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Abstract
We study theWigner crystallization on partiallyfilled topologicalflat bands of kagome, honeycomb
and checkerboard lattices.We identify theWigner crystals (WCs) by analyzing theCartesian and
angular Fourier transformof the pair correlation density of themany-body ground state obtained
using exact diagonalization. The crystallization strength,measured by themagnitude of the Fourier
peaks, increases with decreasing particle density. TheWigner crystallization observed by us is a robust
and general phenomenon, existing in all three latticemodels for a broad range offilling factors and
interaction parameters. The shape of the resultingWCs is determined by the boundary conditions of
the chosen plaquette. It is to a large extent independent on the underlying lattice, including its
topology, and follows the behavior of classical point particles.

1. Introduction

In recent years, the possibility of realization of the quantumHall effect (both integer and fractional)without a
netmagnetic fieldwas intensely studied on topologically nontrivial energy bands of two-dimensional lattice
systems [1]. The nontrivial topology of a band is described by a nonzero value of an integer topological invariant
namedChern number [2].When a bandwithChern number ¹C 0 is fullyfilled, it exhibits Hall conductivity
quantized to an integermultiple of e2/h, in analogy to a fully filled Landau level in integer quantumHall effect.
Such a system is called aChern insulator. It was proposed that topologically nontrivial bands can arise entirely
without amagnetic field in presence of artificial gaugefields acting on cold atom systems [3, 4]. This proposition
was later achieved experimentally [5–8]. Anotherway to realize such bands experimentally is to combine spin–
orbit interactionwith ferromagnetism [9].

Numerical calculations using exact-diagonalization (ED) andDMRGapproaches have shown that
topologicalflat bands (TFBs), i.e. bandswith nonzeroChern number and small bandwidth [10, 11] can host
strongly correlated phases named fractional Chern insulators (FCIs) [12–23]. The FCIs are lattice analogs of the
fractional quantumHall effect (FQHE) states. Adiabatic continuity between the FCIs and FQHE states was
shown forC=1 bands [24]. For larger Chern numbers, it was found that an adiabatic connection exists
between FCIs andmulticomponent FQHE states with a special, color entangled, boundary condition [25].
Moreover, the FCIs can be related to theHofstadtermodel—the tight-bindingmodel of a lattice in presence of
uniformbackgroundmagnetic field, which can be regarded as a discretized version of the quantumHall system
[26]. There is no fundamental physical difference between aTFB and a subband of theHofstadtermodel thus the
lattice FQHE states in theHofstadtermodel can be considered as FCIs (see [27] and the discussion in [28]). Such
states were recently observed in bilayer graphene, which can be regarded as the first experimental demonstration
of FCIs [29]. There is a number of propositions of experimental realization of FCIs without amagnetic field,
including cold atom [30–35] and solid state systems [36–38].

At the low density limit of partiallyfilled highly degenerate systems, liquid phases competewith theWigner
crystals (WCs) [39–53]. TheWigner crystallizationwas studied for a broad range of systems—electrons on
surface of liquid helium [54], quantumwires [55, 56], quantumdots [49–53], boundaries of topological
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insulators [57, 58], as well as lattice systems [59, 60] including trivialflat bands [61] and edge states of graphene
nanoribbons [62, 63]. For Landau levels, it was predicted [40–48] and confirmed experimentally [64, 65] that
WCs have lower energy than FQHE states for a sufficiently lowfilling, although this depends on the type of
interaction [45, 66–68].

The subject of theWigner crystallization in TFBs remains largely untouched in previous works. Several
authors investigated the charge ordering induced by short-range interaction at high filling factors [69–75]. Phase
diagrams of various flat bandmodels were obtained, showing the competition between the FCI and charge-
ordered ground state [71–74].Moreover, it was found that the charge ordering can coexist with topological
ordering [73, 75]. However, contrary to the Landau levels inwhich theWigner crystallization occurs at
arbitrarily lowfillings, the short-range nature of interaction considered in [69–75] limits this effect to a certain
filling factor.

In this work, we demonstrate theWigner crystallization of spinless particles populating TFBs, interacting via
short- and long-range potentials.We follow the ED approach from [42–44, 59] and calculate the exact ground
states of variety offinite-size systems in torus geometry on kagome, honeycomb and checkerboard lattices. A
periodic pattern, corresponding to theWigner crystal, is found in the pair correlation density (PCD).We analyze
it using theCartesian and angular Fourier transform, finding that the strength of the Fourier peaks—
corresponding to the strength of theWigner crystallization—increases with decreasing filling factor.While there
are differences in the shapes of theWCunit cells related to the range of interaction, the results are to a large
extent independent of the lattice type, in consistencewith a picture of interacting classical point particles in a
continuous space. Finally, we compare the results for trivial and nontrivial bands of theHaldanemodel, showing
no significant differences between them.

2.Model andmethods

Three latticemodels with nearlyflat bands are considered: kagome [12], honeycomb (Haldanemodel) [1, 13]
and checkerboard [11, 13], with parameters chosen such that the lowest band of all threemodels is topologically
nontrivial and nearly flat. For eachmodel we have =∣ ∣C 1, whereC is the Chern number of the lowest band,
thus the same set of FCI phases can in principle be realized at each of them. The general formof a single-particle
Hamiltonian is

å= +f ( )†H t c ce h.c., 1
i j

ij i jTB
,

i ij

where †ci (ci) is the creation (annihilation) operator at site i, while tij,fij aremodel-dependent parameters,
explained in appendix A.1.We consider the systems of dimensions L1×L2=aN1×aN2 in a torus geometry,
withN1 andN2 being the number of unit cells in the two directions and a a lattice constant.Wefill themwith
Npart particles and apply the density–density interaction of the form = åˆ ( )V V r n ni j ij i j, , where rij is the shortest
distance between the two atoms i and j, with periodic boundary conditions included [62, 63, 76]. Note also that
the other treatment of interactions in strongly correlated systems have been applied, i.e. the Ewald summation,
where a sumover all periodic repetitions is taken into account [59]. It is obvious that both approaches give the
same results for sufficiently short interaction range, and it was also shown that periodic images give a negligible
contribution for a dipolar type of interaction [76]. Our first choice forV(r) is the screenedCoulomb interaction

=a
a
a

-
-

( ) ( )
( )

V r
r

r
SC exp

exp
, whereα is a parameter describing the range of interaction. In the limit a  ¥ the

interaction contain only nearest-neighbor terms, while for a  0 it converges to unscreened 1/rCoulomb
interaction.We consider also the logarithmic interaction defined as =b

b
b

-( ) ( )V r rLog ln
for  b( )r exp and

=b ( )V r 0Log otherwise, where short-range interaction corresponds to smallβ, while for b  ¥ it converges to
V(r)=1. Both kinds of interactions are normalized, withV(r)=1 between nearest neighbors.

We determine the ground state using the EDmethod.We consider a projection of the fullHamiltonian of
the system to a subspace of the lowest band, similarly to the lowest Landau level projection in FQHE. That is, we
first solve the single-particle problem, and then construct themany-particle configuration basis out of the
single-particle wavefunctions belonging to the lowest band. Since thewavefunctions are labeled by the
momentum k, and the interaction conserves the totalmomentumof amany-particle state, we divide the basis
into corresponding subspaces and diagonalize theHamiltonian in each of them separately.We apply the flat
band approximation, i.e. we neglect the single-particle dispersion by artificially setting the single-particle
energies to zero for all k, which is a commonprocedure in the research on FCIs andTFBs. In such away, the only
relevant energy scale in the calculation is two-body interaction strength.However, for the approximations to be
meaningful, the interaction energy scale should be larger than the band dispersion andmuch smaller than the
energy gap. The calculations has been performed using highly parallel ED software utilizing adaptive load-
balanced on-the-flymatrix-vectormultiplication orHamiltonian storage in compressed sparse blocks format
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[77], depending on available system resources, pairedwithARPACK eigensolver. The configuration basis of the
largest system considered in this work:N1×N2= 7×10 plaquettes with =N 7part has size∼1.2×109 (before
division into 70momentum subspaces in this case).

3. Results

3.1. Identification of theWigner crystal
Figure 1(a) shows the plot of the PCD y y y y= á ñ á ñ( ) ∣ ∣ ∣ ∣† † †G i j c c c c c c, i j j i i i of =N 6part particles withV0.5

SC

interaction on aN1×N2=6×9 kagome plaquette corresponding to n = = 1 9
N

N N

part

1 2
filling factor. The PCD

ismade continuous by replacing each site by aGaussian (see the appendix A.2). Because our system is a torus, we
repeat the plaquette tomake the pattern in the PCDmore visible. The red trianglesmark the position of the fixed
particle and its periodic images. Eachmaximumof the PCDcorresponds to one particle forming theWC. There

Figure 1.TheWigner crystal on aN1×N2=6×9 kagome plaquette with =N 6part particles (ν=1/9filling factor) interacting
via V0.5

SC potential. (a)The pair correlation density (PCD) of the ground state for the plaquette and its periodic images. The red triangles
label the images offixed particle. Thewhite solid hexagon is theWigner–Seitz unit cell of theWigner crystal, while the smaller yellow
solid hexagon is the unit cell of the underlying kagome lattice. Thewhite dashed circle denotes the radial range used in the angular
Fourier transform. (b)TheCartesian Fourier transformof the PCD. The presence of theWigner lattice is indicated by Fourier peaks

forming a hexagonal lattice described by the lattice vectors = - =p p p⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦˜ ˜b b, , 0,1 3 3 3 2
2

3 3
. The scale is logarithmic and the values

are normalized so that the k=[0, 0] peak is equal to one. The black solid hexagon denotes the reciprocal-spaceWigner–Seitz unit cell
of theWC. (c)The angular Fourier transform. The six-fold rotational symmetry of theWigner lattice is indicated by a peak at kθ=6.
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are =N 6part particles at each plaquette giving fivemaxima and onefixed particle. They are arranged in a

hexagonal crystalline lattice with lattice vectors = =˜ [ ] ˜ [ ]a a6, 0 , 3, 3 31 2 and itsWigner–Seitz unit cell is
marked by awhite solid hexagon. As a comparison, the unit cell of the underlying kagome lattice defined by the
lattice vectors = =[ ] [ ]a a2, 0 , 1, 31 2 is shown by a yellow solid hexagon, which is nine times smaller, three
times in each vector direction.

The crystallization can be confirmed by looking at the plot of Cartesian Fourier transformGc and angular
Fourier transformGa,figures 1(b) and (c) respectively. Infigure 1(b), there is a strong peak at zero frequency,
which is the average value of the PCD. Around, there is a number of peaks arranged in a hexagonal lattice, whose

lattice vectors are = - =p p p⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦˜ ˜b b, , 0,1 3 3 3 2
2

3 3
, reciprocal lattice vectors to ã1 and ã2, in agreement with the

pattern shown infigure 1(a). The peaks further away from the origin areweaker because the particles are not
perfectly localized (see the appendix A.3 for a detailed explanation). The shape of theWigner crystal is also
probed using the angular Fourier transform infigure 1(c). The kθ=0 component is related to the value of the
PCDaveraged over the full angle. It is zero at r=0, then it increases and reaches amaximumat r=L1/2
corresponding to the distance between the fixed electron and six nearest particles.Moreover, at this radius we
also see a clear component at kθ=6 as a result of a six-fold rotational symmetry of theWigner crystal. The range
of the plot in the radial direction is rä[0, r0], where = ( )r L L0.6 max ,0 1 2 , markedwith awhite dashed circle in
figure 1, to avoid the artifacts arising from the periodic images of the fixed particle.We note that the angular
Fourier transformdoes not always look as clear as in this case. Usually theWCwill be neither a perfect hexagon
nor a square, hencewewould obtain several peaks at frequencies kθ=2, 4, 6 or higher, possibly at different r
values (see the appendix A.4). Nevertheless, the highest Fourier peakwill correspond to the closest symmetry.

3.2.WCs on kagome lattice
Wemove to investigate plaquettes of different size and shape. Figure 2(a) compares the shape of theWigner
crystal unit cells on different plaquettes of kagome lattice with screenedCoulomb interactionwithα=0.5
(relatively short-range interaction).We call this kind of plot a phase diagram. It contains data from anumber of
plaquettes with sizes fromN1×N2=4×5 toN1×N2=7×9, each populatedwith =N 6part particles.

Their positions on the plot denote their filling factor n =
N

N N

part

1 2
(horizontal axis) and aspect ratio =A N

N
2

1
(vertical

axis). The blue shapes are theWigner–Seitz cells of theWigner crystal. TheN1×N2=6×9 plaquette
described in the previous Subsection is situated at ν≈0.11,A=1.5. It can be recognized by a perfectly
hexagonal unit cell, although here it is rotated by 90°with respect tofigure 1.Our goal is to show the general
information on the shape of theWCs. TheWigner lattices which are rotated, scaled or reflectedwith respect to
each other are treated as the same type ofWC andhence theywould be indistinguishable in this plot. The size of
the blue shapes denotes the strength of crystallization S, whichwe define as the product of Fourier peaksGc at

twowave vectors ˜ ˜( ) ( )
b b,

i i
1 2 characterizing theWigner crystal.More precisely, amaximumvalue is used

Figure 2.Wigner crystallization phase diagrams for systemswith =N 6part particles with V0.5
SC interaction: (a) the ED results, (b)

classical predictions. Vertical axis corresponds to the aspect ratioA of plaquette, the horizontal one to the filling factor ν. The shapes
are theWigner–Seitz cells of theWigner crystal. In (a), their sizes denote the strength of theWigner crystallization S. The cross denotes
a liquid phasewith S being too small to be visible.
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= ({ (˜ ) ( ˜ ) ( ˜ ) ( ˜ })( ) ( ) ( ) ( )
S G G G Gb b b bmax ,..., ,c c c N c N

1
1

2
1

1 2
W W

where the superscript index i runs overNWpossibleWigner lattices (see the appendix A.3).
Infigure 2(a) it can be seen that the strength of crystallization increases with decreasing filling factor. On the

smallest plaquette,N1×N2=4×5 (ν=0.3 andA≈1.25), we observe a state with nearly uniformPCD,
whichwe interpret as a liquid.On the largest plaquette considered in this phase diagram,N1×N2=7×9
(ν≈0.095 andA≈1.28), theWigner crystal is the strongest.We do not observe clear liquid-crystal threshold
filling factor but this can be related tofinite-size effects that will be discussed later. The strength of the
crystallization depends on the aspect ratio. TheWC forN1×N2=6×9 plaquette (ν≈0.111,A=1.5) is
stronger than the one onN1×N2=7×8 plaquette (ν=0.107,A=1.14) although the filling factor of these
two is similar. A possible origin of such a dependence is the preference for the hexagonalWC. The perfectly
hexagonal unit cell is allowed by the boundary conditions on plaquettes withA=1.5, for example the
N1×N2=6×9 one. Indeed, this plaquette has a second strongestWC, hencewe can interpret the plot as if
this aspect ratio was optimal, i.e. yielding the highest S forfixed ν. Although theN1×N2=7×9 plaquette
withA=1.28 yields a strongerWC, thismay be attributed to the general trend of S increasing with the decrease
offilling factor.

Figure 2(b) shows the predictions of theWC shape fromminimization of the classical energies of point-like
particles with short-range interactionV0.5

SC by comparing all theWCs allowed by the boundary conditions. The
details of the procedure are described in the appendix B. There is a good agreement between the resultingWC
shapes and the ones obtained fromED, shown in 2(a).We note that in the case of L1=L2 the ground state of the
classicalmodel is degenerate. If the degeneracy exists also on the ED level, theWigner crystallizationwould not
be detected using the product of Fourier peaks.Hence, we decided to exclude the L1=L2 plaquettes from the
phase diagram and analyze them separately in the appendix C.

Whenwe increase the range of the interaction, the strongestWCs deviate from the hexagonal shape. Similar
effect is seen also for the logarithmic interaction. For both short- and longer-rangeVLog we get a goodmatch
between classical and ED results. However, forV SC the agreement deteriorates when the screening is decreased.
Nevertheless, the shape of the strongestWCs is still the same as predicted classically (see the appendixD.1).

3.3.Wigner crystals on other lattices
Infigure 3we analyze the liquid-crystal forN\part=6 for transition on all three lattices: (a) kagome, (b)
honeycomb, (c) checkerboard. The crystallization strength is nowmeasured by the angular transformby
computing the Fourier components at kθ=2, 4, 6 and choosing the value of the strongest one. This value is
normalized by dividing it by themaximumvalue of kθ=0 Fourier component within the range rä(0, r0), with
= ( )r L L0.6 min ,0 1 2 as defined previously. Clearly, kθ=4 and kθ=6 corresponds to square and hexagonal

WCs, kθ=2 describesWCs elongated in one of directions. Since for some plaquettes we obtain a stripe
ordering, which is not rotationally invariant and hence has nonzero angular Fourier components, wemarked
the plaquettes with no clearWigner crystals with empty symbols.We consider interactionV0.3

SC, which has
slightly larger range in comparison to previous results withα=0.5, because on a checkerboard lattice shorter-
range interactions lead to appearance of PCDpatterns other thanWCat low filling factors (see the
appendixD.2).

Below filling factor ν=1/4,WCs occur inmost of the cases in all figures 3(a)–(c). Similarly to the results
presented infigure 2, there is no clear filling factor threshold leading to the appearance of crystallization. One
can see that plaquettes with the same ν but different latticesmay yieldWCswith different symmetry. This can be
observed e.g. for ν∼1/5.Nevertheless, the pattern of the crystallization strength smoothly increasing with
lowering ν is similar for all threemodels, with the strongest hexagonalWC for the largest systemon this phase
diagramwithN1×N2=7×9. Comparing the kagome andhoneycomb lattices (figures 3(a) and (b),
respectively) is especially important, because both lattices have hexagonal Bravais lattice. The plaquettes with the
sameN1,N2 differ only by a scale factor 3 2, and hence classically they should yield similarWCs. Indeed, the
strongWCs tend to have the same symmetry on both lattices, although there are counterexamples (e.g.
N1×N2=7×8). The results are also comparable for short-range and long-range logarithmic interactions.
We observe significant differences between theWCs on both lattices only if we consider theCoulomb
interactionwith small screening. Amore detailed description of the results for different interaction parameters is
presented in appendixD.1.

We note thatWigner crystallization in a presence of kagome or honeycomb lattice (pinning arrays)was
considered for vortices in a superconductor [78, 79]. These vortices behave like classical particles and significant
differences in a crystallization pattern are observed between the kagome and the honeycomb lattices. However,
the setup considered in [79, 78] allows the particles to locate not only at lattice sites, but also at interstitial
positions, which is not possible in our tight-bindingmodels. Additionally, they considered filling factorsmuch
larger than in ourwork, leading tomuch smallerWigner lattice constant. As theWigner lattice constant grows,
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the influence of the lattice decreases, because the particle positions become less discretized.We note that this
may be the reasonwhywe do not observe significant lattice effects. However, it is important to emphasize that
we investigate small system sizes,much smaller than in [78, 79], and also small number of particles, thus we do
not rule out the possibility of the existence of larger differences between the lattices for larger systems.

TheWCs on the checkerboard lattice (figure 3(c)) differ from the ones on two other lattices. This stems from
the fact that its Bravais lattice is square rather than hexagonal, hence the shape of the plaquettes is different. This
results in a different set ofWCs allowed by the boundary conditions. At low filling factors, hexagonalWCs are
the strongest, but elongated hexagonalWCs appear also, as a nearly regular hexagon can not befitted in some
plaquettes (for example forN1×N2=7×8, kθ=2). At several plaquettes, we observe deformedWCs,where
some of the particles are displaced from the ideal positions in theWigner lattice. In some particular cases they
can be predicted byminimizing the energy of classical particles, but in general the classicalmodel is not sufficient
to explain this effect. TheWCs are stable for long-range interactions, while decreasing their range leads to
appearance of nonperiodic patterns, named by usWigner patterns (WPs). Their emergence can be explained
within the classicalmodel (see the appendixD.2).

3.4. Finite-size effects
To investigate the dependence of theWigner crystallization on particle number, we consider systemswith Npart

different than 6. In appendix E, plaquettes with = =N N4, 5part part particles are investigated.Wefind a good
agreement between the classicalmodel andED results even for long-range Coulomb interaction. In general,
these results are consistent with the ones for =N 6part particles. It is important to note that theWCs allowed by
the boundary conditions are different for every value of Npart. Thismeans that our results depend strongly on the
geometric factors. For example, the optimal aspect ratio tofit a hexagonalWC into a kagome or honeycomb
plaquette with =N 4part is 1, not 1.5 as in case of =N 6part .

Now,wewant to analyze liquid-WC transition regardless of the shape ofWC. Tofind out how theWigner
crystallization is affected by the finite-size effects, we compare the results for =N 4, 5, 6part described above
and complement them alsowith results for =N 7part . Infigure 4we show the crystallization strength S,
computed using theCartesian Fourier transform, as a function offilling factor for the kagome latticewith short-
range interactionVSC

0.5. Each curve corresponds to a different value of Npart. Tominimize the influence of the
geometric factors, we show the results only for plaquettes lyingwithin a small range of aspect ratioA for which

Figure 3.Comparison of angular Fourier components for plaquettes of (a) kagome, (b) honeycomb and (c) checkerboard lattices with
V0.3

SC. The angular components with frequencies =qk 2, 4, 6 were compared for each plaquette and only the highest ones were
plotted, with frequency indicated by the color and shape of the point. Full and empty symbols denote the existence and nonexistence
of aWC, respectively. The values are normalized using the procedure described in the text.
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the crystallization is the strongest:Aä [1.0, 1.2] for =N 4part ,Aä [1.2, 1.6] for = Î [ ]N A5, 1.14, 1.6part for
=N 6part , andwe add extra results with =N 7part particles forAä [1.4, 1.67]. Figure 4 shows the crystallization

strength S on kagome lattice for theCoulomb interactionVSC
0. 5. It can be seen that the curves corresponding to

different particle numbers have a similar behavior, increasingwith lowering a filling factor. The rapid increase of
the crystallization strength Swith decreasing filling factors ν starts to occur at ν≈0.15, i.e. close to ν=1/7,
although the curves for =N 6, 7part are shifted towards lowerfilling factorwith respect to curves
for =N 4, 5part .

The shapes of the curves infigure 4 should be related to the results from figure 3, where crystallization occurs
even for ν=0.25.However, crystallization strength S calculated from themultiplication of two peaksmay be
less sensitive toweakWCandmore sensitive to strong crystallization (if themagnitude of the two peaks is
roughly the same, it increases quadratically with the peakmagnitude). Thus, there areweakWCs even above the
rapid increase of S at ν≈0.15.

We note that the plot for =N 7part ends at plaquetteN1×N2 6×9, with relatively highfilling factor
ν≈0.13. This is because on the plaquettesN1×N2 7×10 and 7×11, which are closest to 6×9 in terms of
aspect ratio from all theN1=7 plaquettes, we do not observe theWigner crystallization.We interpret this result
as a signature of the sensitivity of theWigner crystalmade of 7 particles to the aspect ratio of the plaquette. This
may be connectedwith the fact that one cannot realize a nondegenerate hexagonalWigner crystal with 7
particles.

The analysis offinite-size effects for other lattices and for the long-range potentialV0.0
SC is presented in

appendix F. The behavior of the S versus ν curves is similar towhat is shown infigure 4.We note that neither in
figure 4 nor in results in appendix Fwe do not observe the liquid-crystal transition becomingmore abrupt as the
number of particles increases. However, this does not necessarilymean that in the thermodynamic limit the
transitionwill be continuous.We note that the numbers of particles investigated by us are rather small.
Moreover, the behavior of theWigner crystal depends strongly on the geometry of the sample. Thus, the
reliability of the extrapolation to the infinite system is limited. Our results do not allow to determinewhether the
continuous nature of the transition persists in the thermodynamic limit, or is just a consequence of the small size
of investigated system.

Wenote that the finite-size effects can influence not only the profile of S versus ν curves, but also the shape of
theWCs.We analyze this effect in appendix F. Also, we do not rule out the possibility that there are effects which
are not captured by our calculation due to the small size of plaquettes. For example, itmight occur that structural
changes in theWigner crystal can happen for larger systems and that the phase diagrams of larger systems are
richer than the ones we obtained.

Figure 4.The crystallization strength S, obtained from theCartesian Fourier peaks, as a function of the filling factor, for Npart varying
from 4 to 7, for the kagome latticewith V0.5

SC interaction. Tominimize the effects of the aspect ratio, the plot shows only the result in a
certain range ofA:Aä [1.0, 1.2] for =N 4part ,Aä [1.2, 1.6] for = Î [ ]N A5, 1.14, 1.6part for =N 6part and Î [ ]A 1.4, 1.5 for

=N 7part .
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3.5. Band topology
To check how the band topology influences our results, we compared theWigner crystallization of =N 6part on
trivial and nontrivial Haldanemodel.We have found no significant differences between these two cases (see the
appendixG). This can be contrastedwith earlier results for n = 1 3 and ν=2/3, where the topology is
important in the description of the system, as the phase diagram contains both charge-ordered and topologically
ordered phases [71, 73, 74], however we consider lowerfilling factors, where FCI phases are less stable.We think
that theWC-to-FCI transition can be triggered bymodifying the interaction, in analogy to varying the
pseudopotential parameters in FQHE.

4. Summary and conclusions

In summary, we have shown that theWigner crystallization occurs in TFBs for lowparticle densities in all three
considered latticemodels andwith a variety of interaction parameters determining the interaction range. The
Wigner crystallization strength increases smoothly with decreasing filling factor. In ourfinite-size calculation,
theWC shape depends strongly on the size and shape of the plaquette and the number of particles, which
determineWCs allowed by the boundary conditions. TheWC shapes were to a large extent independent on the
details of the lattice type and followed the predictionsmade by comparing the classical energies of crystals of
point-like particles in a continuous space. The underlying lattice is important only for certain aspects of the
Wigner crystallization, such as the phase diagramof six particles for unscreenedCoulomb interaction and the
WCdeformations on checkerboard lattice.

We do not observe a sharp threshold belowwhich the crystallization starts, but this can be related tofinite-
size effects, which can not be eliminated from calculations presented in this work.However, we can summarize
that in all our systemswith various latticemodels, particle numbers and interaction types, the strongWCs always
occur at the lowest filling factors. The rapid increase of crystallization strengthwith decreasing filling factor
starts atfilling ν=1/7 or higher. Also, we note that the agreement between the classicalmodel and ED results
exists despite the finite-size effects. If it persists in the thermodynamic limit, the resultingWigner lattice for an
infinite systemwith an interactionVSCwill be hexagonal [80, 81].

We have found no significant influence of band topology on the formation of theWCs. This is in contrast to
earlier results obtained for ν=1/3 and ν=2/3with short-range interaction and is consistent with the
observation that the long-range interaction usually destroys the FCIs.
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AppendixA.Model andmethods—details

A.1. Chern insulator flat bandmodels
The single-particleHamiltonian of the kagomemodel [12] reads

å ån l l n= + + +
á ñ áá ññ

( ) ( ) ( )† †H t c c t c ci i , A1
i j

ij i j
i j

ij i jkag
,

1 1
,

2 2

where ( )†c ci i is a creation (annihilation) operator at site áñ ááññi, , , denote thefirst and the second neighbors,
respectively, t1 and t2 are the real parts offirst and second neighbor hoppings,λ1,λ2 are their imaginary parts,
and νij=±1 depending on the direction of hopping (see figure A1(a)).

TheHamiltonian of theHaldanemodel [1] is

å å å= + +f

á ñ áá ññ

( )† † †H t c c t c c c ce , A2
ij

i j
i j

i j
i

i i ihc 1 2
,

i ij

where t1 and t2 aremagnitudes of thefirst and second neighbor hoppings, respectively,fij=±f is a complex
phasewith a sign depending on the direction of hoppings, shown infigure A1(b), and òi±ò is the staggered
onsite potential,+ò on red sublattice and−ò on the blue one.

The checkerboardmodel [11, 12] is described by theHamiltonian

å å å= + ¢ +f

á ñ áá ññ ááá ñññ

( )† † †H t c c t c c t c ce , A3
i j

i i
i j

ij i j
i j

i jcb 1
,

i

,
3

,

ij
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where ¢ = t tij 2 depends on the sublattice and the direction of the hopping, as indicated infigure A1(c), tα, with
a = 1, 2, 3denoting the absolute values ofαth-neighbor hopping. The nearest-neighbor hopping contains a
complex termwith a phasefij=±f, where the sign corresponds to clockwise or counterclockwise direction of
the hopping.

In all threemodels, the parameters can be tuned so that the lowest band is topologically nontrivial with
=∣ ∣C 1 and nearlyflat [11–13]. In the course of this work, we use for kagomemodel t1=−1, t2=0.3,

λ1=0.6,λ2=0, t1=1, for honeycombmodel f= = = =( )t t, arccos 3 , 0, 12
43

12 3

3

43 1 and for

checkerboardmodel f p= = =
+ +

t t, , 41
1

2 2 2
1

2 2 2
. The corresponding band structures are plotted in

figures A1(d)–(f).We also investigate the trivial version of theHaldanemodel, with theChern number of the

lowest band equal C=0, with parameters f= = = ( )t t1, , arccos 31 2
43

12 3

3

43
and ò=0.15.

We consider finite-size systems in torus geometry, i.e. we investigate finite plaquettes ofN1×N2 unit cells
with periodic boundary conditions. The lattice is defined by lattice vectors a1, a2, so the dimensions of the
plaquette are = ∣ ∣L Na1,2 1,2 1,2. For all the lattices we consider, we have = =∣ ∣ ∣ ∣ aa a1 2 . The scale of ∣ ∣a1,2 is
determined by the distance d between the nearest-neighbor sites, whichwe fix to be d=1.

A.2. Pair correlation density
Having obtained the ground state yñ∣ , we calculate the PCD

y y

y y
=

á ñ

á ñ
( )

∣ ∣
∣ ∣

( )
† †

†G i j
c c c c

c c
, , A4

i j j i

i i

defined in the discrete basis of sites, describing probability offinding a particle at site j assuming that there is a
fixed particle at site i.Wemake it continuous by replacing every site by aGaussian,

å
s p s

= -
-

=

⎛
⎝⎜

⎞
⎠⎟( ) ( )

∣ ∣
( )G G i jr

r r
,

1

2
exp

2
, A5i

j

N
j

1

where r is the vector connecting atom i and a given point in space, i.e. we take the site i as the origin of our
coordinate system, andσ is thewidth of theGaussian, whichwe choose to beσ=0.5. The choice of starting site
i does not affect the results significantly, as the exact-diagonalization eigenstates are translationally invariant. To
find theWigner crystal, we discretize this function on aCartesian or polar grid and perform the Fourier
transformusing the fast Fourier transform algorithm.

Figure A1.The latticemodels used in ourwork: (a), (d) kagome lattice, (b), (e) honeycomb lattice (Haldanemodel), (c), (f)
checkerboard lattice. The hopping parameters are shown in the upper row,while the lower contains the band structures. The complex
hoppings correspond to a particlemoving in the direction denoted by arrows. Green parallelograms denote the unit cells.
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A.3. TheCartesian Fourier transform
If we choose theCartesian grid, we perform the Fourier transform in both directions and obtain the Fourier
coefficients

= -∬( ) ( ) ( · )G Gk r r r kd exp i ,c

P
i

where P denotes the area of the plaquette, and k is thewave vector. Because the system is periodic, the k vectors
can have only discrete values = +k b b

p

N

q

N1 2
1 2

, withb1,2 being the reciprocal lattice vectors corresponding to

the real-space lattice defined by a1,2, and p, q being arbitrary integers.
TheWigner crystal is defined by lattice vectors ã1,2. Because our system is afinite-size torus, only a subset of

ã1,2 vectors is allowed by the boundary conditions.Moreover, sincewefix the number of particles Npart, the
number of PCDmaximawithin the plaquette should be equal to -N 1part . Otherwise, the state is not aWigner
crystal but another charge ordering. Ideally, theWigner crystal would consist of point particles arranged in a
lattice, with PCD

d~ -( ) ( ) ( ) ( )G Gr r r , A6I 0

where

å d~ - -( ) ( ˜ ˜ )G m nr r a a ,
m n

0
,

1 2

withm, n being arbitrary integers and δ(r) being theDirac delta. The delta at the origin is subtracted because the
fixed particle is not included in the pair correlation function.

The Fourier transformofG0 would be an infinite sumof periodically arrangedDirac deltas,

å d~ - -
=-¥

¥

( ) ( ˜ ˜ )G m nk k b b ,c

m n
0

,
1 2

where b̃1,2 are the reciprocal lattice vectors ofWC, each of them given by a pair of two integers

= +˜ ˜ ˜ ˜ ˜
p q b b b, ,i i i

p

N

q

N1 2
i i

1 2
. Not every choice of ˜ ˜p q,i i is permitted, as they should yield a correct number of PCD

maxima.
The Fourier transformswe obtain in ED calculations are not as ideal as ( )G kc

0 for two reasons. First, the
particles havefinite spatial dimensions. This can be seen on a simple example of particles described byGaussians
of widthσW.Then, the PCDwill be a convolution ofGI with aGaussian

ò s
= ¢ - ¢ -

¢⎛
⎝⎜

⎞
⎠⎟( ) ( ) ∣ ∣

G Gr r r r
r

d exp
2

.Gauss I

2

W

Using equation (A6), we get

s
~ - -

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )G G

r
r r exp

2
, A7Gauss G0

2

W

with

ò s
= ¢ - ¢ -

¢⎛
⎝⎜

⎞
⎠⎟( ) ( ) ∣ ∣

G G
r

r r r rd exp
2

.G0 0

2

W

The Fourier transformofGG0 is amultiplication ofG0(k) and aGaussian in amomentum space

s
= -⎜ ⎟⎛

⎝
⎞
⎠( ) ( )G G kk k exp

2
.G

c
0 0

W 2

Therefore, the spatial delocalizationmakes the Fourier peaks decaywith increasing distance from the origin—an
effect which is visible in figure 1(b) of themain text.

Another source of distortion from the ideal periodic pattern is the fact that thefixed particle is not included
in the pair correlation density. The subtracted delta in equation (A6) andGaussian in equation (A7)will give rise
to additional Fourier components at k vectors not belonging to the reciprocal lattice of theWigner crystal.
Similar effect is observed in our numerical results. The spurious Fourier components are visible as the bright
‘cloud’ around the origin infigure 1(b) of themain text.

We use themagnitude of the Fourier peaks as themeasure of the strength of theWigner crystallization. The
WChas to be periodic in two directions, hence we should observe at least two nonzero peaks. Thereforewe
choose ourmeasure to be a product of two peaks

= ( ˜ ) ( ˜ )( ) ( )
S G Gb b ,i

c i c i
1 2
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where ˜ ( )
b

i
1,2 are the two reciprocal lattice vectors defining theWCof a given type indexed by i. If the PCD is

nonperiodic in at least one direction, this product will vanish.We do not knowwhichWCwill be present on
which plaquette. Therefore, we first list all the possibleNWWCs and their lattice vectors. For example for

=N 6part particles on kagome lattice =N 8W . Since the dimensions L1,2 of the plaquettes differ, these vectors
will be different at each of them.Nevertheless, theywill be defined by the same ( ˜ ˜)p q, pairs. To determinewhich
WC is present on the plaquette, we checkwhich pair of reciprocal lattice vectors gives the highest product Si of
the Fourier components. This product is then taken as the crystallization strength S.

Several comments need to bemade here. First, to compare the results for different plaquettes, the Fourier
spectrumhas to be normalized, which is done by dividing it by the k=[0, 0] component. Secondly, the ‘holes’

in the PCDcorresponding to the fixed electronmay introduce nonzero Fourier components at ˜ ( )
b

i
1,2 defining the

WCs even if there is in fact noWC. Indeed, some of the small unit cells infigure 2(a) of themain text do not
correspond toWCs.However, if strongWC is present, the peaks due toWCwill dominate over the spurious
Fourier components, as can be seen infigure 1(b) of themain text. Finally, the choice of the reciprocal lattice
vectors describing a givenWC is to some extent arbitrary, as we can choose different unit cells. Usually there are
several choices of the unit cells which have similarly strong peaks.We choose one of them arbitrarily and use this
choice consistently for every plaquette (i.e. we use vectors defined by the same p̃ and q̃ ). Althoughmaking a
different choicemay affect the value of S for someweakWCs, it would not change the general picture.

A.4. The angular Fourier transform
Another choice of discretization ofG(r) is the polar grid. Then, the Fourier transform is taken only along the
angular direction, and the Fourier components are given by

ò q q q= -q
p

q( ) ( ) ( )G r k G r k, d , exp i ,a
i

0

2

where kθ is the angular frequency. The kθ=0 component is related to the average PCD at radius r, while all the
others allow to distinguish the lattice symmetry. In the case of a nearly hexagonal or nearly squareWC, the
Fourier transformwill contain a strong component at kθ=6 or kθ=4, respectively. As noted in themain text,
it would occur at the radius equal to the distance between the first particle and the six or four nearest particles. At
this radius, the zeroth component would exhibit itsfirstmaximum.

The transform is notmeaningful at large r. The ‘holes’ in PCDdue to the presence of periodic images offixed
electron introduce at least 2-fold rotational symmetry and therefore nonzero Fourier component even for
perfectly isotropic liquid state. Therefore, we have to introduce a cutoff r0. Strictly speaking, the influence of the
periodic images offixed electron starts at half the distance to the closest of them, i.e. = ( )r L L0.5 max ,1 2 .
However, we note that often a particle is located at this distance or even further, therefore the cutoff has to be
slightly larger.We choose = ( )r L L0.6 max ,0 1 2 .

Also, we note that the angular Fourier transformdoes not always look as clear as infigure 1(c) of themain
text (see figure A2). If theWigner lattice is not close to neither hexagonal nor square symmetry, wewould obtain
several strong Fourier components at even frequencies (the odd components will vanish at least approximately
because all the possibleWigner lattices have a 2-fold rotational symmetry).Moreover, if ¹∣˜ ∣ ∣˜ ∣a a1 2 themaxima
of different Fourier componentsmay occur at different radii, hence the PCDmay exhibit different symmetries at
different r (seefigure A2). To determinewhich rotational symmetry (2, 4- or 6-fold) is the closest one, we
compute themaximal value of Fourier components with kθ=2, 4, 6 in the range [0, r0]. The kθ at which the
value is the highest indicates the symmetry ofWC.Weuse this value as an alternativemeasure of crystallization
strength S̃ . However, since themagnitude of Fourier components depends on themean particle density, we
normalize it by dividing by themaximal value of kθ=0 component in the range [0, r0].

Aswe noted in themain text, S̃ can be nonzero even if the system is not aWC (for example a stripe phase
would also have 2-fold rotational symmetry). Thereforewe have to select theWCsfirst, can be done visually by
looking at the PCDplot, or comparingwith the results for Cartesian Fourier transform.

Appendix B. Classicalmodel

Wecompare the shapes ofWCs obtained from the ED calculation to predictionsmade using a simple classical
model. The classical energy of a set of point particles is given by

å=
¹

( )E V r
1

2
,

i j
ij

where the indices i and j run over all the particles, and rij is the shortest interparticle distance on the torus. The
classical prediction of theWC shape is found by calculating this energy for everyWigner lattice allowed by the
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boundary conditions, and choosing the one inwhich E isminimal.We do not take the underlying lattice into
account, i.e. the particle position is not restricted to lattice sites, and is determined only by theWigner lattice.

Such amodel allows also for introduction of patterns other than the perfect crystal.Wewill consider several
such shapes, parameterized by a single number δ (e.g. the displacement of some particle from ideal crystal
positions). For each pattern like this, the energy isminimizedwith respect to δ and then comparedwith the
energies of other patterns andWCs.

Wenote that for the logarithmic interaction, the particlesmay not interact classically ifβ is too small. Then
the classicalmodelmay have several zero-energy ground states. However, the interactionmay still exist at the
quantum level, possibly because the particles are not perfectly localized, and their positions are restricted to
lattice sites. For example, for =N 6part particles on kagome lattice we have a degenerate classical ground state at
β<1.82, although the ED calculations yield a nondegenerateWC evenwhenβ∼1.4. Because of this effect, the
ED results cannot be compared to classical predictions for certain values ofβ. Such a problem is not present in
screenedCoulomb interaction, whose exponential tail always lifts the degeneracy.

AppendixC.Degeneracy

The plaquettes with aspect ratio = =A 1N

N
2

1
were omitted in our analyses of =N 6part case. This is because the

ground state will always be degenerate. For example, for the plaquettes with hexagonal Bravais lattice, the
NW=8 possibleWCs can be divided into two sets ofWCswith the same classical energy, one consisting of six
WCs, the other of two.

Indeed, the results for L1=L2 honeycombplaquettes obtainedwith certain interactions can be interpreted
in such away. There are six degenerate ground states, none of which yields a clearWigner crystal in the pair
correlation density. Instead, pairs of these states have similar, stripe-like PCD. This does notmean that the
Wigner crystallization does not occur. The ground state obtained in the EDproceduremay be a superposition of
degenerate ground states.We interpret each of the stripe-like patterns as twoWigner lattices superimposed (see
figureC1). For the kagome 7×7 plaquettes the ground state is also 6-fold degenerate, and the sumof their
PCDs has some similarities with a superposition of all sixWigner lattices.Moreover, at smaller plaquettes we
obtain a similar PCDpattern, but the ground state is 3- or 1-fold degenerate. Even if these states are indeed a
superposition ofWCs, we cannotmeasure the crystallization strength, as wewould have to take into account a
combination of six reciprocal-space lattices. Therefore we decided to exclude the L1=L2 plaquettes fromour
considerations.

Figure A2.The pair correlation density (a) and its angular Fourier transform (b) forN1×N2=5×6 plaquette with =N 6part

particles with V0.3
SC interaction. There are several Fourier components, each exhibiting amaximumat different radius. The r range in

(b) corresponds to thewhite dashed circle in (a).
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AppendixD.Wigner crystals of six particles on different lattices

D.1. Kagome andhoneycomb lattices
Aswe noted in themain text, theWCs on kagome and honeycomb plaquettes defined by the sameN1,N2 are
similar. The similarity is even greater if we compare different interaction ranges. FigureD1 shows the phase
diagrams for (a) kagome lattice withα=0.3 and (b) honeycomb latticewithα=0.4 . TheWCs have exactly the
same shape on corresponding plaquettes. There are differences in crystallization strength, but the strongestWCs
concentrate around themaximumatN1×N2=7×9 on both lattices. The difference in interaction range
probably stems from the fact that honeycomb plaquettes are smaller than the kagome ones by the factor of
2 3 , which is a result of the difference in the unit cell size. Hence, it is not the intersite distance scale that
matters—it is the same for both lattices—but rather the length scale of the torus, i.e. L1, L2. For simplicity, we
omitted this effect in discussions offigure 3 in themain text, noting that there is still a large degree of similarity
between theWCs on the two lattices if we useα=0.3 on both.

FiguresD1(c) and (d) shows the phase diagram for unscreenedCoulomb interaction (α=0) for kagome
and honeycomb lattices, respectively. One can clearly see that there aremore differences between these two than
between (a) and (b) subfigures. In general, the similarity betweenWCs on kagome and honeycomb lattices
lowers with decreasingα. However, even ifα=0 (figuresD1(c) and (d)), there is a considerable similarity if one
limits the comparison to strongWCs only. TheN1×N2=7×9, 6×9 and 5×9 plaquettes (i.e. the ones
with strongestWCs in (c)) yield the same shape ofWCon both lattices. Decreasingα leads also to deterioration
of the accuracy of the classical predictions. Nevertheless, theWC shapes on the three plaquettesmentioned
above are in agreementwith classical results. Also, the classicalmodel correctly predicts that increasing the range
of interactionmakes theWCs at lower aspect ratios deviate from the hexagonal shape, even if the exact shape of
WCunit cell does not agreewith ED results.

For logarithmic interaction, such a deterioration does not happen.We investigated the logarithmic
interaction on kagome latticewithβ between 1.4 and 3.0 and found that at smallβ theWCs seem to prefer the
hexagonal shape, while for higherβ theWCs at small aspect ratios are closer to rectangular shape. This behavior
is alsowell captured by the classicalmodel, as long asβ is large enough that the particles interact classically.
Although the details of the transition differ in classical and ED approaches, their results agree well or even
perfectly at its ‘end points’ at high and lowβ. Also, we found that theWC shapes for kagome lattice are similar to
the ones for honeycomb lattice for both short (β=1.3 honeycomb,β=1.4 kagome) and longer-range
interaction (β=3.0 on both lattices).

D.2. The checkerboard lattice
The checkerboard lattice ismore difficult to analyze, as, in addition toWigner crystal, liquids and stripe patterns
one observes also another type of charge ordering.We call it a ’Wigner pattern’ (WP) to emphasize that it consist
of well-localized particles, but exhibit no periodicity other than the periodicity of the torus. In general, many
WPs are possible, but in our calculations we encounter only one.We call it ‘half-elongated’, since it resembles
the half-elongated triangular tiling of the plane. It consists of rows of triangles and squares, with two rows of

FigureC1.The degenerate ground states ofN1×N2=7×7 honeycomb plaquette with =N 6part particles with V0.1
SC. In the lower

rowPCDs are plotted. There are six degenerate ground states in total, but pairs of themhave similar PCD sowe plot only one state of
each pair. Each of these patterns can be thought of as a superposition of twoWigner lattices, drawn schematically in the upper row.
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triangles per one row of squares, with particles located in their corners (see figureD2(a)). Obviously, the aspect
ratio of the plaquette usually does not allow the triangles and squares to be regular polygons, so the pattern is
always squeezed or stretched. Also, we observeWCs inwhich the particles deviate from their ideal positions in
the crystal lattice, but the displacement is small enough for theWigner lattice to be identified (see figuresD2(b)–
(d)).Wewill call these ‘deformedWCs’.

The existence of these effectsmakes itmore difficult or even impossible tomeasure the crystallization
strength. The half-elongatedWP cannot be described by two Fourier peaks, sowe can only check visually
whether it exists or not. The deformedWCs, if they are close enough to the perfect lattice, will have nonzero
Fourier components corresponding to that crystal, so theymay be visible using the procedure described in the
main text.We have investigated the checkerboard latticewith screenedCoulomb interactionwithα=0, 0.1,
K, 1 and logarithmicwithβ=1.2, 1.4,K, 3.0. For sufficiently long-range interaction theWCs are common.
On three plaquettes,N1×N2=4×7,N1×N2=5×6 andN1×N2=6×7, we encounter
deformations, but they are small enough for the crystallization to be seen fromFourier peaks. The shapes ofWCs
(including the deformed ones) are the same for both interaction types on all the plaquettes. Themaximumof
crystallization strength occurs again atN1×N2=7×9 plaquette.When the range of the interaction is
decreased,more andmoreWPs and/or deformations start to appear, starting from lowfillings and low aspect
ratios. Also, for a small number of plaquettes with lowfillings, we observe a charge orderingwhich is neitherWC
norWP, as it does not correspond to six well-localized particles.

FigureD2(a) shows a comparison of the classical prediction of particle positionswith the exact-
diagonalization PCD for aN1×N2=7×9 checkerboard plaquette withVLog

1. 6. A good agreement between
those two results is seen. In general, the classicalmodel correctly describes the emergence of the half-elongated
WP at the qualitative level. For longer-range interaction it predicts noWPs. They emerge, startingwith high

FigureD1.Phase diagrams for systemswith =N 6part particles. (a)Kagome lattice, V0.3
SC, (b)honeycomb lattice, V0.4

SC, (c) kagome
lattice, V0.0

SC, (d) honeycomb lattice, V0.0
SC.
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fillings and low aspect ratios, when the interaction range is decreased.On the quantitative level, themodel does
relatively well for the screenedCoulomb interactionV SC. For example, forα=0.9 andα=1.0 the classical
model predicts half-elongatedWPonfive plaquettes ( ´ = ´ ´ ´ ´ ´N N 7 8, 7 9, 6 7, 6 8, 5 61 2 ), in four
of which it exists also in quantum results (all the above exceptN1×N2=5×6). For logarithmic interaction
its performance is worse. For example, forVLog

1. 6 it predicts half-elongatedWPs at four plaquettes
(N1×N2=7×9, 6×8, 6×9, 5×9), while in ED it exist on three (N1×N2=7×8, 7×9 and 6×9),
and only two are guessed correctly.

On the other hand, the classicalmodel fails to describe the deformedWCs. This can be seen infiguresD2(b)
and (c). In both subfigures, the classicalmodel predicts no deformation, although they exist on the ED level.
Similar behavior is observed in the case of longer-rangeVLog, andV SC regardless ofα. For short-rangeVLog, the
model predicts toomany deformations. Although in several cases it correctly predicts their shape (figureD2(d))
usually the prediction is wrong. This suggests that the deformations arise rather due to the presence of the lattice.
Also, we note that the deformation of the type shown infigureD2(b) exists only whenN1 is odd
(N1×N2=5×6, 5×8, 5×9, 7×9 plaquettes)while the one infigureD2(c) only for evenN1 and oddN2

(N1×N2=4×7, 6×7). This suggests a commensuration effect, although the number of plaquettes is too
small to determine it.

FigureD2.Deviations fromperfectWCon the checkerboard lattice. (a)The half-elongatedWigner pattern for aN1×N2=7×9
checkerboard plaquette with V1.6

Log . (b)–(d)DeformedWCs on (b)N1×N2=5×6 plaquette with V0.4
SC, (c) 4×7 plaquette with

V0.4
SC, (d)N1×N2=6×7 plaquette withVLog

1. 6. The blue dots show the positions of particles obtained from the classicalmodel.
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Appendix E. Smaller particle numbers

Wehave investigated the same plaquettes as described above filledwith 4 or 5 particles.When the number of
particles is changed, differentWCs are allowed by the boundary conditions.However, they still follow, to large
extent, the behavior of classical particles.

Figure E1 shows the phase diagram for kagome latticewith =N 4part andV0.5
SC alongwith the classical

predictions. Note that the L1=L2 plaquettes are now included, because they do not yield degenerateWCs. The
Wigner–Seitz cells of theWCs tend to be close to hexagonal for low aspect ratio (with a perfect hexagon for
aspect ratio 1), while for higher aspect ratio they deviate from this shape. The agreement between classical and
ED results is good.We have investigated =N 4part on kagome and honeycomb lattice with following interaction
parameters:V SC withαä[0, 0.6], andVLog withβä [1.4, 3, 0], with both parameters varying by 0.1. Both
lattices yield similar results. For every kind of interactions, the lower half of the phase diagram is similar to the
one infigure E1. The variations in the shape of theWCexists only in the upper half of the diagram and are
stronger forVLog than forV SC. The shapes of theWCs agreewell with the classicalmodel, provided that the
interaction is sufficiently long-range so that it does not yield degenerate ground states. It is perfect or nearly
perfect (atmost one plaquette predictedwrong) for logarithmic interaction, and slightly worse for the screened
Coulombpotential, where typically there are two or three plaquettes where the predicted shapewas different
from the one in ED.

On the checkerboard lattice, we do not encounter anyWPs, but the deformations ofWCs are present. Again,
we try to parameterize themusing a single parameter and include in the classicalmodel. However, the
predictions obtained in such away do not reproduce the ED results.Moreover, we again note that there are two
types of deformationswhich tend to occurmostly whenN1 is even andN2 is odd, and vice versa. This
strengthens our suggestion that this is a commensuration effect, and at least some deformations are due to the
presence of lattice. If the deformations are not considered (i.e. they are not included in classicalmodel and are
regarded as regularWCswhen analyzing the ED results), the classicalmodel gives a good description ofWC
shapes, with perfect agreement forVLog

β�2.1

For kagome and honeycomb plaquettes with =N 5part particles, the shape ofWigner crystal is the same
regardless of interaction parameters in thewhole rangewe investigated (αä[0, 1],βä[1.4, 3], changing by
0.2) and is predicted by the classicalmodel with 100%accuracy.What is interesting is also the disappearance of
WCs at higher aspect ratiosA forVLog

β�2.0. TheWCs are not replaced byWPs, but rather by stripe-like PCD
patterns. 5 particles on checkerboard lattice aremuchmore difficult to analyze, as every possibleWigner crystal
is two-fold degenerate due to reflection symmetry. Indeed, for some plaquettes and some interaction parameters
we observe a PCDwhich can be interpreted as two suchWCs superimposed. Also, we find PCDswhichmay be a
superposition of degenerateWPs or deformedWCs.Due to the degeneracies, we decide to exclude the 5-particle
checkerboard cases fromour analysis.

Figure E1. (a)Exact-diagonalization phase diagram and (b) the classical prediction for =N 4part with V0.5
SC.
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Appendix F. Finite-size effects—details

To gain some insight on thefinite-size effects, we compare the results for different particle numbers. Figure F1
shows comparison of the crystallization strength versus filling factor plots for four cases: (a) kagome latticewith
short-range interactionVSC

0.5, (b) the honeycomb lattice with long-range interactionV0.0
SC, (b) the honeycomb

latticewith long-range interactionV0.0
SC, (d) the checkerboard lattice with long-range interactionV0.0

SC. The results
in all the subfigures of thisfigure involve the results for =N 4, 5, 6part , described in the previous appendices
and in themain text. Additionally, for kagome latticewe performed the calculationwith =N 7part , whose
results are included infigure F1(a). Also, we note that infigure F1(d)weplot only two curves, as the =N 5part

case leads to degeneracy on the checkerboard lattice, and that for this lattice we study only the long-range
interaction, as the short-range one leads to the presence ofWPs at =N 6part .

The results shown in all four subfigures offigure F1 subfigures show an agreement between the
crystallization strengths obtained for different particle numbers. This agreement is better for checkerboard
(figure F1(d)) and honeycomb (figures F1(b) and (c)) lattices than for kagome lattice (figure F1).We do not
observe the transition gettingmore sharp as the system size increases. However, as noted in themain text the
extrapolation to the thermodynamic limit cannot be performed reliably, especially when the result depend
strongly on sample geometry.

Thefinite-size effects influence also the shape of theWigner crystal. It is difficult to investigate this effect
systematically, as the boundary conditions rarely allow the formation of theWCswith the same shape andwith

Figure F1.Dependence of the crystallization strength on thefilling factor for different particle number for (a) kagome plaquettes with
V0.0

SC, (b) honeycomb lattice plaquettes with V0.5
SC, (c) honeycomb lattice plaquettes with V0.0

SC, (d) checkerboard plaquettes with V0.0
SC.

The aspect ratios of the plaquettes included in (a)–(c) varies in the following ranges:Aä[1.0, 1.2] for =N 4part ,Aä[1.2, 1.6] for
=N 5part , Î [ ]A 1.4, 1.6 for = Î [ ]N A6, 1.4, 1.67part for =N 7part . In (d), the ranges are Î [ ]A 1.0, 1.2 for
= Î [ ]N A4, 1.14, 1.6part for =N 6part .
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different Npart.We have such a possibility only on three pairs of plaquettes: (i) 7×6with =N 4part and 7×9
with =N 6part , (ii) 6×6with =N 4part and 6×9with =N 6part , (iii) 5×6with =N 4part and 5×9with

=N 6part . Figure F2 shows the results for pair (i) for kagome lattice andVSC interaction. Infigure F2(a)weplot
the pair correlation density for a 7× 6 plaquette with =N 4part withV0.5

SC interaction. Thewhite shape is the
Wigner–Seitz cell of theWigner crystal. This result can be comparedwith figure F2(b), which shows the pair
correlation density for the 7×9 plaquette with =N 6part . The unit cell of theWigner crystal is the same as in
figure F2(a), suggesting that the finite-size effects do not influence the shape of theWigner crystal. The situation
becomes different whenwe consider the unscreenedCoulomb interaction. In such a case, for the 7× 6 plaquette
with =N 4part we obtain a PCDpattern indistinguishable from the one infigure F2(a). However, for the 7×9
plaquette with =N 6part , we obtain the PCD shown infigure F2(c), different from the one infigure F2 (b). Thus,
for the long-range interaction the finite-size effects are stronger and influence the shape of theWC.

A similar behavior is seen for pair (ii): the same unit cell ofWC is obtained on both plaquettes if the
interaction range is short, but for the long-range they become different. On the other hand, for pair (iii)we get
differentWCs on the two plaquettes for both short and long-range interaction. That is, even for the short-range
interaction the finite-size effects can influence the shape of theWigner crystal. Similar results are obtained also
for honeycomb lattice. Thus, we conclude that on kagome and honeycomb lattices we observe strong finite-size
effects for long-range interaction andmoderatefinite-size effects for short-range one.

For checkerboard lattice, we obtain strong finite-size effects for both short- and long- range interaction. For
short-range interaction, theWCs is the same on the two plaquettes only in pair (iii). On the two other pairs, the
larger plaquette usually contains theWP,which cannot be present on the smaller one. For long-range

Figure F2.The influence offinite-size effect on the shape of theWigner crystal. In (a), we show the pair correlation function for a
7×6 kagome plaquette with =N 4part and short-range interaction V0.5

SC. A PCD indistinguishable from the one shown in (a) is also
obtained for long-range interaction V0.0

SC. In (b), we show the PCD for a 7×9 kagome plaquette with =N 6part and V0.5
SC. Thewhite

shapes denote theWigner–Seitz cells of theWigner crystals. It can be seen that the shape of this cell is the same in (a) and (b). In (c), we
show the PCD for a 7×9 kagome plaquette with =N 6part and V0.5

SC. Now, theWigner–Seitz cell has a different shape than in (a).
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interaction, in all three pairs we obtain a rectangularWCon the smaller plaquettes and amore hexagonal one at
the larger plaquettes. The only exception is the logarithmic interactionV1.8

Log, for whichwe get aWCwith the
same unit cell on each pair of plaquettes.

Thus, we conclude that our calculation is prone tofinite-size effects.We cannot perform a reliable
extrapolation to thermodynamic limit neither for the crystallization strength nor for the crystal shape.We note
that the finite-size effects related toWC shape are present also on the classical level—for example, while in the

=N 6part case the classicalmodel predicts a non-hexagonalWC for unscreenedCoulomb interaction, the
infinite-plane classicalWigner crystal is hexagonal [80]. On the other hand, as the similarity between the classical
and quantum results exists for all the system sizes we investigated regardless of the number of particles and
interaction types, it is possible that it will hold also in the thermodynamic limit. This does not have to be the case,
as itmay occur that, for example, the lattice effects will bemore visible as Npart increases. However, if it is, and if
Wigner crystal exists in the thermodynamic limit, we can expect that it will be hexagonal for both screened and
unscreenedCoulomb interaction basing for the infinite-plane results [80, 81].

AppendixG. Comparisonwith trivial system

There are two reasons to suspect that the topological properties of the flat bandsmay affect theWigner
crystallization. Thefirst is the possible occurrence of FCIs on these lattices. In the course of our analysis, several
plaquettes allowed for the occurrence of the Laughlin fillings ν=1/5 or ν=1/7. At some of them, for certain
interaction parameters, the lowest energy states obey the FCI counting rules [82]. Nevertheless, formost of them
the pair correlation density is not uniform, it is eitherWC,WP, a stripe pattern or a different, but non-uniform
charge ordering. The only cases inwhichwe are not able to disprove the presence of an FCI by looking at the pair
correlation density are kagome 5×5 plaquettes with 5 particles (ν=1/5) for some values of interaction
parameters. However, this plaquette allows for a degenerateWCand hence is excluded fromour analyses.
Moreover, even if this state is an FCI, it is not a stable one, as we do not observe it for similar interaction on other
ν=1/5 plaquettes. Therefore, we can neglect the presence of FCIs in our analysis.

The second reason are the constraints on particle localization forced by nontrivial topology. It is impossible
to localize theWannier function in both dimensions if theChern number is nonzero [83]. Therefore, itmay
mean that theWigner crystallization in the trivial lattice would be stronger. To check this hypothesis, we have
performed the calculation for trivial honeycomb systemwith nonzero staggered potential ò=0.15.We have
chosen four data points representing a shorter- and longer- range version of both interactions:
V V V V, , ,0

SC
0.5
SC

1.3
Log

3.0
Log. Comparing the phase diagramswith the ones of nontrivial honeycomb lattice discussed

previously, we discover that the shapes ofWCs are exactly the same, and therewere onlyminor changes in the
crystallization strength. Therefore, we conclude that the Chern number of theflat band has no significant effect
on theWigner crystallization.Wenote that this is not the effect of the bandmixing due to strong interaction, as
all the results are obtained using the band-projected ED.

ORCID iDs

AlevDevrimGüçlü https://orcid.org/0000-0002-4351-7216
Piotr Kaczmarkiewicz https://orcid.org/0000-0003-4025-2379
PawełPotasz https://orcid.org/0000-0001-8383-2205

References

[1] Haldane FDM1988Phys. Rev. Lett. 61 2015
[2] Thouless D J, KohmotoM,NightingaleMP andNijsMDen 1982Phys. Rev. Lett. 49 405
[3] CooperNR andWilkinNK1999Phys. Rev.B 60R16279
[4] JakschD andZoller P 2003New J. Phys. 5 56
[5] AidelsburgerM, AtalaM,Nascimbène S, Trotzky S, ChenY-A andBloch I 2011Phys. Rev. Lett. 107 255301
[6] MiyakeH, SiviloglouGA,KennedyC J, BurtonWCandKetterleW2013Phys. Rev. Lett. 111 185302
[7] AidelsburgerM, AtalaM, LohseM, Barreiro J T, Paredes B andBloch I 2013Phys. Rev. Lett. 111 185301
[8] JotzuG,MesserM,Desbuquois R, LebratM,Uehlinger T,Greif D and Esslinger T 2014Nature 515 237
[9] ChangC-Z et al 2013 Science 340 167
[10] Liu R, ChenW-C,WangY-F andGongC-D 2012 J. Phys.: Condens.Matter 24 305602
[11] SunK,GuZ,KatsuraH andDas Sarma S 2011Phys. Rev. Lett. 106 236803
[12] Tang E,Mei J-W andWenX-G 2011Phys. Rev. Lett. 106 236802
[13] Neupert T, Santos L, ChamonC andMudryC 2011Phys. Rev. Lett. 106 236804
[14] ShengD,GuZ-C, SunK and Sheng L 2011Nat. Commun. 2 389
[15] Regnault N andBernevig BA 2011Phys. Rev.X 1 021014
[16] WuY-L, Bernevig BA andRegnault N 2012Phys. Rev.B 85 075116

19

New J. Phys. 20 (2018) 063023 B Jaworowski et al

https://orcid.org/0000-0002-4351-7216
https://orcid.org/0000-0002-4351-7216
https://orcid.org/0000-0002-4351-7216
https://orcid.org/0000-0002-4351-7216
https://orcid.org/0000-0003-4025-2379
https://orcid.org/0000-0003-4025-2379
https://orcid.org/0000-0003-4025-2379
https://orcid.org/0000-0003-4025-2379
https://orcid.org/0000-0001-8383-2205
https://orcid.org/0000-0001-8383-2205
https://orcid.org/0000-0001-8383-2205
https://orcid.org/0000-0001-8383-2205
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevB.60.R16279
https://doi.org/10.1088/1367-2630/5/1/356
https://doi.org/10.1103/PhysRevLett.107.255301
https://doi.org/10.1103/PhysRevLett.111.185302
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1038/nature13915
https://doi.org/10.1126/science.1234414
https://doi.org/10.1088/0953-8984/24/30/305602
https://doi.org/10.1103/PhysRevLett.106.236803
https://doi.org/10.1103/PhysRevLett.106.236802
https://doi.org/10.1103/PhysRevLett.106.236804
https://doi.org/10.1038/ncomms1380
https://doi.org/10.1103/PhysRevX.1.021014
https://doi.org/10.1103/PhysRevB.85.075116


[17] Läuchli AM, Liu Z, Bergholtz E J andMoessner R 2013Phys. Rev. Lett. 111 126802
[18] Liu T, Repellin C, Bernevig BA andRegnault N 2013Phys. Rev.B 87 205136
[19] WangY-F, YaoH,GuZ-C,GongC-D and ShengDN2012Phys. Rev. Lett. 108 126805
[20] Grushin AG,Motruk J, ZaletelMP and Pollmann F 2015Phys. Rev.B 91 035136
[21] Jaworowski B,Manolescu A and Potasz P 2015Phys. Rev.B 92 245119
[22] Cincio L andVidal G 2013Phys. Rev. Lett. 110 067208
[23] Liu Z, KovrizhinDL andBergholtz E J 2013Phys. Rev.B 88 081106
[24] Scaffidi T andMöller G 2012Phys. Rev. Lett. 109 246805
[25] WuY-L, Regnault N andBernevig BA 2013Phys. Rev. Lett. 110 106802
[26] HofstadterDR 1976Phys. Rev.B 14 2239
[27] WuY-H, Jain J K and SunK 2012Phys. Rev.B 86 165129
[28] Andrews B andMöller G 2018Phys. Rev.B 97 035159
[29] Spanton EM, ZibrovAA, ZhouH, Taniguchi T,Watanabe K, ZaletelMP andYoungAF 2018 Science 360 62–6
[30] SørensenA S,Demler E and LukinMD2005Phys. Rev. Lett. 94 086803
[31] Palmer RN and JakschD2006Phys. Rev. Lett. 96 180407
[32] Palmer RN, KleinA and JakschD 2008Phys. Rev.A 78 013609
[33] HafeziM, SørensenA S,Demler E and LukinMD2007Phys. Rev.A 76 023613
[34] Möller G andCooperNR 2009Phys. Rev. Lett. 103 105303
[35] Kapit E andMueller E 2010Phys. Rev. Lett. 105 215303
[36] XiaoD, ZhuW,RanY,NagaosaN andOkamoto S 2011Nat. Commun. 2 596
[37] Venderbos JWF, Kourtis S, van den Brink J andDaghoferM2012Phys. Rev. Lett. 108 126405
[38] Venderbos JWF,DaghoferM and van den Brink J 2011Phys. Rev. Lett. 107 116401
[39] Wigner E 1934Phys. Rev. 46 1002
[40] YoshiokaD and FukuyamaH1979 J. Phys. Soc. Japan 47 394
[41] MakiK andZotos X 1983Phys. Rev.B 28 4349
[42] MaksymP1992 J. Phys.: Condens.Matter 4 L97
[43] HutchinsonD, Inkson J andRowe J 1996 Solid State Commun. 97 515
[44] YangK,Haldane FDMandRezayi EH 2001Phys. Rev.B 64 081301
[45] ShibataN andYoshiokaD2003 J. Phys. Soc. Japan 72 664
[46] ZhuX and Louie SG 1993Phys. Rev. Lett. 70 335
[47] YiH and FertigHA1998Phys. Rev.B 58 4019
[48] LamPK andGirvin SM1984Phys. Rev.B 30 473
[49] MüllerH-MandKoonin S E 1996Phys. Rev.B 54 14532
[50] MaksymPA, ImamuraH,MallonG andAokiH2000 J. Phys.: Condens.Matter 12R299
[51] Reimann SM,KoskinenMandManninenM2000Phys. Rev.B 62 8108
[52] Ghosal A,Güçlü AD,Umrigar C J, UllmoDandBarangerHU2007Phys. Rev.B 76 085341
[53] GüçlüAD,Ghosal A,Umrigar C J andBarangerHU2008Phys. Rev.B 77 041301
[54] GrimesCC andAdamsG 1979Phys. Rev. Lett. 42 795
[55] HewWK, ThomasK J, PepperM, Farrer I, AndersonD, JonesGAC andRitchieDA 2009Phys. Rev. Lett. 102 056804
[56] GüçlüAD,Umrigar C J, JiangH andBarangerHU2009Phys. Rev.B 80 201302
[57] ZianiNT, Crépin F andTrauzettel B 2015Phys. Rev. Lett. 115 206402
[58] DeBeule C, ZianiNT, ZareniaM, Partoens B andTrauzettel B 2016Phys. Rev.B 94 155111
[59] Fratini S andMerino J 2009Phys. Rev.B 80 165110
[60] NodaY and ImadaM2002Phys. Rev. Lett. 89 176803
[61] WuC, BergmanD, Balents L andDas Sarma S 2007Phys. Rev. Lett. 99 070401
[62] GüçlüAD2016Phys. Rev.B 93 045114
[63] ModarresiM andGüçlü AD2017Phys. Rev.B 95 235103
[64] Andrei E Y,Deville G,Glattli DC,Williams F I B, Paris E and Etienne B 1988Phys. Rev. Lett. 60 2765
[65] Kukushkin IV, Fal’koV I,HaugR J, vonKlitzing K, Eberl K andTötemayer K 1994Phys. Rev. Lett. 72 3594
[66] Haldane FDM1983Phys. Rev. Lett. 51 605
[67] Trugman SA andKivelson S 1985Phys. Rev.B 31 5280
[68] ThiebautN, Regnault N andGoerbigMO2015Phys. Rev.B 92 245401
[69] VarneyCN, SunK, RigolM andGalitski V 2010Phys. Rev.B 82 115125
[70] Grushin AG,Neupert T, ChamonC andMudryC 2012Phys. Rev.B 86 205125
[71] Kourtis S, Venderbos JWF andDaghoferM2012Phys. Rev.B 86 235118
[72] Kourtis S, Neupert T,MudryC, SigristM andChenW2017Phys. Rev.B 96 205117
[73] Kourtis S andDaghoferM2014Phys. Rev. Lett. 113 216404
[74] LiW, Liu Z,WuY-S andChenY 2014Phys. Rev.B 89 125411
[75] Kourtis S 2017Phys. Rev.B 97 085108
[76] ZengT-S andYin L 2015Phys. Rev.B 91 075102
[77] BuluçA, Fineman J T, FrigoM,Gilbert J R and LeisersonCE 2009Proc. 21st Annual Symp. on Parallelism inAlgorithms and

Architectures, SPAA ’09 (NewYork: ACM) pp 233–44
[78] Reichhardt C andReichhardt C JO 2007Phys. Rev.B 76 064523
[79] Reichhardt C andReichhardt C JO 2010Phys. Rev.B 81 024510
[80] Bonsall L andMaradudinAA 1977Phys. Rev.B 15 1959
[81] Peeters FMandWuX1987Phys. Rev.A 35 3109
[82] Bernevig BA andRegnault N 2012Phys. Rev.B 85 075128
[83] Thouless D J 1984 J. Phys. C: Solid State Phys. 17 L325

20

New J. Phys. 20 (2018) 063023 B Jaworowski et al

https://doi.org/10.1103/PhysRevLett.111.126802
https://doi.org/10.1103/PhysRevB.87.205136
https://doi.org/10.1103/PhysRevLett.108.126805
https://doi.org/10.1103/PhysRevB.91.035136
https://doi.org/10.1103/PhysRevB.92.245119
https://doi.org/10.1103/PhysRevLett.110.067208
https://doi.org/10.1103/PhysRevB.88.081106
https://doi.org/10.1103/PhysRevLett.109.246805
https://doi.org/10.1103/PhysRevLett.110.106802
https://doi.org/10.1103/PhysRevB.14.2239
https://doi.org/10.1103/PhysRevB.86.165129
https://doi.org/10.1103/PhysRevB.97.035159
https://doi.org/10.1126/science.aan8458
https://doi.org/10.1126/science.aan8458
https://doi.org/10.1126/science.aan8458
https://doi.org/10.1103/PhysRevLett.94.086803
https://doi.org/10.1103/PhysRevLett.96.180407
https://doi.org/10.1103/PhysRevA.78.013609
https://doi.org/10.1103/PhysRevA.76.023613
https://doi.org/10.1103/PhysRevLett.103.105303
https://doi.org/10.1103/PhysRevLett.105.215303
https://doi.org/10.1038/ncomms1602
https://doi.org/10.1103/PhysRevLett.108.126405
https://doi.org/10.1103/PhysRevLett.107.116401
https://doi.org/10.1103/PhysRev.46.1002
https://doi.org/10.1143/JPSJ.47.394
https://doi.org/10.1103/PhysRevB.28.4349
https://doi.org/10.1088/0953-8984/4/6/004
https://doi.org/10.1016/0038-1098(95)00606-0
https://doi.org/10.1103/PhysRevB.64.081301
https://doi.org/10.1143/JPSJ.72.664
https://doi.org/10.1103/PhysRevLett.70.335
https://doi.org/10.1103/PhysRevB.58.4019
https://doi.org/10.1103/PhysRevB.30.473
https://doi.org/10.1103/PhysRevB.54.14532
https://doi.org/10.1088/0953-8984/12/22/201
https://doi.org/10.1103/PhysRevB.62.8108
https://doi.org/10.1103/PhysRevB.76.085341
https://doi.org/10.1103/PhysRevB.77.041301
https://doi.org/10.1103/PhysRevLett.42.795
https://doi.org/10.1103/PhysRevLett.102.056804
https://doi.org/10.1103/PhysRevB.80.201302
https://doi.org/10.1103/PhysRevLett.115.206402
https://doi.org/10.1103/PhysRevB.94.155111
https://doi.org/10.1103/PhysRevB.80.165110
https://doi.org/10.1103/PhysRevLett.89.176803
https://doi.org/10.1103/PhysRevLett.99.070401
https://doi.org/10.1103/PhysRevB.93.045114
https://doi.org/10.1103/PhysRevB.95.235103
https://doi.org/10.1103/PhysRevLett.60.2765
https://doi.org/10.1103/PhysRevLett.72.3594
https://doi.org/10.1103/PhysRevLett.51.605
https://doi.org/10.1103/PhysRevB.31.5280
https://doi.org/10.1103/PhysRevB.92.245401
https://doi.org/10.1103/PhysRevB.82.115125
https://doi.org/10.1103/PhysRevB.86.205125
https://doi.org/10.1103/PhysRevB.86.235118
https://doi.org/10.1103/PhysRevB.96.205117
https://doi.org/10.1103/PhysRevLett.113.216404
https://doi.org/10.1103/PhysRevB.89.125411
https://doi.org/10.1103/PhysRevB.97.085108
https://doi.org/10.1103/PhysRevB.91.075102
https://doi.org/10.1145/1583991.1584053
https://doi.org/10.1145/1583991.1584053
https://doi.org/10.1145/1583991.1584053
https://doi.org/10.1103/PhysRevB.76.064523
https://doi.org/10.1103/PhysRevB.81.024510
https://doi.org/10.1103/PhysRevB.15.1959
https://doi.org/10.1103/PhysRevA.35.3109
https://doi.org/10.1103/PhysRevB.85.075128
https://doi.org/10.1088/0022-3719/17/12/003

	1. Introduction
	2. Model and methods
	3. Results
	3.1. Identification of the Wigner crystal
	3.2. WCs on kagome lattice
	3.3. Wigner crystals on other lattices
	3.4. Finite-size effects
	3.5. Band topology

	4. Summary and conclusions
	Acknowledgments
	Appendix A.
	A.1. Chern insulator flat band models
	A.2. Pair correlation density
	A.3. The Cartesian Fourier transform
	A.4. The angular Fourier transform

	Appendix B.
	Appendix C.
	Appendix D.
	D.1. Kagome and honeycomb lattices
	D.2. The checkerboard lattice

	Appendix E.
	Appendix F.
	Appendix G.
	References



