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Interplay between fractional quantum Hall liquid and crystal phases at low filling
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The nature of the state at low Landau-level filling factors has been a long-standing puzzle in the field of the
fractional quantum Hall effect (FQHE). While theoretical calculations suggest that a crystal is favored at filling
factors ν � 1

6 , experiments show, at somewhat elevated temperatures, minima in the longitudinal resistance that
are associated with fractional quantum Hall effect at ν = 1

7 , 2
11 , 2

13 , 3
17 , 3

19 , 1
9 , 2

15 , and 2
17 , which belong to the

standard sequences ν = n/(6n ± 1) and n/(8n ± 1). To address this paradox, we investigate the nature of some
of the low-ν states, specifically ν = 1

7 , 2
13 , and 1

9 , by variational Monte Carlo, density matrix renormalization
group, and exact diagonalization methods. We conclude that in the thermodynamic limit, these are likely to
be incompressible fractional quantum Hall liquids, albeit with strong short-range crystalline correlations. This
suggests a natural explanation for the experimentally observed behavior and a rich phase diagram that admits, in
the low-disorder limit, a multitude of crystal-FQHE liquid transitions as the filling factor is reduced.

DOI: 10.1103/PhysRevB.102.075307

I. INTRODUCTION

The physics of the fractional quantum Hall effect (FQHE),
right from its beginning [1,2], has been intertwined with the
physics of the expected Wigner crystal phase in the lowest
Landau level (LLL) [3,4]. There has been a great deal of
theoretical [5–13] and experimental [14–36] work address-
ing this issue, and the following picture is widely accepted:
(i) At filling factors ν = n/(2n ± 1), ν = n/(4n ± 1), where
n is a positive integer, and their hole partners, the ground
state is a FQH liquid. These states are understood as integer
quantum Hall (IQH) state of composite fermions (CFs) [37],
which are bound states of electrons and an even number
of quantized vortices. (ii) In n-doped GaAs quantum wells,
an insulating phase is seen between ν = 1

5 and 2
9 and also

below ν = 1
5 [16,17]. A strong case may be made that these

insulators represent a crystal pinned by the disorder. Similarly,
insulating states, seen in the vicinity of ν = 1

3 [20,21], are
also viewed as disorder-pinned crystals. (iii) Theoretically, it
has been demonstrated that the crystal of composite fermions
[11–13] is energetically better than the crystal of electrons.
The number of vortices bound to composite fermions is fewer
than the maximum number of available vortices, which leaves
composite fermions with enough freedom to form a crystal.
(For example, at 1

7 and 1
9 , the best crystals have four and

six vortices bound to composite fermions.) In particular, the
crystal formed in-between 1

5 and 2
9 is explained as a crystal

of 2CFs [12]. (The symbol 2pCF denotes composite fermions
carrying 2p vortices.) (iv) Finally, the FQHE terminates for
ν � 1

6 , where the crystal phase dominates.

It is the last assertion (iv) that we address in this paper. The
motivation is as follows. Experiments clearly show that the
state for ν < 1

5 is insulating with exponentially high resistance
at the lowest temperatures. At the same time, signatures of
FQHE at ν = 1

7 and 2
11 have been reported by Goldman et al.

[38] and Mallett et al. [39], respectively. Moreover, Pan et al.
[24,40] have observed developing FQH states at ν = 1

7 , 2
11 ,

2
13 , 3

17 , 3
19 , 1

9 , 2
15 , and 2

17 at elevated temperatures (see Table I
of Ref. [40] for a list of observed fractions), which belong to
the standard Jain sequences at ν = n/(6n ± 1) and n/(8n ±
1) arising from the integer quantum Hall effect of 6CFs and
8CFs. These observations are not readily reconcilable with the
assertion (iv).

We therefore revisit the generally accepted view that the
region below ν � 1

6 is dominated by the crystal phase. The
issue is ultimately an energetic one and requires an accurate
understanding of both the liquid and the crystal phases. We
find that the competition between the FQHE liquid and the
crystal phases is much subtler than previously believed. On
the whole, our calculations support, in an ideal disorder-
free situation, an incompressible FQHE liquid with strong
short-range crystalline correlations at fractions such as ν = 1

7 ,
2
13 , 1

9 , which belong to the ν = n/(6n ± 1) and n/(8n ± 1)
sequences.

We provide here a summary of our results obtained from
three different methods we apply to this problem. Throughout
this work, we shall assume that the external magnetic field
is strong enough to fully spin polarize the electrons. Further-
more, we shall consider an ideal system with zero width, zero
Landau-level (LL) mixing, and no disorder.
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Variational Monte Carlo (VMC). The statement that the
crystal is stabilized for ν � 1

6 is largely based on variational
comparisons between candidate FQHE and crystal states.
The validity of the variational studies, however, depends on
the accuracy of the wave functions used in the study. For
the crystal phase, the CF crystal (CFC) wave functions are
extremely accurate at low filling factors [11]. In particular,
the 4CF crystal has the lowest energy at ν = 1

7 , and the 6CF
crystal has the lowest energy at ν = 1

9 . We find that the best
CF crystal has lower energy than the “bare” Laughlin/Jain
wave functions [2,37] for ν = 1

7 , 2
13 , and 1

9 . However, the bare
Laughlin/Jain wave functions are not as accurate represen-
tations of the liquid at small filling [11,41] as they are for
ν = n/(2n ± 1). The variational energy of the liquid state at
low filling factors can be significantly improved by allowing
a renormalization of composite fermions through dressing by
CF excitons, using the method of CF diagonalization (CFD)
[42]. We find that after such renormalization, the energies of
the CF liquids become competitive with those of the best CF
crystal.

In this context, we note that an earlier work [43] found
an excitonic instability at ν = 1

9 and lower filling within the
bare CF theory. However, this instability was later found to
disappear with improved wave functions for the ground and
excited states obtained using CFD [44].

Density matrix renormalization group (DMRG). Earlier
calculations in the torus [9] and disk [11] geometries favored
a crystal phase at ν = 1

7 and 1
9 . However, these calculations

were performed for N = 6 and thus are not necessarily in-
dicative of the behavior in the thermodynamic limit. As an
example, it was shown in Ref. [45] that the crystal state wins
over the liquid even for ν = 1

5 for small systems, and it is
necessary to go to sufficiently large systems (with N � 10) to
see that the actual state is an FQHE liquid. To see if analogous
physics might be present at ν = 1

7 and 1
9 , we have performed

extensive DMRG studies in the cylindrical geometry by con-
sidering systems with up to N = 25 particles. On a cylinder,
some particle numbers are more favorable to crystal formation
because the geometry accommodates a triangular crystal for
these particle numbers. We find that for ν = 1

3 the system is
clearly a liquid, independent of N . For other fractions, we find
liquidlike correlations for particle numbers (N = 6, 12, and
20) for which a triangular crystal cannot be accommodated on
the cylinder. For particle numbers that favor a crystal (N = 9,
16, and 25), we find strong crystalline correlations. While our
calculations do not decisively discriminate between the liquid
and crystal phases in the thermodynamic limit, they do not
rule out, for ν = 1

5 , 1
7 , and 1

9 , an FQHE liquid with strong
short-range crystalline correlations.

Exact diagonalization (ED). We perform extensive ED
studies in the spherical geometry, going to much larger sys-
tems than before. In our studies, we find that the states at
ν = 1

7 , 2
13 , 1

9 , and 1
11 appear to be incompressible FQH liquid

states by all measures. They have uniform ground states, i.e.,
have total orbital angular momentum L = 0 in the spherical
geometry, which is an important property of incompressible
states (for other states, in general, L > 0). They have the ex-
pected excitation spectrum and have robust charge and neutral
gaps that extrapolate to nonzero values in the thermodynamic
limit. The ground states have a significant overlap with the

Laughlin or Jain wave functions. For N = 10 particles, the
exact energy as a function of flux also shows downward
cusps at the special filling factors ν = 1

7 and 2
13 . The study

in the spherical geometry fully supports an FQHE liquid
at the low filling factors we have studied. Even though the
spherical geometry disfavors a crystal, because a triangular
crystal cannot be perfectly accommodated on the surface of
a sphere, it does provide ample freedom to signal a departure
from FQHE by producing either a nonuniform ground state
with L �= 0 or a liquid that is not described by the standard
FQHE physics. We therefore take the ED results as providing
nontrivial support for the stabilization of FQHE states at low
filling factors.

Based on these considerations, especially the ED results in
the spherical geometry, we conclude that, overall, our calcu-
lations favor an FQHE liquid at ν = 1

7 and 1
9 , and presumably

at certain other filling factors of the form ν = n/(6n ± 1)
and n/(8n ± 1), in the thermodynamic limit. This has clear
experimental consequences, which ought to be testable in
better quality samples; it is worth mentioning that a significant
jump in the mobility has recently been achieved in GaAs-
based two-dimensional systems [46,47].

We note that signatures of FQHE at ν = 1
7 in a higher LL

have recently been reported in WSe2 [48]. Our present study
is confined to the LLL filling factors.

The plan for the rest of the paper is as follows. We first
provide a primer on composite fermion theory and spherical
geometry in Sec. II. Results obtained from variational Monte
Carlo calculations on the sphere using the CF wave functions
are given in Sec. III. Section IV contains results from DMRG
calculations. In Sec. V we provide results obtained from
our extensive exact diagonalization studies on the sphere.
Section VI discusses the relation of our results to experiments
and suggests a schematic phase diagram for FQHE at low
filling factors.

II. PRIMER ON SPHERICAL GEOMETRY AND
COMPOSITE FERMION THEORY

Our exact diagonalization and variational Monte Carlo
calculations are carried out on the Haldane sphere [49], where
N electrons are confined to the surface of a sphere in the
presence of a radial magnetic flux of 2Qhc/e (2Q is an
integer) generated by a magnetic monopole placed at the
center of the sphere. The radius of the sphere is given by
R = √

Q�, where � = √
h̄c/eB is the magnetic length and B

is the perpendicular magnetic field. The quantity φ0 = hc/e
is called the flux quantum. Appropriate to this geometry, the
total orbital angular momentum L and its z component Lz

are good quantum numbers. The single-particle eigenstates
for a given 2Q are labeled by the single-particle angular
momentum l = |Q| and its z component lz = −|Q|, . . . , |Q|;
these are referred to as orbitals. Incompressible quantum Hall
states at filling factor ν occur on the sphere when 2Q =
N/ν − S , where S is a topological quantum number called
the shift [50]. These states are distinguished by the fact that
(i) they are uniform, i.e., have L = 0, for all N , and (ii)
they have a nonzero gap to excitations in the thermodynamic
limit. These are the criteria that we will use to ascertain
whether the actual state is incompressible. In contrast, a
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compressible state, in general, has L �= 0 and no well-defined
gap.

The phenomenology of FQHE occurring in the LLL is
understood using the CF theory [37,51], which maps strongly
interacting electrons at filling factor ν = ν∗/(2pν∗ + 1) into
weakly interacting CFs carrying 2p vortices at filling factor
ν∗. One of the consequences of this mapping is that when
ν∗ = n, where n is a positive integer, an incompressible FQH
state of electrons occurs at filling factor ν = n/(2pn + 1). The
Jain CF wave function for the incompressible FQH ground
state at ν = n/(2pn + 1) is given by

�CF
n/(2pn+1) = PLLL�n�

2p
1 , (1)

where �n is the IQH state constructed at the effective mag-
netic monopole strength 2Q∗ = N/n − n. The symbol PLLL

represents projection into the LLL, for which we use the
Jain-Kamilla (JK) method [51–56]. Because the shifts add,
the incompressible state at ν = n/(2pn + 1) is predicted to
occur at shift S = n + 2p. The above wave function reduces
to the Laughlin wave function for ν = 1/(2p + 1). The wave
function of the ground state as well as the excitations obtained
from the CF theory accurately capture the corresponding true
Coulomb states in the LLL [44,51,52,54,57–62].

Similarly, using the analogy to the IQH effect, wave func-
tions for the low-energy excitations of the FQH state, namely,
quasiparticles and quasiholes (which are created upon re-
moval or insertion of flux quanta in the ground state), can also
be constructed. In particular, CF theory predicts that the total
orbital angular momentum of the single quasihole (QH) or
single quasiparticle (QP) state at ν = n/(2pn + 1) is LQH =
[N + (n − 1)2]/(2n) and LQP = (N + n2 − 1)/(2n). In par-
ticular, the single quasihole or single quasiparticle state at
ν = 1/(2p + 1) is obtained, respectively, by the addition or
removal of a single flux quantum hc/e in the ground state and
occurs at LQH = N/2 = LQP.

The Laughlin state at ν = 1/(2p + 1) [2] is the unique
densest exact zero-energy ground state of the short-range in-
teraction specified by the two-body Haldane pseudopotentials
Vm = 1 ∀ m � 2p and Vm = 0 ∀ m � 2p + 1 [49]. Here, Vm

is the energy of a pair of electrons in the relative angular
momentum state m. No local interactions in the LLL are
known which produce the wave functions of Eq. (1) at other
fractions as exact zero-energy ground states [63].

Next, we describe the various electron and composite
fermion crystal states considered in this work. Crystal states
can occur when the electrons or composite fermions prefer to
occupy localized wave packets to minimize the strong repul-
sion of the Coulomb interaction. In the spherical geometry, a
wave packet localized at spinor coordinates (U,V ) is created
by (uU ∗ + vV ∗)2Q, where (u, v) are particle coordinates. The
2p-vortex composite fermion crystal (2pCFC) wave function
is given by

�
2pCFC
2Q =

∏
i< j

(uiv j − u jvi )
2p�EC

2Q∗ , (2)

�EC
2Q∗ = Det[(uiU

∗
j + viV

∗
j )2Q∗

], (3)

where Det stands for determinant. Here �EC
2Q∗ is the electron

crystal, and �
2pCFC
2Q is a crystal of composite fermions because

the factor
∏

i< j (uiv j − u jvi )2p attaches 2p vortices to each
electron in the electron crystal. We have 2Q∗ = 2Q − 2p(N −
1) and only those values of p are allowed that lead to a positive
value of 2Q∗. We treat 2p as a variational parameter. The
crystal sites can also be thought of as variational parameters.
We choose the crystal sites to lie at the Thomson locations
[64–67], which minimize the classical Coulomb repulsion
energy of point particles on a sphere. Note that a triangular
crystal, which is what the electrons organize themselves into
in two dimensions to minimize the Coulomb repulsion energy,
in the spherical geometry necessarily has some defects.

We note that for ν = 1, i.e., for 2Q∗ = N − 1, we have
�EC

2Q∗ = ∏
i< j (uiv j − u jvi ) (apart from normalization) inde-

pendent of (Uj,Vj ), because that is the only wave function
available within the LLL space. For that reason, �

2pCFC
2Q is

identical to the Laughlin wave function for ν = 1/(2p + 1).
One quantity of interest is the pair-correlation function,

which is defined as

g(r, r′) = 1

ρ2
0

〈∑
i �= j

δ(r − ri )δ
(
r′ − r j

)〉
, (4)

where ρ0 is the average density. For a translationally invari-
ant system, and in particular for the spherical geometry, we
have g(r, r′) = g(|r − r′|). The pair-correlation function is
essentially the density at r when one particle is fixed at r′,
normalized so that g(|r − r′|) → 1 in the limit |r − r′| → ∞
for a liquid.

III. VARIATIONAL MONTE CARLO STUDIES

Using the wave functions given in Eq. (1) we calculate the
Coulomb energy of the FQHE liquid states at ν = 1

7 , 2
13 , and

1
9 for large systems using the Metropolis Monte Carlo method
[68]. The “bare” Laughlin/Jain wave functions of Eq. (1) do
not give the best description of the liquid ground state at
the low filling considered in our work [41]. The liquid state
energies are significantly lowered by dressing the bare state
with CF excitons. The energy of this renormalized ground
state is calculated by the method of CFD [42,51]. We quote
energies of the liquid state at ν = 1

7 , 2
13 , and 1

9 obtained by
renormalizing the Laughlin/Jain state by dressing it with up
to three CF excitons. In Table I we show results for small
systems where we compare the liquid energies against exact
diagonalization. These correlation energies include contribu-
tions of the electron-background and background-background
interactions. All the energies are quoted in standard Coulomb
units of e2/(ε�), where ε is the dielectric constant of the
background host material. We also evaluate the Coulomb
energies of various crystal states of Eq. (2) using the Monte
Carlo method. As seen in Table I, for ν = 1

7 and 2
13 , the 4CF

crystal has the lowest energy, whereas at ν = 1
9 the 6CF crystal

has the lowest energy.
The primary conclusion is that the dressed liquid energies

and the CF crystal energies are very close to the exact energies
for all systems considered, and thus VMC cannot discriminate
between the two.
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TABLE I. Background-subtracted density-corrected per-particle lowest-Landau-level (LLL) Coulomb energies for various liquid and
crystal states at filling factors ν = 1

7 , 1
9 , and 2

13 . The fourth and fifth columns give the dimensions of the Lz = 0 and L = 0 subspaces,
respectively. The last column shows the absolute value of the overlap of the exact state with the trial Laughlin/Jain (L/J) state [2,37]. (The
overlap with the exact state for the ν = 2/13 Jain state with N = 10 particles is missing because we have not been able to obtain the Fock space
decomposition of this Jain state due to certain technical difficulties. Given the close agreement between the energies, we expect the overlap
to be large.) Some of the overlaps for 1

7 with the Laughlin state were previously quoted in Ref. [48]. The numbers in the parentheses are the
statistical uncertainty of the Monte Carlo calculation of the energies. The 6CF number at ν = 1

7 is the same as that of the Laughlin state. The
symbol “–” indicates numbers which are currently unavailable.

Liquid energies [e2/(ε�)] Crystal energies [e2/(ε�)] Overlap

Bare Renormalized Electron crystal CF crystal
ν N 2Q dimLz=0 dimL=0 Exact Laughlin/Jain up to 3 CF excitons 2CF 4CF 6CF |〈ψexact|ψL/J〉|
1
7 4 21 241 4 −0.279799 −0.279320(0) −0.27980(0) −0.27366(5) −0.27671(8) −0.27814(5) −0.279320(0) 0.9741

5 28 2,649 7 −0.279223 −0.279157(0) −0.27920(1) −0.27198(7) −0.27546(8) −0.27729(7) −0.279157(0) 0.9972
6 35 32,134 47 −0.280706 −0.279773(0) −0.28069(0) −0.27576(0) −0.27852(6) −0.27966(3) −0.279773(0) 0.8716
7 42 413,442 229 −0.280217 −0.279841(0) −0.28021(0) −0.27370(9) −0.27701(4) −0.27857(4) −0.279841(0) 0.9631
8 49 5,557,206 1,985 −0.280580 −0.279987(0) −0.28055(0) −0.27498(0) −0.27792(2) −0.27927(7) −0.279987(0) 0.9097
9 56 77,182,439 17,487 −0.280911 −0.280117(0) −0.28086(1) −0.27573(6) −0.27853(3) −0.27973(1) −0.280117(0) 0.8348
10 63 1,099,923,868 178,665 −0.281048 −0.280204(0) −0.28098(2) −0.27593(3) −0.27868(0) −0.27985(8) −0.280204(0) 0.8119

1
9 4 27 519 5 −0.248519 −0.248141(0) −0.248516(0) −0.24448(8) −0.24613(3) −0.24703(5) −0.24768(0) 0.9736

5 36 7,483 10 −0.247875 −0.247832(0) −0.247872(0) −0.24312(7) −0.24498(0) −0.24616(3) −0.24690(0) 0.9970
6 45 118,765 91 −0.249628 −0.248674(0) −0.249595(0) −0.24654(5) −0.247916(6) −0.248663(3) −0.24908(7) 0.8277
7 54 1,999,265 624 −0.248967 −0.248666(0) −0.248950(0) −0.24481(6) −0.24647(7) −0.24758(6) −0.24821(8) 0.9583
8 63 35,154,340 7,105 −0.249424 −0.248855(0) −0.249381(0) −0.24598(5) −0.24746(2) −0.24832(1) −0.24872(5) 0.8789
9 72 638,724,335 84,470 −0.249817 −0.249018(0) −0.249752(1) − − − − 0.7762

2
13 4 18 150 3 −0.288781 −0.288751(0) −0.288751(1) −0.28119(6) −0.28530(6) −0.28722(0) − 0.9992

6 31 17,002 34 −0.289873 −0.289540(0) −0.289853(1) −0.28394(6) −0.28748(6) −0.28881(9) −0.28892(7) 0.9642
8 44 2,502,617 1,137 −0.289885 −0.289723(0) −0.289751(1) −0.28344(3) −0.28702(9) −0.28852(9) −0.28896(5) 0.9820
10 57 421,777,505 85,250 −0.290440 −0.290063(0) −0.290321(1) −0.28449(3) −0.28792(8) −0.28922(3) −0.28928(9) −

IV. DMRG STUDIES

A. DMRG method

Since the development of the DMRG algorithm [69,70]
and its description in terms of matrix product state (MPS)
representation [71], this algorithm has become a reliable tool
to precisely calculate the ground-state correlation functions
and energies for one-dimensional quantum many-body sys-
tems. Through mapping the two-dimensional electrons under
a strong magnetic field in the lowest Landau level to a one-
dimensional lattice model, DMRG algorithms have been used
to investigate the FQHE liquids and composite fermion Fermi
sea [72–76]. Here we apply the finite DMRG approach to
the cylindrical geometry using the Landau gauge, following
Zaletel, Mong, and Pollmann [74].

A remark is in order on why we use the cylindrical geome-
try rather than the spherical geometry for our DMRG study. In
comparison to the cylinder, on the sphere, it is not possible to
go to very large systems using finite DMRG. While we can go
to 25 particles at ν = 1

3 using DMRG (also see Ref. [77]), the
largest system accessible to us on the sphere at filling factor
1
7 is 12 particles. The main reason for the difference in the
system sizes accessible to the two geometries owes to their
single-particle wave functions [78]. On the cylinder, single-
particle wave functions are Gaussian wave packets, which
are highly localized. As a result, the coefficient amplitudes
of the electron-electron interaction drop rapidly, allowing us
to truncate lots of terms of the Hamiltonian for DMRG and

get reasonable results of large sizes. For the sphere, on the
other hand, the single-particle wave functions are not highly
localized, requiring more states to be retained for achieving
comparable accuracy.

The cylindrical geometry is topologically equivalent to a
parallelogram in the complex plane with periodic boundary
conditions in one direction and open boundary conditions
in the other. For a finite-size system with N particles at
filling ν = 1/m, the number of orbitals (i.e., single-particle
eigenstates) is given by Norb = m(N − 1) + 1, which is the
same as that on the spherical geometry [79]. Once the par-
ticle number and filling factor are fixed, the geometry of
the cylinder is specified by the circumference L in the pe-
riodic direction. (L has also been used to denote the total
orbital angular momentum in the spherical geometry; we hope
that its meaning is clear by context.) In the open boundary
direction, the particles would distribute in an approximate
range of [−πNorb�

2/L, πNorb�
2/L], out of which the density

would decay as an exponential function. Rather than using
the usual Cartesian coordinates (x, y), we choose a “reduced
coordinate” system (θ1, θ2), which is defined as x + iy =
θ1L + θ2Lτ . Here, τ = τ1 + iτ2 is a parameter in analogy to
the modular parameter [80] in torus.

As shown below, the Hamiltonian only depends on Norb

and L, so the choice of τ for the cylinder is just a matter
of parametrization of the particle coordinates. Within the
reduced coordinate system, we choose a hexagonal cylinder
defined by τ = eiπ/3 and L =

√
2πNorb�2/τ2. The advantage
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of this choice is that it allows a convenient visualization of
the triangular crystal. Since θ1 is along the circumference of
the cylinder, it lies between [−0.5, 0.5). The coordinate θ2

may have some extension outside of [−0.5, 0.5), but there the
density of particles is small and decays very rapidly to zero.
Using the Landau gauge A = (−y, 0)/�2, we can obtain the
single-particle wave function in the LLL [74]:

ϕn(θ1, θ2) = (2τ2Norb)1/4ei2πn(θ1+θ2τ1 )e−πτ2Norb(θ2− n
Norb

)2

, (5)

where Norb is the number of orbits and index n takes val-
ues 0, 1, . . . , Norb − 1. The wave function ϕn(θ1, θ2) satisfies
the periodic boundary condition ϕn(θ1 + 1, θ2) = ϕn(θ1, θ2),
which can be viewed as a one-dimensional lattice model with
lattice constant 1.

As noted in Ref. [81], the long-range nature of the
Coulomb interaction leads to divergences in the cylindrical
geometry. These can be avoided by choosing the interaction
V (r) = e−μr

r , which reduces to the Coulomb interaction for
μ = 0. [All energies in this paper are quoted in units of
e2/(ε�).] The total energy is composed of three terms:

Htotal = Hee + Heb + Hbb. (6)

The last term on the right-hand side, which represents
the background-background interaction, is constant and can
be omitted in the calculation of density profiles and pair-
correlation functions. The first two terms represent the
electron-electron interaction and electron-background interac-
tion. In the second quantized form the various terms in the
Hamiltonian can be expressed as

Hee =
Norb∑

n,k�|m|
V ee

mkc†
n+mc†

n+kcn+m+kcn, (7)

V ee
mk = 2(Vmk − Vkm), (8)

Vmk = e− 2π2m2�2

L2

L

∫ ∞

0
dq2

e− q2
2
2 cos (2πkq2/L)√(
2πm

L

)2 + q2
2 + μ2

, (9)

Heb =
∑

n

V eb
n c†

ncn, (10)

V eb
n = − 2N

NorbL

Norb−1∑
j=0

∫ ∞

0
dq2

e−q2
2/2 cos 2πq2( j−n)

L√
q2

2 + μ2
, (11)

Hbb =
∑

n

V bbc†
ncn, (12)

V bb = N

N2
orbL

Norb−1∑
j,n=0

∫ ∞

0
dq2

e−q2
2/2 cos 2πq2( j−n)

L√
q2

2 + μ2
, (13)

where c†
n and cn are the creation and annihilation operators for

single-particle orbital ϕn. Because the electron charge distri-
bution of the LLL for a finite system is nonuniform, we choose
the background charge distribution to be proportional to the
electron charge distribution of lowest filled Landau level, i.e.,
ρb(r) = N

Norb

∑Norb−1
n=0 |ϕn(r)|2. We note that the Hamiltonian

has no dependence on τ , which is natural because how we
parametrize the coordinates on cylinder is irrelevant to any
physical observable.

The pair-correlation function is a natural quantity that can
distinguish between the Wigner crystal and the FQH liquid
states. The pair-correlation function for our finite-size system
is defined in Eq. (4) where we take ρ0 = N

2πNorb�2 as the mean
density.

We note that in the above Hamiltonian we have not in-
cluded the self-interaction energy, which is the interaction
energy between an electron and its images in the periodically
repeated unit cells [82]. The self-interaction energy for torus
is a negative constant, independent of the wave function,
and does not affect the pair-correlation function. Because of
the presence of edges in the cylindrical geometry, the self-
interaction energy has a slight dependence on the electron
position, and hence the wave function. However, compared
to the bare electron background in Eq. (11) the corrections are
proportional to 1/N , which we have neglected. We have ex-
plicitly checked for N = 6, 9, and 12 for ν = 1

7 that inclusion
of the self-interaction energy has no discernible effect on the
pair-correlation function.

As another note, the cylindrical geometry is not useful for
determining the ground-state energy. The primary reason is
that corrections due to the presence of two edges are very
strong, as evident by the presence of a charge density wave
spanning the entire length of the cylinder. A proper thermo-
dynamic limit for the energy would require going to large
enough systems where the density in the interior becomes
uniform, which is not the case for the systems that we have
studied. This issue can be avoided and accurate Coulomb
energies can be obtained by using infinite DMRG (iDMRG),
as shown by Zaletel et al. [75].

The DMRG algorithm is based on the ITENSOR library [83].

B. DMRG results

Figures 1 and 2 show the density profiles and pair cor-
relation functions for ν = 1

3 , 1
5 , 1

7 , and 1
9 for N = 6, 9, 12,

16, 20, and 25 particles. The bond dimension is kept at least
χ = 6000 in the truncation of bases, which allows the singular
value decomposition truncation error to be smaller than 10−7.
We choose μ = 0.0001; we have found that our results are
insensitive to the value of μ so long as μ � 0.01, and are thus
represent the behavior for the Coulomb interaction. We have
also confirmed that the pair correlations and orbital occupa-
tions of ground states through DMRG agree perfectly with
those obtained from exact diagonalization studies, wherever
the latter results are available. In the calculation of the pair-
correlation function, the position of the fixed electron is taken
on one of the interior maxima in density (except for N = 6),
so that it would coincide with the position of a crystal site,
should a crystal be stabilized. (This maximizes the chances
for a crystal.) In the background information [84], we show
how the pair-correlation function g(r, r′) changes as we vary
the position of r (indicated by a red dot in the figures) along
the length of the cylinder.

The question, of course, is whether the system is a crystal
or a liquid in the thermodynamic limit. We note that the den-
sity oscillations along the length of the cylinder are dictated
by the open boundary conditions; of relevance here are the
correlations in the horizontal, i.e., periodic, direction of the
cylinder. The ν = 1

3 state looks like a liquid for all particle
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FIG. 1. The electron density profiles on a hexagonal cylinder. The columns show results for filling factors ν = 1
3 , 1

5 , 1
7 , and 1

9 . The rows
correspond to N = 6, 9, 12, 16, 20, and 25 particles. We take periodic boundary condition for the horizontal direction and open boundary
condition for the vertical direction. We choose L =

√
4πNorb�

2/
√

3, τ = eiπ/3, and μ = 0.0001.

numbers, so here there is no ambiguity regarding its liquid
nature. For ν = 1

5 , 1
7 , and 1

9 , the pair-correlation function
indicates at least short-range crystalline correlations, which
strengthen with lowering ν. Furthermore, the crystalline struc-
ture depends on the particle number: systems with N = 9,
16, and 25 particles look more crystalline than those with 6,
12, and 20 particles. The reason is that N = 9, 16, and 25
particles allow for the possibility of a triangular crystal for
our geometry. We can make the following observations. First,
for N = 6, 12, and 20, the system looks like a liquid; for
example, for N = 20, very weak crystalline correlations are
seen in the region of high density near the top of the cylinder.
Furthermore, even for N = 9, 16, and 25 particles, for both
ν = 1

7 and 1
9 the crystalline correlations decay as we go to

larger systems. For example, the top row for N = 25 is more
liquid-like than the top row for N = 16 particles.

Our study in the cylindrical geometry thus again indicates
that the competition between FQHE liquid and the crystal
phase at low filling is rather subtle. It does clarify, unam-
biguously, that the state has strong short-range crystalline

correlations, but does not rule out a liquid state in the ther-
modynamic limit.

V. EXACT DIAGONALIZATION STUDIES

We have performed calculations for larger systems than
before, going to N = 10 for ν = 1

7 , and to N = 9 for ν = 1
9

and 1
11 . These systems correspond to Hilbert space dimensions

of 1.1 × 109, 0.6 × 109, and 3.4 × 109, respectively. (To cal-
culate the gaps to charged excitations, we need to increase the
flux by one unit above the ground states, making the size of
the diagonalized matrices even larger.)

The key technical innovation used to efficiently diago-
nalize such large matrices is that in the on-the-fly matrix-
times-vector multiplication done at each Lanczos iteration
we exploit the following symmetry of the two-body inter-
action: states with the same N − 2 occupied orbitals and
different only by the pair of states occupied by the last
two electrons form a sequence distinguished by a single
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FIG. 2. The pair-correlation functions on a hexagonal cylinder. The columns show results for filling factors ν = 1
3 , 1

5 , 1
7 , and 1

9 . The rows
correspond to N = 6, 9, 12, 16, 20, and 25 particles. The red dot indicates the position of the fixed electron. We take periodic boundary
condition for the horizontal direction and open boundary condition for the vertical direction. We choose L =

√
4πNorb�

2/
√

3, τ = eiπ/3, and
μ = 0.0001.

two-body scattering. Importantly, a two-body scattering con-
nects any two states of this sequence. Hence, there is a
nonzero matrix element for each element of the correspond-
ing submatrix, and it is equal to the corresponding two-
body scattering amplitude. Since the most time-consuming
part of the matrix-times-vector product is finding the loca-
tion (row and column) of a given amplitude in the matrix,
filling the matrix by consecutive submatrices is a relatively
fast approach. On the downside, efficient parallelization
with this method requires more memory than in approaches
which divide the matrix into disconnected rows. For the
systems with dimensions exceeding 109, such computation
with 24-fold parallelization requires at least 512 GB of RAM
(widely accessible today) and yields speeds of one Lanczos
iteration per couple of hours (real time) and a total time
of a couple of weeks to typically reach convergence for
the ground state (the convergence criterion is that the en-
ergy difference between successive Lanczos iterations is less
than 10−9).

We find that the exact Coulomb ground states at 1
7 , 1

9 , 1
11 ,

and 2
13 have L = 0 for all N studied. This is significant because

a ground state with L �= 0 would indicate a compressible
state (e.g., a crystal). The energies of finite-size systems and
their overlaps with the model Laughlin or Jain states are
quoted in Table I. The exact Coulomb ground states have
significant overlap with the Laughlin or Jain wave functions
at these special filling factors. In Fig. 3 we compare the
pair-correlation function g(r) [51] of the exact LLL Coulomb
ground state with that of the Laughlin state. We find that the
g(r) for these two states are in reasonable agreement with
each other. Possibly there are crystalline correlations at short
distances, with the strength of these correlations being much
stronger in the exact LLL Coulomb ground state than in the
Laughlin state.

The extrapolation of the exact LLL Coulomb ground-state
energies at filling ν = 1

3 , 1
5 , 1

7 , and 1
9 are shown in Fig. 4.

We multiply the per-particle energies by a factor of
√

2Qν/N
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FIG. 3. Pair-correlation function g(r) for the exact lowest-
Landau-level Coulomb ground state (thick line) and Laughlin state
(dashed line) at ν = 1

7 (left panel) and 1
9 (right panel).

before extrapolating to N → ∞ [85]. This factor corrects
for the finite-size deviation of the electron density from its
thermodynamic value, thus providing a more accurate extrap-
olation.

An important characteristic of an incompressible state is
that it costs a finite energy to create charged excitations.
Figure 5 depicts the charge gap as a function of 1/N at
fractions of the type 1/(2p + 1). The charge gap at these
Laughlin fractions is defined as the sum of the energies of
a quasihole (QH) and a quasiparticle (QP), which in turn are
determined from exact diagonalization at 2Q = (2p + 1)(N −
1) ± 1, respectively. We find that the total orbital angular
momentum quantum number of the exact ground state at
2Q = (2p + 1)(N − 1) ± 1 is consistent with that predicted
by the CF theory for all the systems considered in this work.
The charge gap is equal to the energy required to create a
far-separated pair of quasihole and quasiparticle. From the
extrapolation, we obtain the charge gap in the thermodynamic
limit. While there are some finite-size fluctuations, at least
from the system sizes available to us, the charge gaps appear
to extrapolate to nonzero values for both ν = 1

7 and 1
9 . The

FIG. 4. Thermodynamic extrapolation of the exact lowest-
Landau-level Coulomb ground-state energies for filling ν = 1

3 , 1
5 ,

1
7 , 1

9 , and 1
11 . Left panel (a) shows the extrapolation obtained from

energies of finite-size systems in the spherical geometry and the
right panel (b) shows the thermodynamic energies as a function of
1/ν. The correlation energies include interaction with the positively
charged background and have been density corrected. All energies
are quoted in units of e2/(ε�).

FIG. 5. The energy of the quasihole (QH), quasiparticle (QP),
and their sum for the lowest-Landau-level Coulomb state at Laughlin
fractions as a function of 1/N , where N is the number of electrons.
All the energies quoted in units of e2/(ε�).

extrapolated thermodynamic values of the charge gap are
shown in Fig. 6 for several Laughlin fractions.

Next, we turn to neutral excitations at filling factors
1/(2p + 1). The CF theory predicts that the lowest-energy
neutral excitations are excitons of composite fermions, con-
sisting of a single CF particle-hole excitation. (The neutral
exciton mode has also been called the magnetoroton mode.)
The CF theory predicts that the exciton branch extends from
angular momentum L = 2 to N . Our exact diagonalization

FIG. 6. Exact lowest-Landau-level Coulomb charge gap, which
is the energy required to create a far-separated quasiparticle-
quasihole pair, for filling ν = n/(2pn + 1). The extrapolated gaps
were obtained from a linear fit in 1/N of gaps of finite-size systems
in the spherical geometry (see Fig. 5 for extrapolations of the charge
gap for Laughlin fractions). All energies are quoted in units of
e2/(ε�). The charge gap for 1

3 has been reproduced from Ref. [86].
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FIG. 7. Magnetoroton dispersions of the exact lowest-Landau-
level Coulomb state at 1

7 (left panel) and 1
9 (right panel) as a function

of the dimensionless wave vector k� = L�/R, where L is the total
orbital angular momentum and R is the radius of the sphere. All the
energies quoted in units of e2/(ε�) and are measured relative to the
ground-state energy.

study shows a clearly identifiable low-energy neutral mode
extending from L = 2 to N . The dispersions of the mag-
netorotons at 1

7 and 1
9 are shown in Fig. 7. Due to strong

finite-size effects, we have not been able to obtain a reliable
thermodynamic extrapolation of the smallest neutral gap at
low filling.

Figure 8 shows a plot of Coulomb ground-state energy in
the LLL for N = 10 electrons as a function of the flux 2Q.
The downward cusps in the correlation energies obtained from
exact diagonalization at ν = 1

7 and 2
13 suggest that the states

here are incompressible. These cusps do not have a natural
explanation in terms of a crystal ground state.

Considering all these results we conclude that exact diag-
onalization studies on small systems are fully consistent with
the formation of incompressible FQHE states at ν = 1

7 and 1
9 .

Entanglement spectra

We have also studied the edge excitations of the exact
ground state by evaluating its entanglement spectrum. The

FIG. 8. A plot of the lowest-Landau-level Coulomb energies for
N = 10 electrons as a function of the flux 2Q on the sphere. Cusps in
the ground-state energies can be seen at the special filling factors ν =
1
7 and 2

13 in the exact diagonalization data. This should be contrasted
from the energies of the best crystal (that formed from composite
fermions carrying four vortices), which is a smooth function of the
filling factor. The dotted lines are a guide to the eye.

FIG. 9. Orbital entanglement spectrum at ν = 1
7 of the exact

lowest-Landau-level Coulomb ground state and the Laughlin state
(inset) for N = 8 electrons at a flux 2Q = 49 on the sphere. The two
subsystems A and B with respect to which the entanglement spectrum
is calculated have NA = NB = 4 electrons and lA = lB = 25 orbitals.
The entanglement levels are labeled by the z component of the total
orbital angular momentum of the subsystem A, LA

z . The counting of
low-lying levels (from LA

z = 56 and going from from right to left)
goes as 1, 1, 2, 3, 5, . . . , which matches with the U(1) chiral boson
counting [89].

entanglement spectrum has been useful in characterizing
many FQH states because the counting of low-lying entan-
glement levels characterizes the topological order of the state
[87]. To evaluate it from the ground-state wave function |�〉,
we divide the system into two sub-systems A and B, so that
the state can be written as |�〉 = ∑

i, j ci j |�A
i 〉 ⊗ |�B

j 〉 where
|�A

i 〉 and |�B
j 〉 are the basis states for the A and B subsystems,

respectively, and ci j are the expansion coefficients. We then do
a Schmidt decomposition to obtain |�〉 = ∑

k e−ξk/2|�A
k 〉 ⊗

|�B
k 〉, where ξk are the entanglement eigenvalues which form

the entanglement spectrum. Figure 9 shows the orbital entan-
glement spectrum [88] of the exact LLL Coulomb ground
state at ν = 1

7 for a system of N = 8 electrons at a flux
of 2Q = 49 on the sphere (results for smaller systems are
similar). The counting of the low-lying entanglement levels
of the exact LLL Coulomb ground state ν = 1

7 is identical to
that of the Laughlin state which indicates that the two states
lie in the same topological phase.

VI. DISCUSSION

In this paper, we have revisited the issue of the nature
of the state, i.e., whether it is an incompressible liquid or a
crystal, at small filling factors. Previous calculations based on
either variational wave functions or exact diagonalization on
small systems had suggested a crystal phase for ν � 1

6 . We
find that the issue is more delicate than previously thought.
A variational study finds that the energies of the CF crystal
and a renormalized FQH liquid are too close to call. DMRG
studies in cylindrical geometry show results that fluctuate with
the particle number and do not rule out a liquid state in the
thermodynamic limit.

Most informative, we believe, are exact diagonalization
studies in the spherical geometry, which are fully consistent
with incompressible FQHE states at these fractions. The
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FIG. 10. Schematic phase diagram implied by our conclusions.
The acronyms 2CFC, 4CFC, and 6CFC refer, respectively, to crystals
of composite fermions carrying two, four, and six vortices.

quantum numbers of the exact ground states, their neutral
excitations, their quasiparticles, and quasiholes are precisely
what is expected from the FQHE theory; their gaps extrap-
olate to nonzero values in the thermodynamic limit, and,
most importantly, these states have significant overlaps with
the Laughlin/Jain wave functions. One might argue that the
spherical geometry is not the most friendly to a crystal, as
a triangular crystal cannot be wrapped on the surface of
a sphere without causing defects, which might disfavor a
crystal. However, while one can see why a crystal phase would
get distorted on a sphere, we do not see any reason why it
would turn into a normal FQHE liquid. Our systems are large
enough that there is ample freedom for obtaining a state that
is not uniform (L �= 0) or a state that is not an FQHE liquid.
The fact that the actual ground states and their excitations are
so well described by known FQHE physics is thus nontrivial.

Based on these considerations, we conclude that the states
at ν = 1

7 , 2
13 , and 1

9 are likely to be FQHE liquids in the ther-
modynamic limit. Our calculations suggest that rather than
forming a full-fledged crystal immediately below ν � 1

6 , the
system finds it advantageous to form, at certain filling factors,
the FQHE liquid phase with strong short-range crystalline
correlations. At what filling factor we get to a true crystal
phase is beyond the scope of this paper.

Our work suggests the following scenario. In the absence
of disorder, the ground states at filling factors of the type ν =
n/(6n ± 1) and n/(8n ± 1) are incompressible FQH liquids,
but slightly away from these filling factors the crystal prevails
(analogously to what happens near ν = 1

5 ). As a result, the
filling-factor variation due to disorder creates domains of
crystal. For small disorder the liquid will percolate, producing
standard FQHE. For disorder greater than some filling-factor-
dependent critical value, the variation in the filling factor is
sufficiently large to prevent percolation of the FQH liquid. In
this case, an insulator with exponentially large resistance will
occur at low temperatures. Nonetheless, the presence of FQH
domains produces, at the special filling factors, resistance
minima because the FQH domains provide edge states that

enable dissipationless transport along parts of the sample.
This scenario is consistent with the experimental observations.
A schematic phase diagram suggested by our work is depicted
in Fig. 10.

One may consider the alternative possibility where the
ground state is a crystal for ν < 1

5 in the absence of disorder.
This crystal is pinned by the disorder to produce insulating
behavior. The observation, at somewhat higher temperatures,
of resistance minima at the special filling factors would imply
that, as the temperature is raised, the crystal melts into a
correlated FQH liquid. In other words, electrons must bind
additional vortices when the crystal melts. While in principle
possible, this appears to us to be counterintuitive because one
expects electrons to shed their vortices as the temperature is
raised.

A definitive experiment to distinguish between the two
scenarios would be to determine whether the resistance min-
ima at the special filling factors appear only above certain
“melting” temperature (a pure crystal phase cannot have any
FQHE-like signatures) or whether they persist to arbitrarily
low temperatures. The difficulty is that at low temperatures
the resistance becomes too large to measure. In the published
experiments [24,38,39], however, the minima are seen when-
ever the resistance is measurable; in fact, the minima do not
disappear with lowering the temperature but rather deepen
relative to the exponentially rising background. Experiments
on better quality graphene or GaAs systems (where substantial
progress has recently been made toward achieving higher
mobilities [46,47]) may shed definitive light on this important
question.
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