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The paired state of composite fermions is expected to support two kinds of excitations: vortices and

unpaired composite fermions. We construct an explicit microscopic description of the unpaired composite

fermions, which we demonstrate to be accurate for a 3-body model interaction and, possibly, adiabatically

connected to the Coulomb solution. This understanding reveals that an unpaired composite fermion carries

with it a charge-neutral ‘‘topological’’ exciton, which, in turn, helps provide microscopic insight into the

origin of zero modes, fusion rules, and energetics.
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Should composite fermions (CFs) form a p-wave paired
state, as has been proposed [1,2] for the mechanism of the
fractional quantum Hall effect at 5=2, analogy to super-
conductivity leads one to expect two kinds of excitations:
vortices and unpaired CFs (UCFs) [3]. A number of their
properties, predicted by the Bogoliubov–de Gennes treat-
ment or conformal field theory [1,6,7], have been con-
firmed for excitations that are exact zero energy solutions
of a model 3-body Hamiltonian H3 (defined below), such
as the quasihole vortices. The situation is less clear for
other states, e.g., quasiparticle vortices and UCFs, as well
as for the Coulomb interaction for which no accurate
wave functions exist. Möller, Wójs, and Cooper [4] and
Bonderson, Feiguin, and Nayak [5] have studied the UCF
by exact diagonalization by considering states with an odd
number (N) of composite fermions, which necessarily
contain a composite fermion without a partner. This
Letter presents a microscopic description of the UCF
which reveals that the UCF carries with it what Hansson
has termed a ‘‘topological’’ exciton [8,9]. That, in turn,
yields a number of remarkable and physically transparent
consequences for energetics, such as even-odd oscillations
and zero modes [4,5,10], as well as fusion rules [1,6,7].
We present evidence that the microscopic description
below is exceedingly accurate for H3 and that its essential
features carry over adiabatically to the Coulomb solutions.

We consider the following ansatz for the UCF state:

�UCF ¼ A�CFðfzjgÞ�CFðfwkgÞ
YMþ1

j¼1

YM

k¼1

ðzj � wkÞ;

where the N ¼ 2Mþ 1 composite fermions have been
divided into two partitions, fz1; z2; . . . ; zMþ1g and
fw1; w2; . . . ; wMg, occupying states �CFðfzjgÞ and

�CFðfwkgÞ, and the last term represents correlations
between composite fermions in different partitions. The
symbol A indicates antisymmetrization with respect to
exchange of any two particles. Let us define the largest

exponent of zj in � as 2Q� and the largest exponent of wk

in � as 2Q�, which are analogous to the flux (measured in

units of the flux quantum �0 ¼ hc=e) in the spherical
geometry for � and �. Because the net flux must be the
same for all particles, we have 2Q ¼ 2Q� þM ¼ 2Q� þ
Mþ 1 including the contribution from the cross factor. At
2Q ¼ 2N � 3, the flux value relevant for the 5=2 state, �
is the 1=3 state with a quasiparticle and � is the 1=3 state
with a quasihole [Fig. 1(a)]. The unpaired CF state thus
carries a charge-neutral exciton. This topological exciton is
to be distinguished from the ‘‘ordinary’’ exciton [Fig. 1(b)]
that contains a quasiparticle-quasihole pair within one
partition; unlike in the ordinary exciton, the quasiparticle
and the quasihole in the topological exciton cannot anni-
hilate one another—they are part of the ground state con-
tinuum at odd N. Different placements of the quasiparticle
and the quasihole [Fig. 1(a)] generate a basis for UCF
states.
The form of �UCF is naturally motivated by the obser-

vation [2] that the Pfaffian wave function for evenN can be
written as the fully antisymmetrized ‘‘331’’ bilayer wave
function of Halperin [11]. The conformal field theory
construction of topological exciton by Hansson [8,9] is
similar in spirit. These wave functions can be extended
[12] to other states by starting with the more general
bilayer wave functions of Scarola and Jain [13]. Wave
functions of this form have also been motivated by
Hermanns [14] and by Milovanović and Jolicœur [15] in
a conformal field theory approach.
The ansatz �UCF signifies definite predictions, with no

free parameters, for the quantum numbers of the low-
energy states, their wave functions, and their energies,
through which the theory opens itself to rigorous tests
against exact results known for finite systems. The calcu-
lations below are performed in the spherical geometry in
which the N electrons move on the surface of the sphere
under the influence of a radial magnetic field. The total
flux through this spherical surface is 2Qhc=e. The wave
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functions �UCF can be translated into the spherical geom-
etry using standard methods. For the quasiparticle, Jain’s
CF wave function has been used [16,17]. The model 3-

body interaction [2] is given by H3¼P
i<j<kP

ð3Þ
ijkð3Q�3Þ,

where Pð3Þ
ijkðLÞ projects the state of the three particles

(i, j, and k) into the subspace of total orbital angular
momentum L; the interaction penalizes the smallest ap-
proach of three particles. HC denotes the Coulomb
Hamiltonian in the second Landau level (LL). We find it
convenient to express the UCF wave function in each
angular momentum sector as a linear combination of
exact eigenstates, c i

exact, of either H3 or HC in the same
sector: �UCF ¼ P

icic
i
exact. By considering sufficiently

many N-particle configurations, we obtain a system of
linear equations that can be solved to obtain ci. The
energies and overlaps of �UCF are then evaluated straight-
forwardly [18].

The angular momentum of the CF quasiparticle in�CF is
ðN þ 1Þ=4, and the angular momentum of the CF quasihole
in �CF is ðN � 1Þ=4, which gives the allowed angular
momenta for their combination as L ¼ 1=2; . . . ; N=2. It
turns out, remarkably, that the state at L ¼ 1=2 is exactly
annihilated [19] upon antisymmetrization, thus leaving the
UCF states at L ¼ 3=2; 5=2; . . . ; N=2. The annihilation of
the state at the smallest L is analogous to the annihilation
of the L ¼ 1 CF exciton of the fractional quantum
Hall effect states at � ¼ n=ð2n� 1Þ, as noted by Dev
and Jain [20].

The exact 3-body spectra (dots) are shown in the four
upper panels (a)–(d) of Fig. 2 for several N. A low-energy
branch of states (blue dots) is seen to be well separated
from the continuum, and, with the exception of L ¼ 3=2,
the angular momenta of these states match nicely with the
predicted values. The 3-body energies of �UCF and their
overlaps with the corresponding exact eigenstates are also
shown. The excellent agreement establishes the validity of

�UCF for H3, with the exception of L ¼ 3=2 where �UCF

better describes an excited state; it should be noted that
L ¼ 3=2 represents the quasiparticle and quasihole at their
shortest separation.
The exact spectra for HC are shown in panels (e)–(h) of

Fig. 2. These also contain a band of low-energy states
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FIG. 2 (color online). Exact spectra (dots) for several particle
numbers N at total flux 2Q ¼ 2N � 3 for the 3-body interac-
tion (a)–(d), for the Coulomb interaction in the 2nd LL (e)–(h),
and for Coulomb interaction in the lowest LL (i)–(l). L is the
orbital angular momentum, and � is the magnetic length. The
fractional numbers near dots are overlaps with �UCF (which
contains no adjustable parameters) in (a)–(c) and (e)–(g). The
red dashes are the energies of �UCF, not shown when they
fall outside the frame [as in (g)]. In (h) we show overlaps with
the 3-body eigenstates; their Coulomb energies all fall outside
the frame. The total number of linearly independent states in
each L sector is shown in brackets in (a)–(d), and ‘‘dim’’
indicates the dimension of the Lz ¼ 1=2 basis used in exact
diagonalization.

FIG. 1 (color online). Schematic depiction of (a) the unpaired
composite fermion with a topological exciton and (b) an ordinary
exciton. The composite fermions are shown as dots decorated
with arrows, representing bound states of electrons and vortices.
The left and right parts show the � level diagrams for composite
fermions in the two partitions. The single CF in the otherwise
empty� level is called a (CF) quasiparticle and the missing CF a
(CF) quasihole, which, for the present case, have charge excess
or deficiency of magnitude e=4 relative to the uniform ground
state.
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(blue dots) at L ¼ 3=2; 5=2; . . . ; N=2, which is less well
defined than the band for H3, but the lowest state is well
separated from the ‘‘continuum’’ at each L in this range.
Unlike for H3, the L ¼ 3=2 state does not belong in the
continuum. The overlaps of the Coulomb eigenstates with
�UCF are moderate; this is to be expected because the
overlap of the exact 5=2 Coulomb ground state at even N
with the Pfaffian wave function are also of similar level,
and there is no reason why �UCF should do better than the
Pfaffian wave function. We now ask if the Coulomb
eigenstates are adiabatically connected to �UCF, as was
argued to be the case by Storni, Morf, and Das Sarma [21]
for the Pfaffian ground state for even N. We plot in Fig. 3
the evolution of the gap at each L as we vary the interac-
tion from H3 to HC. The gap does not close for L � 5=2.
There is an avoided level crossing at L ¼ 3=2, but, inter-
estingly, the Coulomb state is seen to be connected to the
3-body excited state that has largest overlap with the UCF
wave function. These results suggest that the Coulomb
eigenstates are adiabatically connected to �UCF for all
relevant L. Further evidence for adiabatic continuity is
presented in Fig. 4. We note that, as for the Pfaffian state,
the agreement improves slightly (not shown) upon includ-
ing finite thickness effects.

In contrast, the spectra for the lowest LL Coulomb
state, shown in panels (i)–(l) of Fig. 2, are consistent
with a system of weakly interacting composite fermions
experiencing an effective flux 2jQ�j¼2jQ�Nþ1j¼1.
In the topmost partially filled � level shell, we have one
CF hole with single particle angular momentum l� ¼ 5=2
for N ¼ 11, one CF with l� ¼ 7=2 for N ¼ 13, three CFs
each with l� ¼ 7=2 for N ¼ 15, and three CF holes each
with l� ¼ 7=2 for N ¼ 17. The allowed L values can be
obtained from an elementary calculation and match pre-
cisely those seen in the exact spectra. The similarity of the
lowest bands for 15 and 17 particles is striking; there is no
symmetry in the electron problem which implies this
result, but it is explained rather naturally in the CF theory,
where the two states are related by particle hole symmetry
in the fourth � level. States with excitations across one �

level can also be identified in these spectra as forming a
well-defined second band. Clearly, the structure of the
low-energy states in the lowest LL is qualitatively distinct
from that for H3.
The above description of the UCF gives natural insight

into many properties of the 5=2 state.
Odd-even parity effect.—The presence of the topologi-

cal exciton at odd N causes Oð1Þ oscillations in energy as
a function of N, as found by Lu, Das Sarma, and Park
[10], with the energy difference between odd and even N
being equal to the minimum energy of the topological
exciton.
Ordinary vs topological exciton.—A nontrivial outcome

is that, in the large wave vector limit (namely, the large L
limit in the spherical geometry), the UCF and ordinary
neutral exciton have the same energy because, in this limit,
the constituent quasiparticle and quasiholes are far sepa-
rated and their energy does not depend on whether they
reside in the same or different partitions. (The energy must
be defined properly relative to the uniform ground state,
which for odd N is to be obtained by interpolation.) ForH3

this has already been noted in exact diagonalization studies
[4]. For HC the finite size effects are stronger, but Fig. 5
convincingly demonstrates that the two exciton energies at
large L converge with increasing N. At short distances
(small L), on the other hand, the energies of the ordinary
and topological excitons are not equal. Further, the
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Both constituents H3 and HC are measured from the uniform
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with dots have been used for the angular momenta of the UCF,
and the dot diameters give the overlaps with the corresponding
3-body eigenstate. Except for L¼3=2 (level crossing at x�0:2),
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corresponding Coulomb states at x ¼ 1. (b)–(e) Blue open
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ordinary CF exciton is known to display a complex disper-
sion, possibly with several ‘‘roton’’ minima, resulting from
a complex interplay between the density profiles of the
quasihole and the quasiparticle as a function of their sepa-
ration [20,22–24]. Similar behavior can be expected for the
topological exciton, the constituents of which also have
complicated density profiles (Fig. 5), and, indeed, the
dispersions in Fig. 2 or previous studies [4,5] do exhibit
minima. The minimum energy of the UCF will thus be
lower than its large L limit, as indicated by numerical
studies [5]. The location of the minimum depends on the
form of the interaction and will, in general, occur at differ-
ent L for H3 and HC [5]. As noted in Ref. [4], observation
of the topological exciton will require a probe that changes
N by one unit; standard light scattering, which does not

alterN, will excite the ordinary exciton for states with even
or odd N, which differ only by a single localized topologi-
cal exciton.
Fusion rules.—Using the standard terminology of the

Ising conformal field theory [7], we identify the UCF by c
and the vortex (a quasiparticle or a quasihole in one parti-
tion) by �. The relation �� � ¼ 1þ c indicates that a
quasihole and a quasiparticle can be combined to produce
two kinds of excitations, by placing them in the same or
different partitions. The former, labeled ‘‘1,’’ produces an
ordinary exciton all of whose quantum numbers are zero,
whereas the latter, labeled ‘‘c ,’’ produces a UCF. The
relation �� c ¼ � captures the reaction in which the
addition of a quasiparticle or a quasihole to the UCF
state annihilates half of the topological exciton to leave a
single quasiparticle or quasihole. Finally, c � c ¼ 1 en-
capsulates the fact that two UCFs make two ordinary
excitons. In all cases above, we have considered the lowest
energy outcomes only. The fusion relations in the presence
of several quasiparticles or quasiholes can similarly be
derived.
Zero modes.—A nontrivial prediction of the px � ipy

pairing scenario is the existence of a degenerate subspace
of states for quasiparticles or quasiholes that differ in
fermion number. Möller, Wójs, and Cooper [4] have shown
that the average energies of a system with two quasiholes
or quasiparticles are very close, modulo finite size uncer-
tainties, with and without a UCF (i.e., for even or odd N).
To see what insight the present work contributes, consider
a state at even N with 2n quasiholes, n in each partition.
Adding a UCF produces an ‘‘imbalanced’’ system with
nþ 1 and n� 1 quasiholes in the two partitions, because
the quasiparticle of the topological exciton annihilates one
of the quasiholes. This allows the immediate conclusion
that, provided the quasiholes are far apart, the energy both
before and after is simply 2n times the self-energy of an
isolated quasihole. The same holds for a collection of
quasiparticles.
One may question if these conclusions, which rely on the

validity of �UCF, apply to the solutions of HC. In this
context, it is important to note that the above analysis
does not depend on the details of the wave functions but
only on the structure of the theory for the quasiparticles,
quasiholes, and the UCF. To the extent that this structure
continues adiabatically toHC, the conclusions should carry
over and should also be robust to weak corrections arising
from finite width and Landau level mixing.
We are grateful to Duncan Haldane, Maria Hermanns,

Perla Kacman, Gunnar Möller, and especially Hans
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