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Abstract

We study the Wigner crystallization on partially filled topological flat bands of kagome, honeycomb
and checkerboard lattices. We identify the Wigner crystals (WCs) by analyzing the Cartesian and
angular Fourier transform of the pair correlation density of the many-body ground state obtained
using exact diagonalization. The crystallization strength, measured by the magnitude of the Fourier
peaks, increases with decreasing particle density. The Wigner crystallization observed by us is a robust
and general phenomenon, existing in all three lattice models for a broad range of filling factors and
interaction parameters. The shape of the resulting WCs is determined by the boundary conditions of
the chosen plaquette. It is to a large extent independent on the underlying lattice, including its
topology, and follows the behavior of classical point particles.

1. Introduction

In recent years, the possibility of realization of the quantum Hall effect (both integer and fractional) without a
net magnetic field was intensely studied on topologically nontrivial energy bands of two-dimensional lattice
systems [1]. The nontrivial topology of a band is described by a nonzero value of an integer topological invariant
named Chern number [2]. When a band with Chern number C = 0 is fully filled, it exhibits Hall conductivity
quantized to an integer multiple of ¢*//, in analogy to a fully filled Landau level in integer quantum Hall effect.
Such a system is called a Chern insulator. It was proposed that topologically nontrivial bands can arise entirely
without a magnetic field in presence of artificial gauge fields acting on cold atom systems [3, 4]. This proposition
was later achieved experimentally [5-8]. Another way to realize such bands experimentally is to combine spin—
orbit interaction with ferromagnetism [9].

Numerical calculations using exact-diagonalization (ED) and DMRG approaches have shown that
topological flat bands (TFBs), i.e. bands with nonzero Chern number and small bandwidth [10, 11] can host
strongly correlated phases named fractional Chern insulators (FCIs) [12—23]. The FClIs are lattice analogs of the
fractional quantum Hall effect (FQHE) states. Adiabatic continuity between the FCIs and FQHE states was
shown for C = 1bands [24]. For larger Chern numbers, it was found that an adiabatic connection exists
between FCIs and multicomponent FQHE states with a special, color entangled, boundary condition [25].
Moreover, the FCIs can be related to the Hofstadter model—the tight-binding model of a lattice in presence of
uniform background magnetic field, which can be regarded as a discretized version of the quantum Hall system
[26]. There is no fundamental physical difference between a TFB and a subband of the Hofstadter model thus the
lattice FQHE states in the Hofstadter model can be considered as FCIs (see [27] and the discussion in [28]). Such
states were recently observed in bilayer graphene, which can be regarded as the first experimental demonstration
of FCIs [29]. There is a number of propositions of experimental realization of FCIs without a magnetic field,
including cold atom [30—35] and solid state systems [36—38].

At the low density limit of partially filled highly degenerate systems, liquid phases compete with the Wigner
crystals (WCs) [39-53]. The Wigner crystallization was studied for a broad range of systems—electrons on
surface ofliquid helium [54], quantum wires [55, 56], quantum dots [49-53], boundaries of topological
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insulators [57, 58], as well as lattice systems [59, 60] including trivial flat bands [61] and edge states of graphene
nanoribbons [62, 63]. For Landau levels, it was predicted [40—48] and confirmed experimentally [64, 65] that
WCs have lower energy than FQHE states for a sufficiently low filling, although this depends on the type of
interaction [45, 66—68].

The subject of the Wigner crystallization in TFBs remains largely untouched in previous works. Several
authors investigated the charge ordering induced by short-range interaction at high filling factors [69—75]. Phase
diagrams of various flat band models were obtained, showing the competition between the FCI and charge-
ordered ground state [71-74]. Moreover, it was found that the charge ordering can coexist with topological
ordering[73, 75]. However, contrary to the Landau levels in which the Wigner crystallization occurs at
arbitrarily low fillings, the short-range nature of interaction considered in [69—75] limits this effect to a certain
filling factor.

In this work, we demonstrate the Wigner crystallization of spinless particles populating TFBs, interacting via
short- and long-range potentials. We follow the ED approach from [42—44, 59] and calculate the exact ground
states of variety of finite-size systems in torus geometry on kagome, honeycomb and checkerboard lattices. A
periodic pattern, corresponding to the Wigner crystal, is found in the pair correlation density (PCD). We analyze
it using the Cartesian and angular Fourier transform, finding that the strength of the Fourier peaks—
corresponding to the strength of the Wigner crystallization—increases with decreasing filling factor. While there
are differences in the shapes of the WC unit cells related to the range of interaction, the results are to a large
extent independent of the lattice type, in consistence with a picture of interacting classical point particlesin a
continuous space. Finally, we compare the results for trivial and nontrivial bands of the Haldane model, showing
no significant differences between them.

2.Model and methods

Three lattice models with nearly flat bands are considered: kagome [12], honeycomb (Haldane model) [1, 13]
and checkerboard [11, 13], with parameters chosen such that the lowest band of all three models is topologically
nontrivial and nearly flat. For each model we have |C| = 1, where Cis the Chern number of the lowest band,
thus the same set of FCI phases can in principle be realized at each of them. The general form of a single-particle
Hamiltonian is

H =Y tje'%c/¢; + hc, M
L]

where ciT (c;) is the creation (annihilation) operator at site £, while #j;, ¢;;are model-dependent parameters,
explained in appendix A.1. We consider the systems of dimensions L; X L, = aN; x aN, inatorus geometry,
with N; and N, being the number of unit cells in the two directions and a a lattice constant. We fill them with
Npare particles and apply the density—density interaction of the form V=% iV (rj)ninj, wherer;is the shortest
distance between the two atoms i and j, with periodic boundary conditions included [62, 63, 76]. Note also that
the other treatment of interactions in strongly correlated systems have been applied, i.e. the Ewald summation,
where a sum over all periodic repetitions is taken into account [59]. It is obvious that both approaches give the
same results for sufficiently short interaction range, and it was also shown that periodic images give a negligible
contribution for a dipolar type of interaction [76]. Our first choice for V(r) is the screened Coulomb interaction
VC(r) = %, where v is a parameter describing the range of interaction. In the limit @ — 00 the
interaction contain only nearest-neighbor terms, while for « — 0 it converges to unscreened 1/r Coulomb
interaction. We consider also the logarithmic interaction defined as Vg"g (r) = LW for r < exp(f)and

Vf;"g (r) = 0 otherwise, where short-range interaction corresponds to small 3, while for 5 — oo it converges to
V(r) = 1. Both kinds of interactions are normalized, with V(r) = 1 between nearest neighbors.

We determine the ground state using the ED method. We consider a projection of the full Hamiltonian of
the system to a subspace of the lowest band, similarly to the lowest Landau level projection in FQHE. That is, we
first solve the single-particle problem, and then construct the many-particle configuration basis out of the
single-particle wavefunctions belonging to the lowest band. Since the wavefunctions are labeled by the
momentum k, and the interaction conserves the total momentum of a many-particle state, we divide the basis
into corresponding subspaces and diagonalize the Hamiltonian in each of them separately. We apply the flat
band approximation, i.e. we neglect the single-particle dispersion by artificially setting the single-particle
energies to zero for all k, which is a common procedure in the research on FCIs and TFBs. In such a way, the only
relevant energy scale in the calculation is two-body interaction strength. However, for the approximations to be
meaningful, the interaction energy scale should be larger than the band dispersion and much smaller than the
energy gap. The calculations has been performed using highly parallel ED software utilizing adaptive load-
balanced on-the-fly matrix-vector multiplication or Hamiltonian storage in compressed sparse blocks format
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Figure 1. The Wigner crystalonaN; x N, = 6 x 9kagome plaquette with Njorx = 6 particles (v = 1/9 filling factor) interacting
via V< potential. (a) The pair correlation density (PCD) of the ground state for the plaquette and its periodic images. The red triangles
label the images of fixed particle. The white solid hexagon is the Wigner—Seitz unit cell of the Wigner crystal, while the smaller yellow
solid hexagon is the unit cell of the underlying kagome lattice. The white dashed circle denotes the radial range used in the angular
Fourier transform. (b) The Cartesian Fourier transform of the PCD. The presence of the Wigner lattice is indicated by Fourier peaks

forming a hexagonal lattice described by the lattice vectors b, = I:%, —%], b, = [0, %] The scale is logarithmic and the values

are normalized so that thek = [0, 0] peak is equal to one. The black solid hexagon denotes the reciprocal-space Wigner—Seitz unit cell
of the WC. (c) The angular Fourier transform. The six-fold rotational symmetry of the Wigner lattice is indicated by a peak at ky = 6.

[77], depending on available system resources, paired with ARPACK eigensolver. The configuration basis of the
largest system considered in this work: N; X N, =7 X 10 plaquettes with Ny, = 7 hassize ~1.2 x 10° (before
division into 70 momentum subspaces in this case).

3. Results

3.1.Identification of the Wigner crystal
Figure 1(a) shows the plot of the PCD G (i, j) = (3|c;' CJT cicily) / (Ylc;f cilaby of Npare = 6 particles with 7

interactiononaN; X N, = 6 x 9kagome plaquette correspondingto v = % = 1/9 filling factor. The PCD
142

is made continuous by replacing each site by a Gaussian (see the appendix A.2). Because our system is a torus, we

repeat the plaquette to make the pattern in the PCD more visible. The red triangles mark the position of the fixed

particle and its periodic images. Each maximum of the PCD corresponds to one particle forming the WC. There
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Figure 2. Wigner crystallization phase diagrams for systems with Ny, = 6 particles with V35 interaction: (a) the ED results, (b)
classical predictions. Vertical axis corresponds to the aspect ratio A of plaquette, the horizontal one to the filling factor v. The shapes
are the Wigner—Seitz cells of the Wigner crystal. In (a), their sizes denote the strength of the Wigner crystallization S. The cross denotes
aliquid phase with S being too small to be visible.

are Ny, = 6 particles at each plaquette giving five maxima and one fixed particle. They are arranged in a
hexagonal crystalline lattice with lattice vectors &, = [6, 0], 4, = [3, 3+/3 ]and its Wigner—Seitz unit cell is
marked by a white solid hexagon. As a comparison, the unit cell of the underlying kagome lattice defined by the
lattice vectors a; = [2, 0], a, = [1, +/3]is shown by a yellow solid hexagon, which is nine times smaller, three
times in each vector direction.

The crystallization can be confirmed by looking at the plot of Cartesian Fourier transform G and angular
Fourier transform G*, figures 1(b) and (c) respectively. In figure 1(b), there is a strong peak at zero frequency,
which is the average value of the PCD. Around, there is a number of peaks arranged in a hexagonal lattice, whose

™

lattice vectors are b, = [ Lf], b, = [ '3 J_] reciprocal lattice vectors to a; and &, in agreement with the

37 33

pattern shown in figure 1(a). The peaks further away from the origin are weaker because the particles are not
perfectlylocalized (see the appendix A.3 for a detailed explanation). The shape of the Wigner crystal is also
probed using the angular Fourier transform in figure 1(c). The ky = 0 component is related to the value of the
PCD averaged over the full angle. Itis zero atr = 0, then itincreases and reaches a maximumatr = L;/2
corresponding to the distance between the fixed electron and six nearest particles. Moreover, at this radius we
also see a clear component atky = 6 as aresult of a six-fold rotational symmetry of the Wigner crystal. The range
of the plotin the radial direction is r € [0, ry], where 7, = 0.6 max(L,, L), marked with a white dashed circle in
figure 1, to avoid the artifacts arising from the periodic images of the fixed particle. We note that the angular
Fourier transform does not always look as clear as in this case. Usually the WC will be neither a perfect hexagon
nor a square, hence we would obtain several peaks at frequencies ky = 2,4, 6 or higher, possibly at different
values (see the appendix A.4). Nevertheless, the highest Fourier peak will correspond to the closest symmetry.

3.2. WCs on kagome lattice

We move to investigate plaquettes of different size and shape. Figure 2(a) compares the shape of the Wigner
crystal unit cells on different plaquettes of kagome lattice with screened Coulomb interaction with « = 0.5
(relatively short-range interaction). We call this kind of plot a phase diagram. It contains data from a number of
plaquettes with sizes from N; X N, = 4 X 5toN; X N, = 7 x 9, each populated with Np,,,x = 6 particles.

pan

Their positions on the plot denote their filling factor v = (horlzontal axis) and aspectratio A = N (vertlcal

axis). The blue shapes are the Wigner—Seitz cells of the ngner crystal. The Ny X N, =6 x 9 plaquette
described in the previous Subsection is situated at v ~ 0.11, A = 1.5. It can be recognized by a perfectly
hexagonal unit cell, although here it is rotated by 90° with respect to figure 1. Our goal is to show the general
information on the shape of the WCs. The Wigner lattices which are rotated, scaled or reflected with respect to
each other are treated as the same type of WC and hence they would be indistinguishable in this plot. The size of
the blue shapes denotes the strength of crystallization S, which we define as the product of Fourier peaks G “ at
two wave vectors lﬂ)ii), l;(zi) characterizing the Wigner crystal. More precisely, a maximum value is used
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S = max({G*B\)GE BV, GBI GBI

D
where the superscript index i runs over Ny possible Wigner lattices (see the appendix A.3).

In figure 2(a) it can be seen that the strength of crystallization increases with decreasing filling factor. On the
smallest plaquette, N} x N, =4 x 5(v = 0.3and A ~ 1.25), we observe a state with nearly uniform PCD,
which we interpret as aliquid. On the largest plaquette considered in this phase diagram, N} x N, =7 x 9
(v = 0.095and A ~ 1.28), the Wigner crystal is the strongest. We do not observe clear liquid-crystal threshold
filling factor but this can be related to finite-size effects that will be discussed later. The strength of the
crystallization depends on the aspect ratio. The WC for N; x N, = 6 x 9 plaquette (v ~ 0.111, A = 1.5)is
stronger than theoneon N; x N, = 7 X 8plaquette (v = 0.107, A = 1.14) although the filling factor of these
two is similar. A possible origin of such a dependence is the preference for the hexagonal WC. The perfectly
hexagonal unit cell is allowed by the boundary conditions on plaquettes with A = 1.5, for example the
N; x N, = 6 x 9one.Indeed, this plaquette has a second strongest WC, hence we can interpret the plot as if
this aspect ratio was optimal, i.e. yielding the highest S for fixed v. Although the N} x N, = 7 x 9plaquette
with A = 1.28 yields a stronger WG, this may be attributed to the general trend of S increasing with the decrease
of filling factor.

Figure 2(b) shows the predictions of the WC shape from minimization of the classical energies of point-like
particles with short-range interaction V;$ by comparing all the WCs allowed by the boundary conditions. The
details of the procedure are described in the appendix B. There is a good agreement between the resulting WC
shapes and the ones obtained from ED, shown in 2(a). We note that in the case of L, = L, the ground state of the
classical model is degenerate. If the degeneracy exists also on the ED level, the Wigner crystallization would not
be detected using the product of Fourier peaks. Hence, we decided to exclude the L; = L, plaquettes from the
phase diagram and analyze them separately in the appendix C.

When we increase the range of the interaction, the strongest WCs deviate from the hexagonal shape. Similar
effect is seen also for the logarithmic interaction. For both short- and longer-range V'°8 we get a good match
between classical and ED results. However, for V5¢ the agreement deteriorates when the screening is decreased.
Nevertheless, the shape of the strongest WCs is still the same as predicted classically (see the appendix D.1).

3.3. Wigner crystals on other lattices

In figure 3 we analyze the liquid-crystal for N\ ,,,+="6 for transition on all three lattices: (a) kagome, (b)
honeycomb, (c) checkerboard. The crystallization strength is now measured by the angular transform by
computing the Fourier components at ky = 2,4, 6 and choosing the value of the strongest one. This value is
normalized by dividing it by the maximum value of ky = 0 Fourier component within the range r € (0, 1), with
1o = 0.6 min(L;, L,) as defined previously. Clearly, ky = 4and ks = 6 corresponds to square and hexagonal
WCs, kg = 2 describes WCs elongated in one of directions. Since for some plaquettes we obtain a stripe
ordering, which is not rotationally invariant and hence has nonzero angular Fourier components, we marked
the plaquettes with no clear Wigner crystals with empty symbols. We consider interaction V35, which has
slightly larger range in comparison to previous results with & = 0.5, because on a checkerboard lattice shorter-
range interactions lead to appearance of PCD patterns other than WC at low filling factors (see the

appendix D.2).

Below filling factor v = 1/4, WCs occur in most of the cases in all figures 3(a)—(c). Similarly to the results
presented in figure 2, there is no clear filling factor threshold leading to the appearance of crystallization. One
can see that plaquettes with the same v but different lattices may yield WCs with different symmetry. This can be
observed e.g. for v ~ 1/5. Nevertheless, the pattern of the crystallization strength smoothly increasing with
lowering v is similar for all three models, with the strongest hexagonal WC for the largest system on this phase
diagram with N; x N, = 7 x 9. Comparing the kagome and honeycomb lattices (figures 3(a) and (b),
respectively) is especially important, because both lattices have hexagonal Bravais lattice. The plaquettes with the
same N, N, differ only by a scale factor +/3 /2, and hence classically they should yield similar WCs. Indeed, the
strong WCs tend to have the same symmetry on both lattices, although there are counterexamples (e.g.

N; x N, = 7 x 8). Theresults are also comparable for short-range and long-range logarithmic interactions.
We observe significant differences between the WCs on both lattices only if we consider the Coulomb
interaction with small screening. A more detailed description of the results for different interaction parameters is
presented in appendix D.1.

We note that Wigner crystallization in a presence of kagome or honeycomb lattice (pinning arrays) was
considered for vortices in a superconductor [78, 79]. These vortices behave like classical particles and significant
differences in a crystallization pattern are observed between the kagome and the honeycomb lattices. However,
the setup considered in [79, 78] allows the particles to locate not only at lattice sites, but also at interstitial
positions, which is not possible in our tight-binding models. Additionally, they considered filling factors much
larger than in our work, leading to much smaller Wigner lattice constant. As the Wigner lattice constant grows,
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Figure 3. Comparison of angular Fourier components for plaquettes of (a) kagome, (b) honeycomb and (c) checkerboard lattices with
V$S. The angular components with frequencies ky = 2, 4, 6 were compared for each plaquette and only the highest ones were
plotted, with frequency indicated by the color and shape of the point. Full and empty symbols denote the existence and nonexistence
of aWC, respectively. The values are normalized using the procedure described in the text.

the influence of the lattice decreases, because the particle positions become less discretized. We note that this
may be the reason why we do not observe significant lattice effects. However, it is important to emphasize that
we investigate small system sizes, much smaller than in [78, 79], and also small number of particles, thus we do
not rule out the possibility of the existence of larger differences between the lattices for larger systems.

The WCs on the checkerboard lattice (figure 3(c)) differ from the ones on two other lattices. This stems from
the fact that its Bravais lattice is square rather than hexagonal, hence the shape of the plaquettes is different. This
results in a different set of WCs allowed by the boundary conditions. At low filling factors, hexagonal WCs are
the strongest, but elongated hexagonal WCs appear also, as a nearly regular hexagon can not be fitted in some
plaquettes (for example for N; x N, = 7 X 8,ky = 2). Atseveral plaquettes, we observe deformed WCs, where
some of the particles are displaced from the ideal positions in the Wigner lattice. In some particular cases they
can be predicted by minimizing the energy of classical particles, but in general the classical model is not sufficient
to explain this effect. The WCs are stable for long-range interactions, while decreasing their range leads to
appearance of nonperiodic patterns, named by us Wigner patterns (WPs). Their emergence can be explained
within the classical model (see the appendix D.2).

3.4. Finite-size effects

To investigate the dependence of the Wigner crystallization on particle number, we consider systems with N,y
different than 6. In appendix E, plaquettes with Npar = 4, Nyore = 5 particles are investigated. We find a good
agreement between the classical model and ED results even for long-range Coulomb interaction. In general,
these results are consistent with the ones for Np,x = 6 particles. Itis important to note that the WCs allowed by
the boundary conditions are different for every value of Np,. This means that our results depend strongly on the
geometric factors. For example, the optimal aspect ratio to fit a hexagonal WC into a kagome or honeycomb
plaquette with Nj,,,x = 4is 1, not 1.5 asin case of Ny = 6.

Now, we want to analyze liquid-WC transition regardless of the shape of WC. To find out how the Wigner
crystallization is affected by the finite-size effects, we compare the results for Nyur¢ = 4, 5, 6 described above
and complement them also with results for Nor¢ = 7. Infigure 4 we show the crystallization strength S,
computed using the Cartesian Fourier transform, as a function of filling factor for the kagome lattice with short-
range interaction V5%, Each curve corresponds to a different value of Np,.¢. To minimize the influence of the
geometric factors, we show the results only for plaquettes lying within a small range of aspect ratio A for which

6
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Figure 4. The crystallization strength S, obtained from the Cartesian Fourier peaks, as a function of the filling factor, for Ny varying
from 4 to 7, for the kagome lattice with V5 interaction. To minimize the effects of the aspect ratio, the plot shows only the result in a
certain range of A: A € [1.0, 1.2] for Npore = 4, A €[1.2, 1.6] for Npore = 5, A € [1.14, 1.6]for Ny = 6and A € [1.4, 1.5] for
Noart = 7.

the crystallization is the strongest: A € [1.0, 1.2] for Nyore = 4, A €[1.2,1.6] for Npoe = 5, A € [1.14, 1.6]for
Npart = 6,and we add extra results with Ny, = 7 particles for A € [1.4, 1.67]. Figure 4 shows the crystallization
strength S on kagome lattice for the Coulomb interaction V55, It can be seen that the curves corresponding to
different particle numbers have a similar behavior, increasing with lowering a filling factor. The rapid increase of
the crystallization strength S with decreasing filling factors v starts to occur at v ~ 0.15,1.e.closetov = 1/7,
although the curves for Ny, = 6, 7 are shifted towards lower filling factor with respect to curves

for Npare = 4, 5.

The shapes of the curves in figure 4 should be related to the results from figure 3, where crystallization occurs
even for v = 0.25. However, crystallization strength S calculated from the multiplication of two peaks may be
less sensitive to weak WC and more sensitive to strong crystallization (if the magnitude of the two peaks is
roughly the same, it increases quadratically with the peak magnitude). Thus, there are weak WCs even above the
rapid increase of Sat v = 0.15.

We note that the plot for N,,,,x = 7 ends at plaquette N; X N;6 X 9, with relatively high filling factor
v = 0.13. This is because on the plaquettes N; X N, 7 x 10and7 x 11, which are closestto 6 x 9in terms of
aspect ratio from all the N; = 7 plaquettes, we do not observe the Wigner crystallization. We interpret this result
as a signature of the sensitivity of the Wigner crystal made of 7 particles to the aspect ratio of the plaquette. This
may be connected with the fact that one cannot realize a nondegenerate hexagonal Wigner crystal with 7
particles.

The analysis of finite-size effects for other lattices and for the long-range potential V5 is presented in
appendix F. The behavior of the S versus v curves is similar to what is shown in figure 4. We note that neither in
figure 4 nor in results in appendix F we do not observe the liquid-crystal transition becoming more abrupt as the
number of particles increases. However, this does not necessarily mean that in the thermodynamic limit the
transition will be continuous. We note that the numbers of particles investigated by us are rather small.
Moreover, the behavior of the Wigner crystal depends strongly on the geometry of the sample. Thus, the
reliability of the extrapolation to the infinite system is limited. Our results do not allow to determine whether the
continuous nature of the transition persists in the thermodynamic limit, or is just a consequence of the small size
of investigated system.

We note that the finite-size effects can influence not only the profile of S versus v curves, but also the shape of
the WCs. We analyze this effect in appendix F. Also, we do not rule out the possibility that there are effects which
are not captured by our calculation due to the small size of plaquettes. For example, it might occur that structural
changes in the Wigner crystal can happen for larger systems and that the phase diagrams of larger systems are
richer than the ones we obtained.
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3.5. Band topology

To check how the band topology influences our results, we compared the Wigner crystallization of Nor¢ = 6 on
trivial and nontrivial Haldane model. We have found no significant differences between these two cases (see the
appendix G). This can be contrasted with earlier results for » = 1/3 and v = 2/3, where the topology is
important in the description of the system, as the phase diagram contains both charge-ordered and topologically
ordered phases [71, 73, 74], however we consider lower filling factors, where FCI phases are less stable. We think
that the WC-to-FCI transition can be triggered by modifying the interaction, in analogy to varying the
pseudopotential parameters in FQHE.

4. Summary and conclusions

In summary, we have shown that the Wigner crystallization occurs in TFBs for low particle densities in all three
considered lattice models and with a variety of interaction parameters determining the interaction range. The
Wigner crystallization strength increases smoothly with decreasing filling factor. In our finite-size calculation,
the WC shape depends strongly on the size and shape of the plaquette and the number of particles, which
determine WCs allowed by the boundary conditions. The WC shapes were to a large extent independent on the
details of the lattice type and followed the predictions made by comparing the classical energies of crystals of
point-like particles in a continuous space. The underlying lattice is important only for certain aspects of the
Wigner crystallization, such as the phase diagram of six particles for unscreened Coulomb interaction and the
WC deformations on checkerboard lattice.

We do not observe a sharp threshold below which the crystallization starts, but this can be related to finite-
size effects, which can not be eliminated from calculations presented in this work. However, we can summarize
that in all our systems with various lattice models, particle numbers and interaction types, the strong WCs always
occur at the lowest filling factors. The rapid increase of crystallization strength with decreasing filling factor
starts at filling v = 1/7 or higher. Also, we note that the agreement between the classical model and ED results
exists despite the finite-size effects. If it persists in the thermodynamic limit, the resulting Wigner lattice for an
infinite system with an interaction V°© will be hexagonal [80, 81].

We have found no significant influence of band topology on the formation of the WCs. This is in contrast to
earlier results obtained for v = 1/3 and v = 2/3 with short-range interaction and is consistent with the
observation that the long-range interaction usually destroys the FCIs.
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Appendix A. Model and methods—details

A.1. Chern insulator flat band models
The single-particle Hamiltonian of the kagome model [12] reads

Hig = Y (4 + i) i + > (0 + iavy)el e, (AD)
(i) (i)
where ¢;f (¢;) is a creation (annihilation) operator atsite i, (), (()), denote the first and the second neighbors,
respectively, t; and t, are the real parts of first and second neighbor hoppings, A, A, are their imaginary parts,
and v;; = &1 depending on the direction of hopping (see figure A1(a)).
The Hamiltonian of the Haldane model [1] is

H,. = 1‘12 cfc]- + 1 Z ei‘/’ifcfcj + Z eicfci, (A2)
(i) (i) i
where t; and t, are magnitudes of the first and second neighbor hoppings, respectively, ¢;; = £¢isa complex
phase with a sign depending on the direction of hoppings, shown in figure A1(b), and ¢; £ € s the staggered
onsite potential, +¢€ on red sublattice and —e on the blue one.
The checkerboard model [11, 12] is described by the Hamiltonian
Hy = tlz eiclc; + Z t,-;cfcj + 1t Z cich, (A3)
(i) (i) ()
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Figure Al. The lattice models used in our work: (a), (d) kagome lattice, (b), () honeycomb lattice (Haldane model), (c), (f)
checkerboard lattice. The hopping parameters are shown in the upper row, while the lower contains the band structures. The complex
hoppings correspond to a particle moving in the direction denoted by arrows. Green parallelograms denote the unit cells.

where ti]( = =1, depends on the sublattice and the direction of the hopping, as indicated in figure A1(c), ¢, with
a = 1, 2, 3 denoting the absolute values of ath-neighbor hopping. The nearest-neighbor hopping contains a
complex term with a phase ¢;; = 4-¢, where the sign corresponds to clockwise or counterclockwise direction of
the hopping.

In all three models, the parameters can be tuned so that the lowest band is topologically nontrivial with
|C] = 1andnearly flat [11-13]. In the course of this work, we use for kagome model t; = —1,¢, = 0.3,

A1 = 0.6, \, = 0,t; = 1, for honeycomb model t, = EE) ¢ = arccos(3 %), €e=0,4 = landfor

12437

checkerboard model #; = ¢ = 7/4.The corresponding band structures are plotted in

L f = L
+2 24+242
figures A1(d)—(f). We also investigate the trivial version of the Haldane model, with the Chern number of the

lowest band equal C=0, with parameters ; = 1, t, = %, ¢ = arccos<3\/g ) ande = 0.15.

We consider finite-size systems in torus geometry, i.e. we investigate finite plaquettes of N; x N, unit cells
with periodic boundary conditions. The lattice is defined by lattice vectors a;, a,, so the dimensions of the
plaquetteare L; , = |a; | N ,. For all the lattices we consider, we have |a)| = |a,| = a. The scale of |a; 5| is
determined by the distance d between the nearest-neighbor sites, which we fixtobed = 1.

A.2. Pair correlation density
Having obtained the ground state |1)), we calculate the PCD

G(l, ]) = M’ (A4)

<1/)|Ci Ci|1/)>

defined in the discrete basis of sites, describing probability of finding a particle at site j assuming that there is a
fixed particle at site i. We make it continuous by replacing every site by a Gaussian,

ex —lr_rjl A5
p o ) (A5)

N

.. 1
Gi(r) ; G@,j) ooe
where r is the vector connecting atom i and a given point in space, i.e. we take the site i as the origin of our
coordinate system, and o is the width of the Gaussian, which we choose to be ¢ = 0.5. The choice of starting site
i does not affect the results significantly, as the exact-diagonalization eigenstates are translationally invariant. To
find the Wigner crystal, we discretize this function on a Cartesian or polar grid and perform the Fourier
transform using the fast Fourier transform algorithm.

9
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A.3. The Cartesian Fourier transform
If we choose the Cartesian grid, we perform the Fourier transform in both directions and obtain the Fourier
coefficients

GE(k) = /fp drG; () exp(—ir - k),

where P denotes the area of the plaquette, and k is the wave vector. Because the system is periodic, the k vectors
can have only discrete values k = %lbl + Nibz, with b; , being the reciprocal lattice vectors corresponding to
the real-space lattice defined by a, ,, and p, q being arbitrary integers.

The Wigner crystal is defined by lattice vectors a, ,. Because our system is a finite-size torus, only a subset of
4, , vectors is allowed by the boundary conditions. Moreover, since we fix the number of particles Np,y, the
number of PCD maxima within the plaquette should be equal to Ny, — 1. Otherwise, the state is not a Wigner
crystal but another charge ordering. Ideally, the Wigner crystal would consist of point particles arranged in a
lattice, with PCD

Gi(r) ~ Go(r) — 6(x), (A6)
where

Go(r) ~ Z O(r — ma, — nay),

with m, n being arbitrary integers and 6(r) being the Dirac delta. The delta at the origin is subtracted because the
fixed particle is not included in the pair correlation function.
The Fourier transform of G, would be an infinite sum of periodically arranged Dirac deltas,

o0
Gs(k) ~ > &k — mb; — nby),
m,n=—o00
where b, , are the reciprocal lattice vectors of WC, each of them given by a pair of two integers
P G, bi = %bl + %b2' Not every choice of p;, g, is permitted, as they should yield a correct number of PCD
maxima.
The Fourier transforms we obtain in ED calculations are not as ideal as G (k) for two reasons. First, the
particles have finite spatial dimensions. This can be seen on a simple example of particles described by Gaussians
of width ovy. Then, the PCD will be a convolution of G; with a Gaussian

12
Gaauss(r) = fdr/GI(r — r/)exp(lzr | )

ow

Using equation (A6), we get

2
Gaauss (1) ~ Ggo(r) — CXP( 4 ), (A7)
2UW
with
|1'/|2
. ! ) -
Ggo(r) = fdr Go(r r)exp( o)

The Fourier transform of G, is a multiplication of Gy(k) and a Gaussian in a momentum space
GEo(k) = Go(k)exp (— UTsz)'

Therefore, the spatial delocalization makes the Fourier peaks decay with increasing distance from the origin—an
effect which is visible in figure 1(b) of the main text.

Another source of distortion from the ideal periodic pattern is the fact that the fixed particle is not included
in the pair correlation density. The subtracted delta in equation (A6) and Gaussian in equation (A7) will give rise
to additional Fourier components at k vectors not belonging to the reciprocal lattice of the Wigner crystal.
Similar effect is observed in our numerical results. The spurious Fourier components are visible as the bright
‘cloud’ around the origin in figure 1(b) of the main text.

We use the magnitude of the Fourier peaks as the measure of the strength of the Wigner crystallization. The
W(C has to be periodic in two directions, hence we should observe at least two nonzero peaks. Therefore we
choose our measure to be a product of two peaks

S = G(b)G<(BY),

10
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where f)(ll)z are the two reciprocal lattice vectors defining the WC of a given type indexed by i. If the PCD is
nonperiodic in at least one direction, this product will vanish. We do not know which WC will be present on
which plaquette. Therefore, we first list all the possible Nyy WCs and their lattice vectors. For example for

Npart = 6 particles on kagome lattice Ny = 8. Since the dimensions L, , of the plaquettes differ, these vectors
will be different at each of them. Nevertheless, they will be defined by the same (p, §) pairs. To determine which
WC s present on the plaquette, we check which pair of reciprocal lattice vectors gives the highest product S; of
the Fourier components. This product is then taken as the crystallization strength S.

Several comments need to be made here. First, to compare the results for different plaquettes, the Fourier
spectrum has to be normalized, which is done by dividing it by thek = [0, 0] component. Secondly, the ‘holes’
in the PCD corresponding to the fixed electron may introduce nonzero Fourier components at Bil)z defining the
WCs even if there is in fact no WC. Indeed, some of the small unit cells in figure 2(a) of the main text do not
correspond to WCs. However, if strong WCis present, the peaks due to WC will dominate over the spurious
Fourier components, as can be seen in figure 1(b) of the main text. Finally, the choice of the reciprocal lattice
vectors describing a given WC is to some extent arbitrary, as we can choose different unit cells. Usually there are
several choices of the unit cells which have similarly strong peaks. We choose one of them arbitrarily and use this
choice consistently for every plaquette (i.e. we use vectors defined by the same p and §). Although makinga
different choice may affect the value of S for some weak WCs, it would not change the general picture.

A.4. The angular Fourier transform
Another choice of discretization of G(r) is the polar grid. Then, the Fourier transform is taken only along the
angular direction, and the Fourier components are given by

2
Go(r, kg) = fo d9G;(r, ) exp(—ibke),

where kyis the angular frequency. The kg = 0 component is related to the average PCD at radius , while all the
others allow to distinguish the lattice symmetry. In the case of a nearly hexagonal or nearly square WC, the
Fourier transform will contain a strong component at ky = 6 or kg = 4, respectively. As noted in the main text,
itwould occur at the radius equal to the distance between the first particle and the six or four nearest particles. At
this radius, the zeroth component would exhibit its first maximum.

The transform is not meaningful at large 7. The ‘holes’ in PCD due to the presence of periodic images of fixed
electron introduce at least 2-fold rotational symmetry and therefore nonzero Fourier component even for
perfectly isotropic liquid state. Therefore, we have to introduce a cutoff . Strictly speaking, the influence of the
periodic images of fixed electron starts at half the distance to the closest of them, i.e. r = 0.5 max(L;, L,).
However, we note that often a particle is located at this distance or even further, therefore the cutoft has to be
slightly larger. We choose 1, = 0.6 max(L;, L,).

Also, we note that the angular Fourier transform does not always look as clear as in figure 1(c) of the main
text (see figure A2). If the Wigner lattice is not close to neither hexagonal nor square symmetry, we would obtain
several strong Fourier components at even frequencies (the odd components will vanish at least approximately
because all the possible Wigner lattices have a 2-fold rotational symmetry). Moreover, if |a;| = |a,| the maxima
of different Fourier components may occur at different radii, hence the PCD may exhibit different symmetries at
different r (see figure A2). To determine which rotational symmetry (2, 4- or 6-fold) is the closest one, we
compute the maximal value of Fourier components with ky = 2, 4, 6 in the range [0, r]. The ky at which the
value is the highest indicates the symmetry of WC. We use this value as an alternative measure of crystallization
strength S. However, since the magnitude of Fourier components depends on the mean particle density, we
normalize it by dividing by the maximal value of ky = 0 component in the range [0, ro].

As we noted in the main text, S can be nonzero even if the system is nota WC (for example a stripe phase
would also have 2-fold rotational symmetry). Therefore we have to select the WCs first, can be done visually by
looking at the PCD plot, or comparing with the results for Cartesian Fourier transform.

Appendix B. Classical model

We compare the shapes of WCs obtained from the ED calculation to predictions made using a simple classical
model. The classical energy of a set of point particles is given by

E= 3V,

i=j

where the indices iand j run over all the particles, and ;; is the shortest interparticle distance on the torus. The
classical prediction of the WC shape is found by calculating this energy for every Wigner lattice allowed by the

11
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Figure A2. The pair correlation density (a) and its angular Fourier transform (b) for Ny x N, = 5 x 6 plaquette with Np,rt = 6
particles with V35 interaction. There are several Fourier components, each exhibiting a maximum at different radius. The r range in
(b) corresponds to the white dashed circle in (a).

boundary conditions, and choosing the one in which E is minimal. We do not take the underlying lattice into
account, i.e. the particle position is not restricted to lattice sites, and is determined only by the Wigner lattice.

Such a model allows also for introduction of patterns other than the perfect crystal. We will consider several
such shapes, parameterized by a single number 6 (e.g. the displacement of some particle from ideal crystal
positions). For each pattern like this, the energy is minimized with respect to § and then compared with the
energies of other patterns and WCs.

We note that for the logarithmic interaction, the particles may not interact classically if G is too small. Then
the classical model may have several zero-energy ground states. However, the interaction may still exist at the
quantum level, possibly because the particles are not perfectly localized, and their positions are restricted to
lattice sites. For example, for Nj,,,x = 6 particles on kagome lattice we have a degenerate classical ground state at
0 < 1.82,although the ED calculations yield a nondegenerate WC even when 3 ~ 1.4. Because of this effect, the
ED results cannot be compared to classical predictions for certain values of 8. Such a problem is not present in
screened Coulomb interaction, whose exponential tail always lifts the degeneracy.

Appendix C. Degeneracy

The plaquettes with aspect ratio A = % = 1 were omitted in our analyses of Nj,,;x = 6 case. This is because the

ground state will always be degenerate. %or example, for the plaquettes with hexagonal Bravais lattice, the
Nw = 8 possible WCs can be divided into two sets of WCs with the same classical energy, one consisting of six
WCs, the other of two.

Indeed, the results for L; = L, honeycomb plaquettes obtained with certain interactions can be interpreted
in such a way. There are six degenerate ground states, none of which yields a clear Wigner crystal in the pair
correlation density. Instead, pairs of these states have similar, stripe-like PCD. This does not mean that the
Wigner crystallization does not occur. The ground state obtained in the ED procedure may be a superposition of
degenerate ground states. We interpret each of the stripe-like patterns as two Wigner lattices superimposed (see
figure C1). For the kagome 7 x 7 plaquettes the ground state is also 6-fold degenerate, and the sum of their
PCDs has some similarities with a superposition of all six Wigner lattices. Moreover, at smaller plaquettes we
obtain a similar PCD pattern, but the ground state is 3- or 1-fold degenerate. Even if these states are indeed a
superposition of WCs, we cannot measure the crystallization strength, as we would have to take into accounta
combination of six reciprocal-space lattices. Therefore we decided to exclude the L, = L, plaquettes from our
considerations.

12
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LTS A

Figure C1. The degenerate ground states of N; x N, = 7 x 7 honeycomb plaquette with Ny.,x = 6 particles with VS, Inthe lower
row PCDs are plotted. There are six degenerate ground states in total, but pairs of them have similar PCD so we plot only one state of
each pair. Each of these patterns can be thought of as a superposition of two Wigner lattices, drawn schematically in the upper row.

Appendix D. Wigner crystals of six particles on different lattices

D.1. Kagome and honeycomb lattices

As we noted in the main text, the WCs on kagome and honeycomb plaquettes defined by the same Ny, N, are
similar. The similarity is even greater if we compare different interaction ranges. Figure D1 shows the phase
diagrams for (a) kagome lattice with & = 0.3 and (b) honeycomb lattice with & = 0.4 . The WCs have exactly the
same shape on corresponding plaquettes. There are differences in crystallization strength, but the strongest WCs
concentrate around the maximum at N; x N, = 7 X 9 onboth lattices. The difference in interaction range
probably stems from the fact that honeycomb plaquettes are smaller than the kagome ones by the factor of
2/+/3, which is a result of the difference in the unit cell size. Hence, it is not the intersite distance scale that
matters—it is the same for both lattices—but rather the length scale of the torus, i.e. L;, L,. For simplicity, we
omitted this effect in discussions of figure 3 in the main text, noting that there is still a large degree of similarity
between the WCs on the two lattices if we use « = 0.3 on both.

Figures D1(c) and (d) shows the phase diagram for unscreened Coulomb interaction (o = 0) for kagome
and honeycomb lattices, respectively. One can clearly see that there are more differences between these two than
between (a) and (b) subfigures. In general, the similarity between WCs on kagome and honeycomb lattices
lowers with decreasing a. However, even if & = 0 (figures D1(c) and (d)), there is a considerable similarity if one
limits the comparison to strong WCs only. The N; x N, =7 x 9,6 x 9and5 x 9plaquettes (i.e. the ones
with strongest WCs in (c)) yield the same shape of WC on both lattices. Decreasing «v leads also to deterioration
of the accuracy of the classical predictions. Nevertheless, the WC shapes on the three plaquettes mentioned
above are in agreement with classical results. Also, the classical model correctly predicts that increasing the range
of interaction makes the WCs at lower aspect ratios deviate from the hexagonal shape, even if the exact shape of
WC unit cell does not agree with ED results.

For logarithmic interaction, such a deterioration does not happen. We investigated the logarithmic
interaction on kagome lattice with Sbetween 1.4 and 3.0 and found that at small 5 the WCs seem to prefer the
hexagonal shape, while for higher 3 the WCs at small aspect ratios are closer to rectangular shape. This behavior
is also well captured by the classical model, as long as (s large enough that the particles interact classically.
Although the details of the transition differ in classical and ED approaches, their results agree well or even
perfectly atits ‘end points’ at high and low (3. Also, we found that the WC shapes for kagome lattice are similar to
the ones for honeycomb lattice for both short (3 = 1.3 honeycomb, 3 = 1.4 kagome) and longer-range
interaction (3 = 3.0 on both lattices).

D.2. The checkerboard lattice

The checkerboard lattice is more difficult to analyze, as, in addition to Wigner crystal, liquids and stripe patterns
one observes also another type of charge ordering. We call it a’Wigner pattern’ (WP) to emphasize that it consist
of well-localized particles, but exhibit no periodicity other than the periodicity of the torus. In general, many
WPs are possible, but in our calculations we encounter only one. We call it ‘half-elongated’, since it resembles
the half-elongated triangular tiling of the plane. It consists of rows of triangles and squares, with two rows of
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Figure D1. Phase diagrams for systems with Nj,urx = 6 particles. (a) Kagome lattice, V(i(;, (b) honeycomb lattice, VOS_E, (c) kagome
lattice, V55, (d) honeycomb lattice, V3S.

triangles per one row of squares, with particles located in their corners (see figure D2(a)). Obviously, the aspect
ratio of the plaquette usually does not allow the triangles and squares to be regular polygons, so the pattern is
always squeezed or stretched. Also, we observe WCs in which the particles deviate from their ideal positions in
the crystal lattice, but the displacement is small enough for the Wigner lattice to be identified (see figures D2(b)—
(d)). We will call these ‘deformed WCs’.

The existence of these effects makes it more difficult or even impossible to measure the crystallization
strength. The half-elongated WP cannot be described by two Fourier peaks, so we can only check visually
whether it exists or not. The deformed WCs, if they are close enough to the perfect lattice, will have nonzero
Fourier components corresponding to that crystal, so they may be visible using the procedure described in the
main text. We have investigated the checkerboard lattice with screened Coulomb interaction with a = 0, 0.1,
..., landlogarithmicwith 8 = 1.2, 1.4, ..., 3.0. For sufficiently long-range interaction the WCs are common.
On three plaquettes, Ny x N, =4 x 7,N; x N, =5 X 6andN; x N, = 6 X 7, weencounter
deformations, but they are small enough for the crystallization to be seen from Fourier peaks. The shapes of WCs
(including the deformed ones) are the same for both interaction types on all the plaquettes. The maximum of
crystallization strength occurs againat N; X N, = 7 x 9 plaquette. When the range of the interaction is
decreased, more and more WPs and/or deformations start to appear, starting from low fillings and low aspect
ratios. Also, for a small number of plaquettes with low fillings, we observe a charge ordering which is neither WC
nor WP, as it does not correspond to six well-localized particles.

Figure D2(a) shows a comparison of the classical prediction of particle positions with the exact-
diagonalization PCD foraN; x N, = 7 X 9 checkerboard plaquette with Vios A good agreement between
those two results is seen. In general, the classical model correctly describes the emergence of the half-elongated
WP at the qualitative level. For longer-range interaction it predicts no WPs. They emerge, starting with high
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Figure D2. Deviations from perfect WC on the checkerboard lattice. (a) The half-elongated Wigner pattern foraN; x N, =7 X 9
checkerboard plaquette with Vngg (b)—(d) Deformed WCson (b) N; X N, = 5 X 6 plaquette with VUS.E, (c)4 x 7 plaquette with
VOS_4C, (d)N; x N, = 6 x 7plaquette with V98 The blue dots show the positions of particles obtained from the classical model.

fillings and low aspect ratios, when the interaction range is decreased. On the quantitative level, the model does
relatively well for the screened Coulomb interaction VSC, For example, for @ = 0.9 and o = 1.0 the classical
model predicts half-elongated WP on five plaquettes (N} X N, =7 X 8,7 X 9,6 X 7,6 x 8,5 X 6),infour
of which it exists also in quantum results (all the above except N; x N, = 5 X 6). For logarithmic interaction
its performance is worse. For example, for V1§ it predicts half-elongated WPs at four plaquettes

(N, Xx N; =7 X 9,6 X 8,6 X 9,5 x 9),whilein ED itexistonthree(N; x N, =7 x 8,7 X 9and6 x 9),
and only two are guessed correctly.

On the other hand, the classical model fails to describe the deformed WCs. This can be seen in figures D2(b)
and (c). In both subfigures, the classical model predicts no deformation, although they exist on the ED level.
Similar behavior is observed in the case of longer-range V*°%, and V€ regardless of a. For short-range V"8, the
model predicts too many deformations. Although in several cases it correctly predicts their shape (figure D2(d))
usually the prediction is wrong. This suggests that the deformations arise rather due to the presence of the lattice.
Also, we note that the deformation of the type shown in figure D2(b) exists only when N is odd
(N1 X N, =5 % 6,5 x 8,5 x 9,7 x 9plaquettes) while the one in figure D2(c) only for even N; and odd N,
(N7 X N, =4 x 7,6 x 7). This suggests acommensuration effect, although the number of plaquettes is too
small to determine it.
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Figure E1. (a) Exact-diagonalization phase diagram and (b) the classical prediction for Ny, = 4 with Vosg.
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Appendix E. Smaller particle numbers

We have investigated the same plaquettes as described above filled with 4 or 5 particles. When the number of
particles is changed, different WCs are allowed by the boundary conditions. However, they still follow, to large
extent, the behavior of classical particles.

Figure E1 shows the phase diagram for kagome lattice with N, = 4 and Vg5 along with the classical
predictions. Note that the L, = L, plaquettes are now included, because they do not yield degenerate WCs. The
Wigner—Seitz cells of the WCs tend to be close to hexagonal for low aspect ratio (with a perfect hexagon for
aspect ratio 1), while for higher aspect ratio they deviate from this shape. The agreement between classical and
ED results is good. We have investigated Np,c = 4 on kagome and honeycomb lattice with following interaction
parameters: VSC with a € [0,0.6],and Vo8 with B €[1.4,3,0], with both parameters varying by 0.1. Both
lattices yield similar results. For every kind of interactions, the lower half of the phase diagram is similar to the
onein figure E1. The variations in the shape of the WC exists only in the upper half of the diagram and are
stronger for V'°8 than for V5C. The shapes of the WCs agree well with the classical model, provided that the
interaction is sufficiently long-range so that it does not yield degenerate ground states. It is perfect or nearly
perfect (at most one plaquette predicted wrong) for logarithmic interaction, and slightly worse for the screened
Coulomb potential, where typically there are two or three plaquettes where the predicted shape was different
from the one in ED.

On the checkerboard lattice, we do not encounter any WPs, but the deformations of WCs are present. Again,
we try to parameterize them using a single parameter and include in the classical model. However, the
predictions obtained in such a way do not reproduce the ED results. Moreover, we again note that there are two
types of deformations which tend to occur mostly when Nj is even and N, is odd, and vice versa. This
strengthens our suggestion that this is a commensuration effect, and at least some deformations are due to the
presence of lattice. If the deformations are not considered (i.e. they are not included in classical model and are
regarded as regular WCs when analyzing the ED results), the classical model gives a good description of WC
shapes, with perfect agreement for V328, |

For kagome and honeycomb plaquettes with N,,,,x = 5 particles, the shape of Wigner crystal is the same
regardless of interaction parameters in the whole range we investigated (o € [0, 1], 8 € [1.4, 3], changing by
0.2) and is predicted by the classical model with 100% accuracy. What is interesting is also the disappearance of
WCs at higher aspect ratios A for V52, .. The WCs are not replaced by WPs, but rather by stripe-like PCD
patterns. 5 particles on checkerboard lattice are much more difficult to analyze, as every possible Wigner crystal
is two-fold degenerate due to reflection symmetry. Indeed, for some plaquettes and some interaction parameters
we observe a PCD which can be interpreted as two such WCs superimposed. Also, we find PCDs which maybe a
superposition of degenerate WPs or deformed WCs. Due to the degeneracies, we decide to exclude the 5-particle
checkerboard cases from our analysis.
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Figure F1. Dependence of the crystallization strength on the filling factor for different particle number for (a) kagome plaquettes with
V5S, (b) honeycomb lattice plaquettes with V55, (c) honeycomb lattice plaquettes with V5, (d) checkerboard plaquettes with V5.
The aspect ratios of the plaquettes included in (a)—(c) varies in the following ranges: A € [1.0, 1.2] for Nyore = 4, A € [1.2, 1.6] for
Npart = 5, A € [1.4, 1.6] for Nport = 6, A € [1.4, 1.67]for Npore = 7.1In(d), therangesare A € [1.0, 1.2] for

Npurt = 4, A € [1.14, 1.6]for Ny = 6.

Appendix F. Finite-size effects—details

To gain some insight on the finite-size effects, we compare the results for different particle numbers. Figure F1
shows comparison of the crystallization strength versus filling factor plots for four cases: (a) kagome lattice with
short-range interaction Vg, (b) the honeycomb lattice with long-range interaction V5, (b) the honeycomb
lattice with long-range interaction V{5, (d) the checkerboard lattice with long-range interaction V. The results
in all the subfigures of this figure involve the results for Np,« = 4, 5, 6, described in the previous appendices
and in the main text. Additionally, for kagome lattice we performed the calculation with Ny,.,x = 7, whose
results are included in figure F1(a). Also, we note that in figure F1(d) we plot only two curves, as the Nyore = 5
case leads to degeneracy on the checkerboard lattice, and that for this lattice we study only the long-range
interaction, as the short-range one leads to the presence of WPs at Np,r¢ = 6.

The results shown in all four subfigures of figure F1 subfigures show an agreement between the
crystallization strengths obtained for different particle numbers. This agreement is better for checkerboard
(figure F1(d)) and honeycomb (figures F1(b) and (c)) lattices than for kagome lattice (figure F1). We do not
observe the transition getting more sharp as the system size increases. However, as noted in the main text the
extrapolation to the thermodynamic limit cannot be performed reliably, especially when the result depend
strongly on sample geometry.

The finite-size effects influence also the shape of the Wigner crystal. It is difficult to investigate this effect
systematically, as the boundary conditions rarely allow the formation of the WCs with the same shape and with
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Figure F2. The influence of finite-size effect on the shape of the Wigner crystal. In (a), we show the pair correlation function for a

7 x 6 kagome plaquette with Ny = 4 and short-range interaction V5. A PCD indistinguishable from the one shown in (a) is also
obtained for long-range interaction V3g. In (b), we show the PCD fora7 x 9 kagome plaquette with Nyae = 6 and V5. The white
shapes denote the Wigner—Seitz cells of the Wigner crystals. It can be seen that the shape of this cell is the same in (a) and (b). In (c), we
showthe PCDfora7 x 9kagome plaquette with Np.,x = 6 and V;S Now, the Wigner—Seitz cell has a different shape than in (a).

different Njqri. We have such a possibility only on three pairs of plaquettes: (i) 7 x 6 with N,y = 4and7 x 9
with Npare = 6, (i) 6 X 6 with Ny = 4and 6 x 9 with Ny = 6, (iii) 5 X 6 with Nyue = 4and 5 x 9 with
Npare = 6. Figure F2 shows the results for pair (i) for kagome lattice and VSCinteraction. In figure F2(a) we plot
the pair correlation density fora 7 x 6 plaquette with Np, = 4 with V5§ interaction. The white shape is the
Wigner—Seitz cell of the Wigner crystal. This result can be compared with figure F2(b), which shows the pair
correlation density for the 7 x 9 plaquette with Np,,,x = 6. The unit cell of the Wigner crystal is the same as in
figure F2(a), suggesting that the finite-size effects do not influence the shape of the Wigner crystal. The situation
becomes different when we consider the unscreened Coulomb interaction. In such a case, for the 7 x 6 plaquette
with Np,x = 4 we obtain a PCD pattern indistinguishable from the one in figure F2(a). However, for the 7 x 9
plaquette with Nj,.;t = 6, we obtain the PCD shown in figure F2(c), different from the one in figure F2 (b). Thus,
for the long-range interaction the finite-size effects are stronger and influence the shape of the WC.

A similar behavior is seen for pair (ii): the same unit cell of WC is obtained on both plaquettes if the
interaction range is short, but for the long-range they become different. On the other hand, for pair (iii) we get
different WCs on the two plaquettes for both short and long-range interaction. That is, even for the short-range
interaction the finite-size effects can influence the shape of the Wigner crystal. Similar results are obtained also
for honeycomb lattice. Thus, we conclude that on kagome and honeycomb lattices we observe strong finite-size
effects for long-range interaction and moderate finite-size effects for short-range one.

For checkerboard lattice, we obtain strong finite-size effects for both short- and long- range interaction. For
short-range interaction, the WCs is the same on the two plaquettes only in pair (iii). On the two other pairs, the
larger plaquette usually contains the WP, which cannot be present on the smaller one. For long-range
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interaction, in all three pairs we obtain a rectangular WC on the smaller plaquettes and a more hexagonal one at
the larger plaquettes. The only exception is the logarithmic interaction V{"s%, for which we get a WC with the
same unit cell on each pair of plaquettes.

Thus, we conclude that our calculation is prone to finite-size effects. We cannot perform a reliable
extrapolation to thermodynamic limit neither for the crystallization strength nor for the crystal shape. We note
that the finite-size effects related to WC shape are present also on the classical level—for example, while in the
Npart = 6 case the classical model predicts a non-hexagonal WC for unscreened Coulomb interaction, the
infinite-plane classical Wigner crystal is hexagonal [80]. On the other hand, as the similarity between the classical
and quantum results exists for all the system sizes we investigated regardless of the number of particles and
interaction types, it is possible that it will hold also in the thermodynamic limit. This does not have to be the case,
as it may occur that, for example, the lattice effects will be more visible as N, increases. However, ifit is, and if
Wigner crystal exists in the thermodynamic limit, we can expect that it will be hexagonal for both screened and
unscreened Coulomb interaction basing for the infinite-plane results [80, 81].

Appendix G. Comparison with trivial system

There are two reasons to suspect that the topological properties of the flat bands may affect the Wigner
crystallization. The first is the possible occurrence of FCIs on these lattices. In the course of our analysis, several
plaquettes allowed for the occurrence of the Laughlin fillings v = 1/5 or v = 1/7. At some of them, for certain
interaction parameters, the lowest energy states obey the FCI counting rules [82]. Nevertheless, for most of them
the pair correlation density is not uniform, it is either WC, WP, a stripe pattern or a different, but non-uniform
charge ordering. The only cases in which we are not able to disprove the presence of an FCI by looking at the pair
correlation density are kagome 5 x 5 plaquettes with 5 particles (v = 1/5) for some values of interaction
parameters. However, this plaquette allows for a degenerate WC and hence is excluded from our analyses.
Moreover, even if this state is an FCI, it is not a stable one, as we do not observe it for similar interaction on other
v = 1/5 plaquettes. Therefore, we can neglect the presence of FCIs in our analysis.

The second reason are the constraints on particle localization forced by nontrivial topology. It is impossible
to localize the Wannier function in both dimensions if the Chern number is nonzero [83]. Therefore, it may
mean that the Wigner crystallization in the trivial lattice would be stronger. To check this hypothesis, we have
performed the calculation for trivial honeycomb system with nonzero staggered potential e = 0.15. We have
chosen four data points representing a shorter- and longer- range version of both interactions:

VsS, VSS, VIS8, V458, Comparing the phase diagrams with the ones of nontrivial honeycomb lattice discussed
previously, we discover that the shapes of WCs are exactly the same, and there were only minor changes in the
crystallization strength. Therefore, we conclude that the Chern number of the flat band has no significant effect
on the Wigner crystallization. We note that this is not the effect of the band mixing due to strong interaction, as
all the results are obtained using the band-projected ED.
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