we studied. The pseudopotentials at
2Q = 27 occur in the ratio V1 : V3 : V5 = 5.8 : 3.0 : 1 match-
ing closely with the results of Ref. [10].

The longer-range four-body interaction (V8 = 1,V6 = 0)
does not produce an incompressible state at 2Q = 5

3 N − 3 at

FIG. 5. Three-body pseudopotentials obtained by MF〈c†c〉—
reduction of longer-range four-body interaction (V8 = 1,V6 = 0) to
three-body interaction. The dotted lines indicate the fitting function
a + b/(c − 2Q).

TABLE III. Two-body pseudopotentials from the mapping
MF〈c†c†cc〉 of the short-range four-body pseudopotential (V6 =
1,V8 = 0). The correlations 〈c†c†cc〉 are taken from the Read-Rezayi
state.

Four-body V6 = 1; Correlation from the ground state of V6 = 1

V (2)
n 2Q = 22 2Q = 27

V1 2.48198 2.45339
V3 1.25684 1.22514
V5 0.43826 0.41369

every N . In the absence of a gapped ground state, it is not clear
that such a mean-field approximation will work. Nevertheless,
a mean-field approximation can still be constructed for the
V8 = 1 interaction using the correlations calculated from its
ground state in the L = 0 sector. Table IV presents two-body
pseudopotentials of mean-field reduction of this interaction.

Note that since the correlations used to reduce the interac-
tions in the two cases (Tables III and IV) are not the same, the
linearity property (which can be applied in the previous two
cases MF〈c†c〉 and MF2

〈c†c〉) does not apply here.

D. Comparison of pseudopotentials

Figure 6 shows a comparison of the two-body pseudopo-
tentials obtained from the mean-field approximation of short-
range four-body repulsion, Coulomb repulsion, and the two-
body interaction obtained from the mean-field approximation
of short-range three-body repulsion (described in Ref. [12])
all normalized such that V (2)

1 = 1.

IV. MEAN-FIELD APPROXIMATION AND
PARTICLE-HOLE ANTISYMMETRIZATION AND

SYMMETRIZATION

In this section, we will explore the connection between
the mean-field approximation and the particle-hole sym-
metrization and antisymmetrization of multibody interactions.
It was found in Ref. [12] that the spectrum of the mean-
field approximation of the short-range three-body interaction
matches exactly with the spectra of the interaction obtained by
particle-hole symmetrizing the short-range three-body inter-
action [20], suggesting that the two methods result in the same
interaction. We will show here that the mean-field approxima-
tion to a general three-body Hamiltonian is identical (up to
additive constant chemical potential terms and overall scaling

TABLE IV. Two-body pseudopotentials from the mapping
MF〈c†c†cc〉 of the longer-range four-body interaction (V8 = 1,V6 = 0).
The correlations 〈c†c†cc〉 are taken from the lowest energy L = 0
state of the same four-body interaction.

Four-body V8 = 1; Correlation from ground state of V8 = 1

V (2)
n 2Q = 22 2Q = 27

V1 2.00931 1.91807
V3 1.12664 1.22146
V5 0.41725 0.38017
V7 0.6585 0.56026

235141-5
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FIG. 6. Comparison of two-body pseudopotentials for the fol-
lowing: Coulomb interaction, MF2

〈c†c〉 and MF〈c†c†cc〉, obtained from
four-body short-range repulsion (2Q = 27), the thermodynamic limit
of pseudopotentials obtained from the mean-field approximation
MF〈c†c〉 of three-body short-range repulsion.

factors) to the particle-hole symmetrization of the same. As
the algebra involved is the same as in Wick’s theorem, we
can immediately generalize the ideas to the case of four-body
interactions.

A. Symmetrization of the three-body interaction and its
mean-field approximation

A general three-body interaction can be written as

H(3) = 1

3!3!

∑
p,q

Vp;qc†
p3

c†
p2

c†
p1

cq1 cq2 cq3 , (7)

where p ≡ (p1, p2, p3), q ≡ (q1, q2, q3), and the sum is over
−Q � pi, qi � Q without any constraints on the ordering
inside p,

Vp,q = 〈p1 p2 p3|H(3)|q1q2q3〉.
The particle-hole conjugation of the interaction is given by

H(3) = 1

3!3!

∑
p,q

Vp,qcp3 cp2 cp1 c†
q1

c†
q2

c†
q3

. (8)

Shifting the creation operator to the right using the com-
mutation relations reveals a relation between H(3) and its
particle-hole conjugate,

H(3) = 1

3!3!

∑
p,q

Vp,q
[
C(0)

p,q + C(2)
p,q + C(4)

p,q

] − H(3). (9)

Here

C(0)
p,q = 1

3!

∑
Q,P∈S3

(−1)PQδQ(q1 )P(p1 )δQ(q2 )P(p2 )δQ(q3 )P(p3 ),

C(2)
p,q = − 1

2!

∑
Q,P∈S3

(−1)PQδQ(q1 )P(p1 )δQ(q2 )P(p2 )c
†
Q(q3 )cP(p3 ),

C(4)
p,q = 1

2!2!

∑
P,Q∈S3

(−1)PQδQ(q1 )P(p1 )c
†
Q(q3 )c

†
Q(q2 )cP(p2 )cP(p3 ),

where S3 is the permutation group over three objects. These
are precisely the terms that arise when Wick’s theorem is used
to relate the particle-hole conjugate interaction [Eq. (8)] to the
normal ordered form, with the contraction being equivalent to
setting 〈c†

i c j〉 to be δi j .
The first term C(0) gives a constant contribution to the right-

hand side of Eq. (9). The second term arising from C(2) is
nonzero only when a pair of entries in p match with a pair
in q. Considering that Vp,q is nonzero only when

∑
pi match

with
∑

qi, we find that the C(2) is proportional to

Q∑
p=−Q

Appc†
pcp,

where

App =
Q∑

p1,q1,p2,q2=−Q

V(p1,p2,p);(q1,q2,p)δp1q1δp2q2 .

It can be seen that App is independent of p. Rotational symme-
try of the interaction implies that the elements Vp,q are linear
combinations of projectors onto fixed angular momentum
subspaces, i.e.,

Vp,q =
∑

L

aL
[
P(3)

L

]
p,q.

Therefore, Vp,q is a rotationally invariant tensor, i.e., invariant
under the rotation R [written in the (2Q + 1)-dimensional
representation],

Vp,q =
∑
ṗ,q̇

Rp1 ṗ1 Rp2 ṗ2 Rp3 ṗ3Vṗ,q̇R̄q̇1q1 R̄q̇2q2 R̄q̇3q3 . (10)

Similarly δp1q1δp2q2 is a rotationally invariant tensor. So Ap3q3

obtained by contracting the four indices p1, p2, q1, q2 of the
two tensors is also symmetric, i.e., Apq = ∑

ṗq̇ RpṗR̄q̇qAṗq̇.
Since there exists some rotation R, which takes an angular
momentum p to another angular momentum p′, we have
that App = Ap′ p′ . This implies that the term C(2) is simply a
uniform chemical potential shift.

Finally, the term C(4) can be shown to be proportional to
the mean-field approximation of the three-body interaction.
Therefore, we have that up to multiplicative and additive
constants,

H(3) + H(3) ∝ MF〈c†c〉(H(3) ). (11)

Therefore, the spectra of the particle-hole symmetrization of
the three-body Hamiltonian [18,20], and the mean-field ap-
proximation of the same three-body Hamiltonian, are identical
[12].

B. Particle-hole antisymmetrization of the four-body interaction

In this section, we ask if the relation shown in the previous
section in the context of three-body interactions generalizes
to the context of the four-body interaction, and we show
that such a simple exact relation does not exist between the
particle-hole symmetrization and the mean-field Hamiltoni-
ans. Consider the expansion of the particle-hole conjugate of
the four-body interaction in terms of a sequence of normal
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ordered operators,

H(4) = H(4) − H(4→3) + H(4→2) − H(4→1) + H(4→0), (12)

where the first term is the four-body interaction and the
terms H(4→n) for n = 3, 2, 1, 0 are obtained under a sequence
of applications of MF〈c†c〉. Equivalently, these are the terms
obtained after one, two, three, and four contractions 〈c†c〉 ∝
δi j . H(4→0) is a constant shift. As discussed in the previous
section, rotational invariance implies that the H(4→1) is also a
constant chemical potential shift.

The above expression tells us that unlike the case
of the three-body interaction, it is the particle-hole–
antisymmetrization of the four-body interaction that contains
fewer-body interactions. Up to constant shifts, we get the
following results:

H(4) − H(4) = H(4→3) − H(4→2),

H(4) + H(4) = 2H(4) − H(4→3) + H(4→2),

where H(4→3) ∝ MF〈c†c〉(H(4) ) and H(4→2) ∝ MF2
〈c†c〉(H(4) ).

Neither particle-hole symmetrization nor antisymmetrization
produces a simple interaction that can be expanded in terms
of positive pseudopotentials. In general, for (even) odd n, the
particle-hole (anti)symmetrization of the n-body interaction
produces an interaction that can be interpreted as a sum of
n − 1 and fewer-body interactions, albeit with some negative
pseudopotentials.

V. NUMERICAL TESTS OF THE MEAN-FIELD
APPROXIMATIONS

In this section, we present the results of numerical tests of
the three mean-field approximations described in Sec. II. In
particular, we focus on the states at filling fraction ν = 3/5
at which the short-range four-body interaction with V6 = 1
(other pseudopotentials are zero) produces an incompressible
ground state. We compare the spectra of the approximations
with that of the original four-body interaction. Since the
mean-field approximations produce the same two-body inter-
action obtained in Ref. [10], the numerical tests given below
extend the numerical tests presented there.

A. Spectrum on the sphere

An incompressible ground state representing a filling frac-
tion of 3/5 is produced by the short-range four-body inter-
action in a system of N (a multiple of 3) electrons on a
sphere pierced by 2Q = 5N/3 − 3 radial flux quanta. This
incompressible state corresponds to the k = 3 Read-Rezayi
state [7]. Figure 7 (top left) shows the spectrum of such a
system of N = 18 particles. This incompressible state for a
system of N particles can be written as [7]

A
[
� 1

3
(z)� 1

3
(w)� 1

3
(r)

N/3∏
i, j=1

(zi − r j )

×
N/3∏

i, j=1

(zi − w j )
N/3∏

i, j=1

(ri − w j )

]
, (13)

FIG. 7. Spectra of a four-body short-range repulsion Hamilto-
nian and its mean-field approximations at a filling factor ν = 3/5,
N = 18, 2Q = 27. The numbers next to the ground states show
the overlap of the corresponding state with the ground state of the
four-body interaction.

where z, w, r are partitions into three equal parts of the N
coordinates. The function � 1

3
is the Laughlin state at filling

fraction 1/3. The symbol A indicates antisymmetrization over
N coordinates and ensures that the function represents a wave
function of N indistinguishable particles. The function is
expressed in the language of disk geometry, but it can be
straightforwardly mapped to the spherical geometry using a
stereographic projection.

Just above the gapped ground state is a neutral mode whose
wave function corresponds to the one in which one of the
partitions � 1

3
has a neutral excitation [9,26,27]. Using this

construction, the allowed quantum numbers of the neutral
mode can be inferred to be 0 < L � N/3. In Fig. 7 (top left),
the neutral mode can be seen to extend up to an angular
momentum L = 6 as expected, however the mode merges into
the bulk spectrum at low angular momenta.

The spectrum of the two-body interaction obtained using
the mean-field approximation MF2

〈c†c〉 is shown in Fig. 7 (top
right). The spectrum contains a unique L = 0 ground state
with a high overlap with the Read-Rezayi state. A mode of
excitations can be seen above this whose counting matches
at larger angular momentum but appears to differ at lower
angular momenta. Note that for neutral excitations (which
are made of a quasiparticle-quasihole pair), lower angular
momenta correspond to states in which the quasiparticle and
quasihole are close to each other. Relative agreement in the
spectra as angular momentum increases suggests that this
mean-field approximation reproduces the right long-distance
physics. The three-body interaction obtained from MF〈c†c〉
also produces an incompressible state [Fig. 7 (bottom left)]
with a high overlap with the Read-Rezayi state as well as a
neutral mode with the right quantum numbers. The spectra of
the two-body interaction obtained using MF〈c†c†cc〉, shown in
Fig. 7 (bottom right), are qualitatively similar to the spectra of
the two-body interaction obtained from MF2

〈c†c〉. Note that the
pseudopotentials depend on 2Q. The calculations presented
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KUŚMIERZ, WÓJS, AND SREEJITH PHYSICAL REVIEW B 99, 235141 (2019)

FIG. 8. The spectra of the mean-field approximation MF2
〈c†c〉 to

the short-range four-body Hamiltonian with nonzero pseudopotential
for V6 at N = 21, 2Q = 32; N = 24, 2Q = 37; N = 20, 2Q = 31;
and N = 22, 2Q = 33.

here use mean-field pseudopotentials at the respective fluxes
and not the ones inferred for the thermodynamic limit.

The results presented in Fig. 7 are for the largest system in
which all interactions were studied. Though diagonalization
of four-body interaction in larger systems is not easy, the
quantum numbers of the low-energy states can be inferred
from the trial wave-function approach discussed above. The
mean-field two-body interaction can be diagonalized in bigger
systems, and the low-energy quantum numbers can be com-
pared with those from the trial wave functions. Figure 8 (top
left) shows the spectrum of the two-body interaction obtained
using MF2

〈c†c〉 in a system N = 21, 2Q = 32. The interaction
again produces a homogeneous incompressible ground state
and a neutral mode. However, we find that the neutral mode
ends at angular momentum L = 8 instead of L = 7. The top-
right panel shows the spectrum of the mean-field two-body
interaction in a larger system N = 24, 2Q = 37. Here we find
that the neutral mode counting matches with the predicted
angular momentum of L = 8.

The structure of the neutral mode is indirectly encoded in
the ground-state pair correlation functions [28], and therefore
we expect that these functions should also be reproduced
by the approximate Hamiltonians. Figure 9 shows the pair
correlation functions in the incompressible ground state of the
four-body interaction as well as in the ground states of the
different approximate Hamiltonians shown in Fig. 7.

Figure 10 shows the spectrum of a system N = 17, 2Q =
26, which has one electron and a flux less than that in the
incompressible state. The low-energy spectrum arises from
two quasiholes of the Read-Rezayi state. The wave functions
at low energies can be understood in terms of a three-partition
structure similar to that in Eq. (13), wherein the three par-
titions now contain six, six, and five electrons in the states
� 1

3
, � 1

3
, and �

2qh
1
3

; the two quasiholes correspond to two

quasiholes in the Laughlin state in one of the three partitions
[26]. Using this structure of the wave function, the angular
momenta of the low-energy states can be calculated to be

FIG. 9. Pair correlation functions calculated from the incom-
pressible ground state at flux 2Q = 5N/3 − 3 of the short-range
four-body interaction as well as its mean-field approximations.

L = 1, 3, 5 and can be verified in the exact spectrum. Here we
find that the spectra of all mean-field approximations closely
resemble the spectrum of the four-body interaction.

Figure 8 (bottom left) shows the spectrum of the system
N = 20, 2Q = 31, which is again obtained by removing an
electron and a flux from the incompressible system at N =
21, 2Q = 32. This can again be understood as a similar two-
quasihole state, and the angular momenta of the low-energy
states can be calculated to be L = 0, 2, 4, 6. This exactly
matches what is seen in the spectra of the mean-field two-body
Hamiltonian.

Figure 11 shows the spectra for a system at N = 19, 2Q =
28, with one electron and one flux more than in the in-
compressible state. The low-energy spectrum is expected to
correspond to a system containing a pair of quasiparticles. The
wave function can be understood as containing three partitions
[similar to Eq. (13)] of six, six, and seven particles in the
states � 1

3
, � 1

3
, and �

2qp
1
3

, the two quasiparticles being in the

last partition. The quantum numbers of the two-quasiparticle

FIG. 10. The spectra of short-range four-body repulsion (V6 =
1,V8 = 0) and its mean-field approximation at N = 17, 2Q = 26
(corresponding to two quasihole states).
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FIG. 11. The spectra of short-range four-body repulsion (V6 =
1,V8 = 0) for a system of N = 19, 2Q = 28 (corresponding to two
quasiparticles).

state within this picture is then the same as the quantum
numbers L = 1, 3, 5 of the two quasiparticles of the Laughlin
state in the last partition. A clearly separated quasiparticle
branch with this counting cannot be seen even in the original
four-body interaction. Since the two quasiparticles are closer
to each other with higher probability in the higher angular
momentum states, it is expected that such a counting based
on trial wave functions should work only in the low angular
momentum limit. The spectra (Fig. 11) of all three mean-field
approximations match with what is seen in the actual spectrum
of the four-body interaction. Figure 8 (bottom right) shows
the spectra of the mean-field two-body interaction in the next
bigger system, where we expect a two-quasiparticle state.
Based on the wave functions described above, the quantum
numbers of the low-energy states are expected to be L =
0, 2, 4, 6. The quantum numbers in the spectra match with
these numbers in the low angular momentum limit.

For completeness, we also explore the spectra of the
mean-field approximation to the longer-range V8 = 1,V6 = 0
interaction. In general, the interaction does not produce an
incompressible ground state in the same flux sector 2Q =
5N
3 − 3 that we have studied. A gapped homogeneous state

is produced in the specific case of N = 18 but not in the
N = 15 case. Results for the spectrum of this interaction at
N = 18 are shown in Fig. 12. In this case, the spectrum of the
four-body interaction is closely reproduced by the MF〈c†c〉 and
MF2

〈c†c〉 approximations but not by MF〈c†c†cc〉. The difference
in the spectrum is not surprising given that the two-body
interactions obtained by the two methods (Tables IV and I)
appear qualitatively different. For the case of N = 15, where
there is no clear gap in the spectrum, we can still construct
the approximate Hamiltonian using the correlation function
in the ground state of the L = 0 sector. In this case, we find
that MF〈c†c†cc〉 produces a spectrum closer to the four-body
interaction.

B. Spectrum on the torus

A characteristic signature of non-Abelian clustered states
is the degeneracy of the ground state on manifolds of nonzero

FIG. 12. The spectra of the longer-range four-body repulsion
Hamiltonian with nonzero pseudopotential for V8 = 1 alone and its
mean-field spectra in a system of size N = 18, 2Q = 27.

genus, the simplest being the torus. The Read-Rezayi state has
a degeneracy on the torus of ten, five arising from center-of-
mass translations [29] and the remaining two from the non-
Abelian nature of the state [30]. Figure 13 shows the spectrum
of the two-body interaction mapped onto rectangular torus of
aspect ratios R = 1.0 and 0.9. The x axes show the relative

FIG. 13. Spectrum on the torus of the mean-field Hamiltonian
(corresponding to the MF2

〈c†c〉 pseudopotential on the sphere at the
same flux Ns ≡ 2Q) plotted as a function of relative momenta k
on the torus, shifted by the momentum of the ground state k0 =
(0, 0)/(π, π ) for N odd/even. The blue dashes and red dots indicate
the spectra for aspect ratios R = 1, R = 0.9 on the torus. The energy
of the R = 0.9 has been shifted (not rescaled) such that their ground
states match.
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momenta k on the torus. Twofold-degenerate ground states are
expected to occur for the four-body interaction at momenta
k0 = (0, 0)/(π, π ) for an even/odd number of particles. Note
that since the interaction has been approximated, we do not
expect exact double degeneracy in finite systems. While two
low-energy states can be seen in the k − k0 = 0 sectors in
N = 12, 15, 18, this is not very clear in all system sizes.
Moreover, for an even number of particles (N = 12 and 18),
an additional low-energy state emerges at k = (0, π ), possibly
suggesting a competing anisotropic phase stabilized by the
reduced rotational symmetry on the torus. The question of
which phase is stable in the thermodynamic limit unfortu-
nately cannot be addressed within the system sizes that we
have considered.

VI. CONCLUSIONS

We have presented three approaches for approximating the
four-body interaction to obtain fewer-body Hamiltonians, and
we tested these approaches on systems around the flux value
2Q = 5

3 N − 3, where the short-ranged four-body interaction
produces a gapped ground state. Evidence from numerical
diagonalization of finite-size systems suggests that the ap-
proximation schemes produce a good effective model of the
physics of four-body interaction at filling fraction ν = 3/5.
The two-body pseudopotentials for approximation can be
estimated to be close to V1 : V3 : V5 = 6 : 3 : 1. A comparison
with previous studies in Ref. [10] suggests that the obtained
two-body approximations are indeed the optimal two-body
interactions that produce the Read-Rezayi state. A similar
approximation to the short-range three-body interaction pro-
duces the corresponding optimal interaction that approximates
the low-energy physics around the Pfaffian state. The mean-
field approximation of the three-body interaction is exactly
the same as its particle-hole symmetrization up to constants,
but such a relation is not true for the n > 3-body interactions.
The two-body mean-field approximations, which seem to ac-
curately reproduce the spectra, form only a part of the particle-
hole symmetrization of the four-body interaction. It will be
interesting to explore the importance of the particle-hole
symmetry breaking and the symmetry-preserving corrections
to the mean-field approximations. Study of the spectra in the
torus geometry suggests that the mean-field interaction could
be in close proximity to an anisotropic phase, making analysis
of the spectra difficult within the accessible system sizes.

ACKNOWLEDGMENTS

B.K. and A.W. acknowledge financial support from the
Polish NCN Grant No. 2014/14/A/ST3/00654. We thank
Mikael Fremling, Eddy Ardonne, Yinghai Wu, Michael Pe-
terson, and J. K. Jain for useful discussions, and Y. Zhang for
collaborations on related previous works. G.J.S. is supported
by SERB Grant No. ECR/2018/001781.

APPENDIX A: FITTING FUNCTIONS OF APPROXIMATE
PSEUDOPOTENTIALS

The mean field pseudopotential can be calculated for rel-
atively large systems in the case of MF2

〈c†c〉 and MF〈c†c〉.

TABLE V. The coefficients of a function V (n)
l (2Q) = a + b

c−2Q ,
which is a best fit of n = 2- and 3-body pseudopotentials obtained
from the mean-field approximation of a four-body interaction with a
single nonzero four-body pseudopotential (V6 or V8).

MF2
〈c†c〉(V

(4)
6 = 1,V (4)

8 = 0)
V (2)

l a b c

l = 1 7.24975 −14.0437 0.659577
l = 3 3.50013 −1.88354 1.42402
l = 5 1.24996 0.939755 4.45989

MF2
〈c†c〉(V

(4)
6 = 0,V (4)

8 = 1)
V (2)

l a b c

l = 1 6.50009 −21.3186 0.608319
l = 3 2.75182 −4.0066 0.552965
l = 5 1.00101 2.62568 4.58301
l = 7 1.75123 3.43484 6.05555

MF〈c†c〉(V
(4)

6 = 1,V (4)
8 = 0)

V (3)
l a b c

l = 3 3.16047 −2.63259 1.71567
l = 5 1.18517 0.494979 3.46206
l = 6 0.987714 −0.085466 4.79941

MF〈c†c〉(V
(4)

6 = 0,V (4)
8 = 1)

V (3)
l a b c

l = 3 2.10724 −5.28236 1.44103
l = 5 0.658232 0.7258 1.51154
l = 6 0.0652811 0.538105 5.42847
l = 7 1.57983 1.8651 3.92187
l = 8 0.922529 −0.64921 5.68722

The two-body psuedopotentials obtained from MF2
〈c†c〉 are

shown in Figs. 2 and 3 for the cases of four-body interactions
with V6 = 1 and V8 = 1 respectively. Similarly, the three-body
psuedopotentials obtained from MF〈c†c〉 are shown in Figs. 4
and 5 for the cases of four-body interactions with V6 = 1 and
V8 = 1 respectively.

Using the large range of the available pseudopotential data,
we can obtain an approximate fitting function of the form a +
b/(c − 2Q) for each mean field pseudopotential. This could
be useful in numerical studies at general values of 2Q.

The coefficients of the fitting function for different cases
are shown in Table V.

APPENDIX B: EXPANSION OF 〈c†
p1

c†
p2

cq2 cq1〉 IN ANGULAR
MOMENTUM CHANNELS

The mean field approximations are constructed by re-
placing certain simple composite operators in the four-body
interaction by their expectation values estimated in the in-
compressible ground state of the four body interaction. It is
interesting to ask how well some of the correlation functions
such as the density-density correlations are reporoduced in the
mean-field ground state. Figures 14 and 15 shows this infor-
mation for the four-fermion correlation Mpq = 〈c†

p1
c†

p2
cq1 cq2〉.

Thanks to the rotational symmetry, all the information in
these correlations can be encoded in the eigenvalues of the
correlation matrix M. The eigenvectors of M are the two
particle angular momentum eigenstates.
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FIG. 14. Eigenvalues of the correlation matrix Mpq =
〈c†

p1
c†

p2
cq2 cq1 〉 plotted as a function of the total angular momentum

quantum number of the eigenvector. The top figure shows the
correlation in the ground state of the short-range four-body
interaction V8 = 0,V6 = 1 and the bottom figure shows the same for
the ground state of the L = 0 sector ground state of the longer-range
interaction V8 = 1,V6 = 0.

Figure 14 shows these eigenvalues of M for the ground
states of four-body interactions in different system sizes at

FIG. 15. Plot shows the eigenvalues of the correlation matrix
as a function of the angular momentum similar to Fig. 14. The
figure compares the correlations in the Read-Rezayi state with that
in the ground state of the MF2

〈c†c〉 approximation of short-range
interaction in two different system sizes N = 15, 2Q = 22 (top) and
N = 18, 2Q = 27 (bottom).

2Q = 5N
3 − 3. Figure 15 shows that the eigenvalues of M in

the ground state of the four-body interaction V6 = 1,Vl �=6 = 0
are closely reproduced in the ground state of its mean-field
approximation.
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[25] A. Wójs, D. Wodziński, and J. J. Quinn, Phys. Rev. B 71,

245331 (2005).
[26] G. J. Sreejith, Y.-H. Wu, A. Wójs, and J. K. Jain, Phys. Rev. B

87, 245125 (2013).
[27] R. K. Kamilla, X. G. Wu, and J. K. Jain, Phys. Rev. B 54, 4873

(1996).
[28] S. M. Girvin, A. H. MacDonald, and P. M. Platzman, Phys. Rev.

B 33, 2481 (1986).
[29] F. D. M. Haldane, Phys. Rev. Lett. 55, 2095 (1985).
[30] E. Ardonne, E. J. Bergholtz, J. Kailasvuori, and E. Wikberg,

J. Stat. Mech.: Theor. Exp. (2008) P04016.

235141-11

https://doi.org/10.1103/PhysRevLett.48.1559
https://doi.org/10.1103/PhysRevLett.48.1559
https://doi.org/10.1103/PhysRevLett.48.1559
https://doi.org/10.1103/PhysRevLett.48.1559
https://doi.org/10.1103/PhysRevLett.117.096601
https://doi.org/10.1103/PhysRevLett.117.096601
https://doi.org/10.1103/PhysRevLett.117.096601
https://doi.org/10.1103/PhysRevLett.117.096601
https://doi.org/10.1103/PhysRevLett.50.1395
https://doi.org/10.1103/PhysRevLett.50.1395
https://doi.org/10.1103/PhysRevLett.50.1395
https://doi.org/10.1103/PhysRevLett.50.1395
https://doi.org/10.1103/PhysRevLett.63.199
https://doi.org/10.1103/PhysRevLett.63.199
https://doi.org/10.1103/PhysRevLett.63.199
https://doi.org/10.1103/PhysRevLett.63.199
https://doi.org/10.1016/0550-3213(91)90407-O
https://doi.org/10.1016/0550-3213(91)90407-O
https://doi.org/10.1016/0550-3213(91)90407-O
https://doi.org/10.1016/0550-3213(91)90407-O
https://doi.org/10.1103/PhysRevB.59.8084
https://doi.org/10.1103/PhysRevB.59.8084
https://doi.org/10.1103/PhysRevB.59.8084
https://doi.org/10.1103/PhysRevB.59.8084
https://doi.org/10.1103/PhysRevB.75.195306
https://doi.org/10.1103/PhysRevB.75.195306
https://doi.org/10.1103/PhysRevB.75.195306
https://doi.org/10.1103/PhysRevB.75.195306
https://doi.org/10.1103/PhysRevLett.107.086806
https://doi.org/10.1103/PhysRevLett.107.086806
https://doi.org/10.1103/PhysRevLett.107.086806
https://doi.org/10.1103/PhysRevLett.107.086806
https://doi.org/10.1103/PhysRevB.97.245125
https://doi.org/10.1103/PhysRevB.97.245125
https://doi.org/10.1103/PhysRevB.97.245125
https://doi.org/10.1103/PhysRevB.97.245125
https://doi.org/10.12693/APhysPolA.129.A-73
https://doi.org/10.12693/APhysPolA.129.A-73
https://doi.org/10.12693/APhysPolA.129.A-73
https://doi.org/10.12693/APhysPolA.129.A-73
https://doi.org/10.1103/PhysRevB.96.125149
https://doi.org/10.1103/PhysRevB.96.125149
https://doi.org/10.1103/PhysRevB.96.125149
https://doi.org/10.1103/PhysRevB.96.125149
https://doi.org/10.1103/PhysRevLett.117.096802
https://doi.org/10.1103/PhysRevLett.117.096802
https://doi.org/10.1103/PhysRevLett.117.096802
https://doi.org/10.1103/PhysRevLett.117.096802
https://doi.org/10.1103/PhysRevB.98.045112
https://doi.org/10.1103/PhysRevB.98.045112
https://doi.org/10.1103/PhysRevB.98.045112
https://doi.org/10.1103/PhysRevB.98.045112
https://doi.org/10.1103/PhysRevLett.121.026801
https://doi.org/10.1103/PhysRevLett.121.026801
https://doi.org/10.1103/PhysRevLett.121.026801
https://doi.org/10.1103/PhysRevLett.121.026801
https://doi.org/10.1103/PhysRevB.97.165124
https://doi.org/10.1103/PhysRevB.97.165124
https://doi.org/10.1103/PhysRevB.97.165124
https://doi.org/10.1103/PhysRevB.97.165124
https://doi.org/10.1103/PhysRevB.80.241311
https://doi.org/10.1103/PhysRevB.80.241311
https://doi.org/10.1103/PhysRevB.80.241311
https://doi.org/10.1103/PhysRevB.80.241311
https://doi.org/10.1103/PhysRevB.99.045126
https://doi.org/10.1103/PhysRevB.99.045126
https://doi.org/10.1103/PhysRevB.99.045126
https://doi.org/10.1103/PhysRevB.99.045126
https://doi.org/10.1103/PhysRevB.98.115107
https://doi.org/10.1103/PhysRevB.98.115107
https://doi.org/10.1103/PhysRevB.98.115107
https://doi.org/10.1103/PhysRevB.98.115107
https://doi.org/10.1103/PhysRevLett.101.156803
https://doi.org/10.1103/PhysRevLett.101.156803
https://doi.org/10.1103/PhysRevLett.101.156803
https://doi.org/10.1103/PhysRevLett.101.156803
https://doi.org/10.1103/PhysRevLett.51.605
https://doi.org/10.1103/PhysRevLett.51.605
https://doi.org/10.1103/PhysRevLett.51.605
https://doi.org/10.1103/PhysRevLett.51.605
https://doi.org/10.1103/PhysRevB.34.2670
https://doi.org/10.1103/PhysRevB.34.2670
https://doi.org/10.1103/PhysRevB.34.2670
https://doi.org/10.1103/PhysRevB.34.2670
https://doi.org/10.1103/PhysRevLett.105.196801
https://doi.org/10.1103/PhysRevLett.105.196801
https://doi.org/10.1103/PhysRevLett.105.196801
https://doi.org/10.1103/PhysRevLett.105.196801
https://doi.org/10.1103/PhysRevLett.112.016801
https://doi.org/10.1103/PhysRevLett.112.016801
https://doi.org/10.1103/PhysRevLett.112.016801
https://doi.org/10.1103/PhysRevLett.112.016801
https://doi.org/10.1103/PhysRevB.71.245331
https://doi.org/10.1103/PhysRevB.71.245331
https://doi.org/10.1103/PhysRevB.71.245331
https://doi.org/10.1103/PhysRevB.71.245331
https://doi.org/10.1103/PhysRevB.87.245125
https://doi.org/10.1103/PhysRevB.87.245125
https://doi.org/10.1103/PhysRevB.87.245125
https://doi.org/10.1103/PhysRevB.87.245125
https://doi.org/10.1103/PhysRevB.54.4873
https://doi.org/10.1103/PhysRevB.54.4873
https://doi.org/10.1103/PhysRevB.54.4873
https://doi.org/10.1103/PhysRevB.54.4873
https://doi.org/10.1103/PhysRevB.33.2481
https://doi.org/10.1103/PhysRevB.33.2481
https://doi.org/10.1103/PhysRevB.33.2481
https://doi.org/10.1103/PhysRevB.33.2481
https://doi.org/10.1103/PhysRevLett.55.2095
https://doi.org/10.1103/PhysRevLett.55.2095
https://doi.org/10.1103/PhysRevLett.55.2095
https://doi.org/10.1103/PhysRevLett.55.2095
https://doi.org/10.1088/1742-5468/2008/04/P04016
https://doi.org/10.1088/1742-5468/2008/04/P04016
https://doi.org/10.1088/1742-5468/2008/04/P04016

