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The Read-Rezayi wave function is one of the candidates for the fractional quantum Hall effect at filling fraction
ν = 2 + 3/5, and thereby also its hole conjugate at 2 + 2/5. We study a general class of tripartite composite fermion
wave functions, which reduce to the Rezayi-Read ground state and quasiholes for appropriate quantum numbers,
but also allow a construction of wave functions for quasiparticles and neutral excitations by analogy to the standard
composite fermion theory. We present numerical evidence in finite systems that these trial wave functions capture
well the low energy physics of a four-body model interaction. We also compare the tripartite composite fermion
wave functions with the exact Coulomb eigenstates at 2 + 3/5, and find reasonably good agreement. The ground
state as well as several excited states of the four-body interaction are seen to evolve adiabatically into the
corresponding Coulomb states for N = 15 particles. These results support the plausibility of the Read-Rezayi
proposal for the 2 + 2/5 and 2 + 3/5 fractional quantum Hall effect. However, certain other proposals also remain
viable, and further study of excitations and edge states will be necessary for a decisive establishment of the
physical mechanism of these fractional quantum Hall states.
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I. INTRODUCTION

The richness of the fractional quantum Hall effect (FQHE)
is reflected by the fact that there exists evidence for ∼75
fractions so far.1 In spite of tremendous progress during
the last three decades, the physical origin of certain FQHE
states is still under debate. A prominent example is the
origin of the FQHE at 12/5 or 13/5 in GaAs2–5 where, in
spite of several proposals,6–11 a consensus has not yet been
achieved. [These states correspond to 2/5 and 3/5 in the
second Landau level (LL), because including the spin degree
of freedom, the lowest LL in GaAs corresponds to filling
factor range 0 < ν < 2 and the second LL to 2 < ν < 4.]
We report here on extensive tests of the so-called tripartite
composite fermion (TCF) wave functions for these states.
For the ground state, the TCF wave function is identical to
the Read-Rezayi (RR) wave function,6,12 but the TCF form
also enables a construction of the neutral and quasiparticle
excitations, by creating excitations in individual partitions
using the composite fermion (CF) theory.13,14 We will explore
the validity of the TCF wave functions for a model interaction
for which the RR wave function is exact, as well as for the
Coulomb interaction.

As a brief background, the FQHE in the lowest LL at filling
factors of the form j ± n

2pn±1 (j , n, p integers) is understood as
the integer quantum Hall effect (IQHE) of weakly interacting
composite fermions carrying 2p vortices.13,14 [The Laughlin
1/m states15 (m odd), are seen as unit filling fraction of
composite fermions carrying m − 1 vortices.] The weaker
FQHE states in the lowest LL at 4/11,5/13,5/17, and 6/1716

are believed to arise from a fractional QHE of interacting
composite fermions,17 although their precise nature is not yet
fully established. The even denominator fraction 5/2 in the
second LL4,18 can also not be understood in terms of weakly
interacting composite fermions, which would have produced

a compressible CF Fermi sea here as in the lowest LL.19 The
most likely candidate for the 5/2 FQHE is the Moore-Read
(MR) wave function, which was motivated by a conformal field
theory construction20 and describes a chiral p-wave pairing of
composite fermions.21 The FQHE at 3/816,22 and 2 + 3/82,3,5

might also arise from CF pairing.23–25,32 New physics also
seems possible for the second LL FQHE states2–5 at 2 + 1/3,
2 + 2/3, 2 + 3/5, and 2 + 2/5, even though these nominally
belong to the CF-IQHE sequence 2 + n/(2n±1). A quantitative
investigation of the second LL fractions 2 + 1/3,2 + 2/3 shows
substantial deviations from the noninteracting CF theory for
the ground state as well as excitations,26,27 but is nonetheless
likely (though not yet fully proven) that these states are
adiabatically related to those at 1/3 and 2/3 in the lowest LL,
although strongly renormalized by inter-CF interaction.27 The
FQHE states at 2 + 2/5 and 2 + 3/5 appear very different from
the lowest LL states at 2/5 and 3/5, at least for small systems
where exact results are available (see below), suggesting the
possibility of a new mechanism for FQHE at these fractions. If
2 + 2/5 and 2 + 3/5 are not CF-IQHE states, then the recently
observed fraction28 2 + 6/13 is also unlikely to be a CF-IQHE
state.

The origin of FQHE at 2 + 2/5 and 2 + 3/5, which are related
by particle-hole symmetry (in the absence of LL mixing), is the
subject of the present paper. Given that the 2 + 1/3 and 2 + 2/3

states are very likely adiabatically connected to the IQHE of
composite fermions, and that 2 + 1/2 is likely to be a paired
state of composite fermions, it is natural to suspect that the
states at the intermediate fillings 2 + 2/5 and 2 + 3/5 are also
described in terms of interacting composite fermions. We study
below a tripartite construction that builds interactions between
composite fermions in a fashion motivated by the Read-Rezayi
proposal6 for the 2 + 3/5 FQHE state, originally motivated
by a conformal field theory construction. To introduce the
idea of multipartite composite fermions, we begin with the
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FIG. 1. (Color online) Schematic description of the bipartite-CF
construction for the ν = 2 + 1/2 FQHE. The horizontal lines represent
� levels and the composite fermions are depicted as electrons bound
to two flux quanta (or vortices). Each panel shows the distribution of
composite fermions in the �L of the two partitions. Incompressible
state (a) has lowest �L completely filled. Quasihole (b), quasiparticle
(d), and neutral excitations (c) states have corresponding excitations
in the individual partitions. A state with odd number of particles
resembles an excitonic state in which the quasiparticle and quasihole
are in separate partitions, as shown in (e).

bipartite composite fermion (BCF) representation10,11,29,31 of
the MR Pfaffian wave function20 for the 2 + 1/2 FQHE, which
represents a paired state of composite fermions. A general
BCF wave function for N = N1 + N2 composite fermions is
written as (suppressing ubiquitous Gaussian factors)

�BCF ∼ A

⎡⎣ψCF
ν1

(z)ψCF
ν2

(w)
N1∏
i

N2∏
j

(zi − wj )

⎤⎦ , (1)

where composite fermions are divided into two partitions
{zj } and {wj }, which have N1 and N2 particles respectively;
they occupy the CF states ψCF

ν1
and ψCF

ν2
at fillings ν1 and

ν2; and z = x − iy and w = x − iy denote the positions
of particles as complex numbers. The composite fermions
in different partitions are intercorrelated through the cross
term

∏N1
i

∏N2
j (zi − wj ). The operator A antisymmetrizes

the entire wave function to generate a valid fermionic wave
function. (Without the antisymmetrization, this wave function
applies to a bilayer system.)30,33 The MR wave function is
reproduced when composite fermions in both partitions fill
one � level (�L), i.e., the corresponding electrons form the
Laughlin 1/3 state, as shown schematically in Fig. 1(a). A
nontrivial advantage of this representation is that excitations

can be constructed by creating excitations within the individual
partitions in the standard fashion, by exciting composite
fermions to higher �L, as shown in Figs. 1(b)–1(d) for charged
and neutral excitations. Furthermore, it provides an insight
into the structure of an unpaired composite fermion, which is
present for an odd number of particles. This state has been
shown to contain a “topological” exciton34 [Fig. 1(e)] whose
quasiparticle and quasihole cannot recombine.35 Numerical
studies in finite size systems show excellent agreement
between the BCF model and the low-energy spectra for a three-
body interaction model, and also show adiabatic continuity
to the Coulomb solution for the MR ground state36 and the
topological exciton11,35 (although such adiabatic connection
has not been established for charged excitations in small
system studies).37

In the same spirit, tripartite composite fermion (TCF) states
for N = N1 + N2 + N3 particles are constructed as

�TCF ∼ A

⎡⎣ψCF
ν1

(z)ψCF
ν2

(w)ψCF
ν3

(r)
N1∏
i=1

N2∏
j=1

(zi − wj )

×
N1∏
k=1

N3∏
l=1

(zk − rl)
N2∏

p=1

N3∏
q=1

(wp − rq)

⎤⎦ , (2)

where w = {w1,w2, . . .}, z = {z1,z2, . . .}, and r = {r1,r2, . . .}
denote an arbitrary partition of the N particles into three parts
with N1, N2, and N3 particles respectively, and ψCF

ν1
, ψCF

ν2
, and

ψCF
ν3

are CF states formed within the individual partitions. The
TCF state in which the composite fermions completely fill
the lowest �L in each partition is an exact representation
of the k = 3 RR state (Z3 parafermion state) at ν = 3/5. This
state was first proposed as a generalization of the Pfaffian wave
function6 and has attracted interest because of the possibility
of its particle-hole conjugate being realized at ν = 2 + 2/5,
and also because of the possibility of this state supporting
excitations with non-trivial braiding properties.

The RR state is the maximum density exact ground state of a
four-body model Hamiltonian H4 (described in Sec. II). Wave
functions can also be constructed for quasiholes of this state
which are also exact solutions of the same model Hamiltonian.
Explicit wave functions of such quasihole states as well as
their counting were given in Refs. 38,39, and 40. However,
as is true for all truncated pseudopotential models, explicit
solutions with nonzero energies, such as quasiparticles and
neutral excitations, are not known. Similarly wave functions
for states for which N is not a multiple of 3 are not known
except when they contain only quasihole excitations. The TCF
representation gives a natural way of constructing arbitrary
excitations of 2 + 3/5 by exciting composite fermions in the
individual partitions, and also wave functions for systems in
which the total number of particles is not a multiple of three.

We make a number of simplifying assumptions in our
analysis below. We assume that the magnetic field is large
enough that all electrons are fully polarized; the spin degree of
freedom is thus frozen and not considered explicitly. Landau
level mixing is neglected, and the electrons in the lowest LL are
treated as inert. The actual two-dimensional electron systems
used in experimental situations have a finite width, which in
general produces a weakening of Coulomb repulsion at short
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distances. We have ignored such effects, because, as seen
below, our current quantitative understanding of the 2 + 2/5

or 2 + 3/5 states is not at a level where inclusion of such
corrections would be meaningful. Finally, we also neglect
effects of disorder, which is always present and is known to
substantially diminish the activation gaps.

The remainder of the article is organized as follows. The
construction of the TCF wave functions is described in Sec. II.
Section III summarizes the numerical techniques used in the
various calculations presented in this work. Section IV tests
how the TCF wave functions compare with the low-energy
solutions of the H4 interaction, for which the RR state is an
exact solution, for systems with up to 16 particles. Section V
compares the RR ground state with the exact Coulomb ground
state, and Sec. VI compares the TCF model for excitations
with the exact Coulomb excitations. These sections also test
if the solutions of the four-body interaction are adiabatically
connected to those of the Coulomb interaction. The article is
concluded in Sec. VII. The Appendix contains a multipartite
generalization of the bipartite and tripartite CF wave functions.

Throughout this article, the phrase “Coulomb interaction”
should be taken to mean the “second LL Coulomb interaction”
corresponding to the Coulomb interaction acting on the Hilbert
space of the second LL wave functions.

II. CONSTRUCTION OF TRIPARTITE WAVE FUNCTIONS

In this section, we describe the construction of general
TCF wave functions of N particles. Electron coordinates are
represented as complex numbers {z1, . . . ,zN } representing
positions on the complex plane. Wave functions given below
should to be multiplied by an overall geometric factor
[
∏N

i=1 exp(−|zi |2
4 ) for disk geometry], which has been omitted

for brevity. The actual single-particle wave functions in the
second LL are functions of z and z̄. However, LL lowering
operators bijectively map these states into the lowest LL wave
functions, which are functions of z alone. For this reason, all
the wave functions are written in the lowest LL. Difference in
the action of Coulomb interaction on the states of the first and
second LLs is accounted for by using the second LL Coulomb
pseudopotentials.

A. Incompressible TCF states

Incompressible TCF states are defined to be those states
in which each partition contains an incompressible state with
fully occupied �L. A state with an equal number of particles
in each partition, N1 = N2 = N3 ≡ Ñ , can be written as

�TCF
ν = A

⎡⎣ψ n
2pn+1

(z)ψ n
2pn+1

(w)ψ n
2pn+1

(r)
Ñ∏

i,j=1

(zi − wj )

×
Ñ∏

k,l=1

(zk − rl)
Ñ∏

p,q=1

(wp − rq)

⎤⎦ , (3)

where w = {w1,w2, . . . ,wÑ }, z = {z1,z2, . . . ,zÑ } and r =
{r1,r2, . . . ,rÑ } is an arbitrary partition of the N = 3Ñ particles
into three equal parts. The particles in different partitions are
correlated through the cross terms, whereas those in each
individual partition form the Jain CF state at filling fraction

ν̄ = n
2pn+1 , given by ψ n

2pn+1
= PLLL

∏Ñ
i<j=1(zi − zj )2p�n

where �n is the wave function of an integer quantum Hall
system in which n Landau levels are completely filled, p is an
integer, and PLLL projects the state into the lowest LL. The one
filled �L state ψ 1

3
reduces to the Laughlin wave function.15

The filling factor of the TCF wave function can be
derived by noting that the largest power of an electron
coordinate, which is the angular momentum of the outermost
occupied single-particle state in the disk geometry, is Lmax =
(1+2pn+2n)N/n, where �ν̄ contributes N/ν̄ + O(1) ≈ (2pn+1)N/n

and the cross term contributes 2Ñ . For a total of N = 3Ñ

particles, the overall filling fraction of the TCF wave function
is

ν = 3Ñ

Lmax
= 3ν̄

1 + 2ν̄
= 3n

1 + (2p + 2)n
. (4)

In this paper we study only the ν = 3/5 TCF functions in which
individual partitions have a filling fraction ν̄ = 1/3. Unless
otherwise stated, the phrase “TCF wave function” refers to
ν = 3/5 TCF wave function in what follows.

B. Construction of TCF states on a sphere

The bulk properties of a quantum Hall system, which are
of interest in this work, are most conveniently studied in the
spherical geometry,41 primarily due to the absence of edges.
In this model, the electrons move on the surface of a sphere in
the presence of a uniform and constant radial magnetic field
generated by a monopole placed at the center of the sphere. The
strength of the monopole is represented by Q, which is defined
as half the number of total magnetic flux quanta emitted by
the monopole. Single-valuedness of electronic wave functions
requires that the monopole strength Q be an integer or a
half integer. Landau quantization causes formation of discrete
electronic kinetic energy levels. The states of the nth Landau
level form a multiplet of total angular momentum quantum
number l = Q + n, where n = 0,1,2, . . .. This gives a total
degeneracy of 2(Q + n) + 1 to the nth LL.

In particular, the lowest LL orbitals have angular momen-
tum quantum number Q, and the single-particle state with
z component −Q � m � Q is given by uQ+mvQ−m, where
u = cos(θ/2)eiφ/2 and v = sin(θ/2)e−iφ/2 are the spinor co-
ordinates on the sphere. The TCF wave function [Eq. (3)] can
be transcribed straightforwardly to the spherical geometry; in
particular, the factors (zi − zj ) are replaced by (uivj − ujvi).

The monopole strength at which a given wave function
occurs can be inferred by noting that the largest power of
ui gives 2Q. Applying this to the wave function of the
incompressible TCF wave function tells us that it occurs at
a flux

2Q = 5
3N − 3. (5)

The fact that incompressible states can occur only for particle
numbers that are multiples of three ensures that 2Q is an
integer. In general, a quantum Hall trial wave function at filling
fraction ν occurs at a flux given by

2Q = 1

ν
N − s, (6)
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where s is called the shift. The shift for the RR wave function
is 3.

C. Jack polynomials

The RR states and their quasihole excitations (including
the MR Pfaffian) have been identified as Jack polynomials,42

which allow efficient numerical generation of these states.
We briefly review this method here and will use it below to
calculate the overlap between RR ground state and Coulomb
eigenstate. The single-particle states in the lowest LL (LLL)
are indexed by their angular momenta and there are two
equivalent ways of representing a noninteracting N -particle
state. One can label it by a partition (not to be confused with
the word “partition” used in describing “tripartite composite
fermion”) λ = [λ1, . . . ,λN ] in which the occupied single-
particle angular momenta are listed with λ1 � λ2 · · · � λN .
Or one can list the occupation number of orbitals as n = {nm},
m = 0,1,2, . . ., where nm is the number of particles in the
orbital labeled by m. A non-interacting many-body wave
function is a Slater determinant which can be labeled by a
partition or an occupation. An interacting many-body state is a
superposition of many noninteracting basis states indexed by λ

with coefficients cλ. The squeezing operation for partitions is
defined as follows: for a pair of particles in the orbitals m1 and
m2, with m1 < m2 − 1, the elementary squeezing operation
corresponds to shifting two particles inwards by moving a
particle each from orbital m1 to m1 + 1 and from orbital
m2 to m2 − 1. Equivalently in terms of occupation numbers,
squeezing decreases nm1,2 by one and increases nm1+1 and
nm2−1 by one. A partition λ is said to dominate μ (denoted
as λ > μ) if μ can be generated by squeezing λ. A fermionic
Jack can be expanded in terms of Slater determinants

J α
λ =

∑
κ�λ

cλκ (α)slκ , (7)

where α is a parameter, the sum over κ runs over all partitions
squeezed from the root partition λ and slκ is the Slater
determinant labeled by κ . There is a recursive relation43 for
the expansion coefficients cλκ (α)

cλκ (α) = 2(1/α − 1)

ρλ(α) − ρκ (α)

∑
κ<μ�λ

(li − lj )cμκ (α)(−1)NSW , (8)

where the sum is over all partitions μ =
[l1, . . . ,li + s, . . . ,lj − s, . . . ,lN ] that strictly dominate
κ = [l1, . . . ,li , . . . ,lj , . . . ,lN ] but being dominated or equal
to the root partition λ. The ρ are defined as

ρλ(α) =
∑

i

λi [λi + 2i(1 − 1/α)] . (9)

The quantity NSW is the number of swaps that are needed to
bring μ back to κ . For the RR Z3 state, the root occupation is
1110011100 . . . 00111 and the parameter α is −4.

D. TCF excitations

The structure of the incompressible TCF wave function
suggests a natural way of constructing excitations by intro-
ducing neutral or charged excitations within the individual
partitions. Figure 2 schematically shows the �L occupation

FIG. 2. (Color online) Schematic description of the incompress-
ible state and its charged and neutral excitations. (a) shows the 1/3
incompressible state, which has one fully occupied � level, while
(b), (c), and (d) show neutral excitation (a particle-hole pair of
composite fermions), a quasihole (a missing composite fermion),
and a quasiparticle (an additional composite fermion), respectively.

of composite fermions for the incompressible state and for
various excitations at ν = 1/3. The lowest energy neutral
excitations of an incompressible TCF state are obtained by
creating the lowest energy neutral excitation in one of the
partitions of the TCF wave function. Charged excitations
are obtained by changing the flux by one unit. Addition of
a flux quantum to the incompressible system results in a
wave function wherein there is one quasihole in each of the
three partitions. Removal of a flux similarly results in one
quasiparticle in each partition. For these states, there are an
equal number of particles in each partition, just as in the case
of the incompressible state.

We can also consider states for which the particle number
N is not a multiple of three, so the numbers of particles in the
partitions are not equal. Consider a wave function in which the
partitions contain N1, N2, and N3 electrons, and the effective
flux experienced by the composite fermions in the individual
partitions be q1, q2, and q3 respectively. After including the
contributions from Jastrow factors (Ni − 1 in ith partition) and
the cross terms (Nj + Nk; j,k �= i), the net flux experienced
by the electrons in the three partitions are

2Q1 = 2q1 + 2(N1 − 1) + (N2 + N3),

2Q2 = 2q2 + 2(N2 − 1) + (N1 + N3), (10)

2Q3 = 2q3 + 2(N3 − 1) + (N1 + N2).

Because all the electrons must ultimately reside in the same
Hilbert space in the fully antisymmetrized wave function, the
total fluxes experienced by the electrons should be identical,
i.e., 2Q1 = 2Q2 = 2Q3 ≡ 2Q, which implies the constraint

Ni + 2qi = constant 2Q + 2 − N, for i = 1,2,3. (11)

For given N and Q, there are several wave functions that
satisfy the above constraints. Figure 3 shows the possible
wave functions that satisfy the constraints for two specific
examples. It is natural to pick the state with the lowest total
CF cyclotron energy as the trial wave function in each case.
Figure 4 shows the structure of the several simple TCF excited
states. Note that, due to antisymmetrization, permutations of
the three partitions do not give a new wave function.

It is straightforward to determine the local charge excess
or deficiency associated with a quasiparticle or quasihole. The
adiabatic insertion (removal) of one flux quantum produces
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FIG. 3. (Color online) For a given N and 2Q (total number
of particles and total flux), there are several wave functions that
satisfy the conditions in Eq. (11). The figure schematically shows
different possible wave functions for two cases, (N,2Q) = (14,21)
and (18,27). The composite fermions in different partitions are shown
by different colors, and their arrows have been suppressed to avoid
clutter. The value of Ni , qi and Ni + 2qi are given below the individual
partitions. Case (c) has the lowest total CF cyclotron energies in both
examples.

an overall charge equal to the filling factor. However, this
corresponds to three quasiholes (quasiparticles), one in each
partition. The charge of an elementary quasiparticle or quasi-
hole thus has a magnitude of

e∗

e
= ν

3
= n

(2pn + 2n + 1)
. (12)

E. Angular momentum of the TCF states

We derive the useful result that the total angular momentum
Lz of the TCF wave function is the sum of the Lz of states in
individual partitions. In terms of the spinor coordinates (ui,vi),
the angular momentum operator Lz is given by

Lz =
N∑

i=1

1

2

(
ui∂ui

− vi∂vi

)
. (13)

The operator commutes with the antisymmetrization operator.
Furthermore, the action of this operator on the cross terms
vanishes as a result of the identity Lz(uivj − viuj ) = 0.
Therefore, we have

Lz�TCF = A [{Lzψ(z)}ψ(w)ψ(r) × cross terms]

+A [ψ(z){Lzψ(w)}ψ(r) × cross terms]

+A [ψ(z)ψ(w){Lzψ(r)} × cross terms]

= (
L(1)

z + L(2)
z + L(3)

z

)
�TCF. (14)

The angular momenta of the state in each partition can be
obtained by adding the Lz quantum numbers of individual
electrons. Alternatively, relative to the incompressible state,
we can simply add the angular momenta of the excitations,
with the angular momenta of quasiholes taken as negative.

III. NUMERICAL METHODS

A. Four-body model Hamiltonian

The incompressible TCF wave function is the high-
est density exact zero-energy state of a four-body model
Hamiltonian,6,38,44 which can be written as

H4 =
N∑

i<j<k<l=1

Pijkl(4Q − 6). (15)

The operator Pijkl(M) projects a many-particle state to the
total angular momentum M sector of Hilbert space of the four
particles i,j,k,l. Angular momentum 4Q − 6 is the largest
total angular momentum sector in the four-particle Hilbert
space within the lowest Landau level. This corresponds to
the closest approach of the four particles. Summation over all
possible four-particle sets gives a valid quantum mechanical
Hamiltonian operator for which there is an energy cost for
four particles approaching each other at an angular momentum
4Q − 6 and none otherwise.

Numerically, the four-body Hamiltonian on a sphere with
monopole strength Q is constructed by first obtaining the Cleb-
sch Gordan coefficients CL,m

m1,m2,m3,m4
corresponding to states of

total angular momentum L = 4Q − 6 through diagonalizing
the L2 operator. In terms of these coefficients, the four-body
interaction can be represented as

H4 =
∑

{mi },{ni }
c†n4

c†n3
c†n2

c†n1
χ

{ni }
{mi }cm1cm2cm3cm4

χ
{ni }
{mi } = CL,n1+n2+n3+n4

n1,n2,n3,n4
CL,m1+m2+m3+m4

m1,m2,m3,m4
,

(16)

where L = 4Q − 6 and c
†
m is the electron creation operator for

the state of z component angular momentum m.
The quasihole excitations of the RR state can also be written

as the exact zero-energy states of H4.38 However there are no
zero-energy states on the quasiparticle side.

FIG. 4. Schematic depiction of various TCF states. The incompressible state (center) has the composite fermions fully occupying the lowest
� level in each partition. (The arrows of composite fermions have been suppressed for simplicity.) Excited states are obtained by either creating
an excitation in one of the partitions (top) or by addition or removal of a flux and/or an electron. The symbols +1F (−1F ) and +1P (−1P )
represent addition (removal) of a flux and electron respectively.
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B. TCF states and spectra

The finite systems studied here are realized in the spherical
geometry. The TCF wave functions are obtained by antisym-
metrization of the product of the Jain CF wave functions
and the cross terms. Evaluation of the TCF wave function
is computationally slow because each evaluation involves
N !/(N1!N2!N3!) antisymmetrization steps, which renders
Monte Carlo methods unfeasible for the evaluation of overlaps,
energies, etc. We have devised a method that employs the
complete set of simultaneous eigenstates L2 and Lz on the
sphere obtained by exact diagonalization.

To diagonalize the TCF states and to calculate their overlaps
with the exact eigenstates, we need to construct TCF wave
functions that are eigenstates of the angular momentum
operators L2 and Lz, which we obtain as follows. Consider the
sector with total angular momentum quantum number L = M .
Let {�1, �2, . . . ,�K} be the set of all linearly independent
TCF states with z component angular momentum Lz = M .
(The method for numerically obtaining a linearly independent
set is described later in this section.) By diagonalizing (using
Lanczos algorithm) the angular momentum operator in the
Hilbert space of all Lz = M Slater determinant states on
the sphere, we can obtain all the L = Lz = M eigenstates
{φ1,φ2, . . . φP }. If there is a state with angular momentum
L = Lz = M in the TCF sector, then it should be possible to
write that state in terms of the states φi , since the later gives a
complete basis. In other words, there should be a solution for
ci and di in the following equation:

c1�1 + c2�2 + · · · + cK�K = d1φ1 + d2φ2, . . . ,dP φP .

In order to solve this, we use the fact that this equation is
true for any configuration z of the electrons. The functions
φi and �i are evaluated at a large number of randomly
obtained configurations z1,z2, . . . giving a sufficiently large
linear system of equations

c1�1(zi) + c2�2(zi) + · · · + cK�K (zi)

= d1φ1(zi) + d2φ2(zi), . . . ,dP φP (zi),

where i indexes the different configurations. There are as many
independent solutions to the above set of equations as there
are L = Lz = M states in the TCF space.

Once the L-Lz eigenstates are constructed, it is straight-
forward to diagonalize a given Hamiltonian within the TCF
basis to obtain the TCF eigenstates and eigenenergies. Given
the coefficients di and the Slater determinant expansions for
φi it is then straightforward to expand the TCF state itself in
the Slater determinant states. Energy of the Slater determinant
expansion is obtained by using the pseudopotentials for the
interaction of interest. While this method in principle gives
exact results, it is most efficient if the functions are scaled
such that �i(z) and φi(z) have similar orders of magnitude.

C. Identification of linearly independent trial states

The set of all TCF states with a particular Lz can be
constructed by selecting those arrangements of excitations
that result in the desired Lz. However, such a set is in
general not linearly independent. Schemes to generate linearly
independent quasihole states of general n body Hamiltonians

exist.38–40,45 In finite systems, linearly independent states can
be easily numerically identified for an arbitrary set of states.
If the finite set of functions X = {φ1, . . . ,φS} is linearly
independent, there should be a nontrivial solution for di in
the equation

S∑
i=1

diφi = 0. (17)

By evaluating the above statement for a large number of ran-
domly chosen configurations zj , we get a set of simultaneous
linear equations, which have as many solutions as there are
linearly dependent states in the set. The number of such linear
dependencies can be equivalently obtained by finding zeros in
the singular valued decomposition of the matrix Aij = φi(zj )
where i = 1,2, . . . ,S and j > S. By removing an appropriate
number of states from the set X, one can obtain a linearly
independent subset of X.

D. Angular momentum counting of TCF states

Number of angular momentum multiplets that can be
constructed using the trial states in each total angular mo-
mentum sector can be calculated by counting the number
of highest weight vectors. If there are k and p linearly
independent trial states with z-component angular momen-
tum m and m + 1, then the number of highest weight
vectors in the total angular momentum sector L = Lz = m

is k − p. For example, if the number of trial states with
z-component angular momenta (0,1,2,3, . . . ,M,M + 1) are
(a0,a1,a2, . . . ,aM,0), then the number of states of total
angular momentum quantum numbers (0,1,2, . . . ,M,M + 1)
is (a0 − a1,a1 − a2, . . . ,aM − 0,0). This method relies on the
fact that the TCF space contains complete multiplets, in other
words, if φ is a TCF state, then L−� and L+� are also TCF
states or 0. This is because L± = ∑N

i=1 [L±]i commutes with
antisymmetrization operation as well as cross terms allowing
one to write the action of the operators as

L±�TCF = A [{L±ψ(z)}ψ(w)ψ(r) × cross terms]

+A [ψ(z){L±ψ(w)}ψ(r) × cross terms]

+A [ψ(z)ψ(w){L±ψ(r)} × cross terms] .

(18)

Action of L± on CF wave functions ψ gives another CF state.
Therefore, each of the three terms in the right-hand side of
above equation is a TCF wave function. Thus L±�TCF is
contained in the space of TCF wave functions.

IV. COMPARISON WITH EXACT SPECTRUM
OF THE FOUR-BODY INTERACTION

In this section, we diagonalize the four-body Hamiltonian
H4 (i) within the TCF sector and (ii) within the full LLL
Hilbert space, and compare the two sets of eigenenergies and
eigenfunctions. This will tell us to what extent the TCF states
capture the low-energy physics of the four-body interaction.
The results from these comparisons are shown in Figs. 5
and 6 for systems sizes of up to N = 16. The TCF spectra
are shown by red dashes and the full exact spectra by black or
blue dots; the overlaps between the TCF eigenstates and the
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FIG. 5. (Color online) Energy spectra of N = 15 particles for the
four-body model Hamiltonian H4 at flux values 2Q = 21, 22, and 23.
The blue and black dots show the exact spectra (the blue dots mark
the low-energy states). The red dashes show the spectra evaluated
within the TCF basis; the top panel shows the TCF spectrum for the
ν = 3/5 ground state (also the RR state) and its neutral excitation; the
middle and bottom panels show TCF spectra for three quasiholes and
quasiparticles, respectively. The total angular momentum quantum
number L is shown on the x axis and the energy on y axis. The
overlaps of the TCF states with the corresponding exact states are
shown near each state; the parentheses contain the total numbers
of independent eigenstates in the corresponding angular momentum
sector.

corresponding exact eigenstates are also shown, along with the
number of independent states in that sector.

Figure 5 shows the comparison for the various systems
with N = 15 electrons. The TCF wave functions contain five
composite fermions in each of the partitions. The top panel
of the figure shows the spectrum for the flux corresponding to

0 2 4 6

0

0 2 4 6 8

1
4

(30)
1.

5

0 1 2 3 4 5 6

0.
5

2.
5

FIG. 6. (Color online) Exact and TCF spectra for the four-body
model Hamiltonian for N = 14 particles at 2Q = 20, 21, and 23. The
meanings of various symbols are same as those in Fig. 5. These states
are obtained from the incompressible state with (N,2Q) = (15,22)
(top panel of Fig. 5) by addition or removal of electrons and fluxes;
removal of one particle and one flux results in a two-quasihole state
(top); removal of one particle and two fluxes result in a state with
two quasiparticles and one quasihole in different partitions (middle);
addition of one particle and one flux results in a two-quasiparticle
state (bottom).

the incompressible state. The TCF incompressible state is the
exact ground state of the four-body interaction. The energy of
the neutral TCF mode, which contain an exciton in one of the
three partitions, is also shown; it is separated from the ground
state by a gap. A corresponding neutral mode can be identified
also in the exact spectrum, indicated by blue colored dots.
The quantum numbers predicted by the TCF model match the
quantum numbers of the neutral mode in the exact spectrum.
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FIG. 7. (Color online) Energy spectra of the four-body model
Hamiltonian for certain systems with N = 21 and N = 22. The
arrows indicate quantum numbers predicted by the TCF theory for
the lowest band states (×2 denotes two states). The dimension of each
angular momentum sector is shown at the top of each graph. The top
panel corresponds to the system with an incompressible ground state;
the middle and bottom panels contain three and two quasiparticles.
In all the cases it is found that the predicted quantum numbers match
the spectra in the limit where the quasiparticles are farthest separated.

The overlaps improve with increasing angular momenta, i.e.,
with increasing distance between the quasiparticle and the
quasihole forming the the exciton (the larger the angular
momenta of TCF state, the larger is the distance between
quasiparticle and quasihole). The middle panel of Fig. 5 shows
the spectrum with one extra flux. The TCF states in this case
have three quasiholes, one in each partition. These TCF states
are the exact zero-energy states of the Hamiltonian. Finally,
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FIG. 8. (Color online) Energy spectra of n-body model
Hamiltonians H2,H3,H4 for which the Laughlin, Pfaffian, and RR
states are the highest density exact ground states. Each graph shows
the energy spectra of N , 2N , and 3N particles at fluxes 3

1 N − 3,
2
1 2N − 3, and 5

3 3N − 3 respectively where incompressible states
occur. The top panel has N = 7 and the bottom panel has N = 8.
Similarity in the structures of the neutral modes provides a strong
support to the notion that they correspond to multipartite states with
one, two, and three partitions respectively.

the bottom panel shows the spectrum when a flux is removed
from the incompressible state, which produces a state with
one quasiparticle in each partition. There appears to be a
low-energy mode whose quantum numbers closely match with
the quantum numbers of the TCF states but the mode is not as
well defined as the quasihole or neutral excitation mode. The
overlaps decrease with increasing angular momenta. Since
the excitations in the TCF states are all negatively charged,
the average distance between excitations decreases with
increasing angular momentum, which again is consistent with
the observation that the agreement improves with increasing
interquasiparticle distance. For small interparticle separations
(large angular momenta), the TCF theory also fails to predict
the L = 6.5 state, which appears to be in the low-energy mode
in the exact spectrum.

Figure 6 shows the spectra for a system with N = 14,
described by TCF wave functions with unequal number of
electrons in the three partitions. Given the finite system
sizes, we have chosen specific systems which have a small
number of quasiparticles and quasiholes. Removal of one flux
and an electron from (N,2Q) = (15,22) results in a state
where there are two quasiparticles in one of the partitions.
The exact and TCF spectra of such a system is shown in
Fig. 6. Since all excitations are quasiholes, these states form
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FIG. 9. (Color online) Ground-state energies and angular mo-
menta of N electron interacting with the second Landau level
Coulomb interaction on the sphere at various fluxes plotted against
1/N for N up to 16. The shifts −2, 2 and 4 and −5 correspond
to Rezayi-Read, Bonderson-Slingerland, Jain, and the BCF states,
respectively. The angular momentum of the ground state is shown
whenever it is nonzero. The ground states at shift 4 has a nonzero
angular momenta, indicating that it represents excitations of some
other incompressible state. The energies per particle are given in
units of e2

/�, where � = √
h̄c/eB is the magnetic length, and include

the interaction with the uniform positively charged background.

exact zero-energy states of the four-body interaction. Since
both the quasiholes are in the same partition, the angular
momentum counting of the low-energy states is identical to
that of the counting of the Laughlin state of N/3 particles
under V1 interaction. The middle panel of Fig. 6 shows

the spectrum for a state with two quasiparticles and one
quasihole distributed in three partitions; this is obtained from
(N,2Q) = (15,22) by removing two fluxes and one electron.
Since the system is composed of multiple excitations of
different charges, there is no simple relation between angular
momenta and interexcitation distance. Even though there is no
clear separation between low-energy states and the bulk of the
spectrum, there appears to be a very good agreement between
the TCF trial wave functions and the lower-energy states.
Finally, the bottom panel of Fig. 6 compares the spectrum of a
system with two quasiparticles in the same partition, obtained
by adding one flux and one electron to the incompressible
state.

While it is computationally difficult to calculate overlaps
between TCF states and exact states for larger systems,
predictions for the quantum numbers of the low-energy states
can be compared with the exact spectra for larger systems.
Figure 7 shows the spectrum for systems at and close to the
incompressible state with N = 21 particles. Arrows indicate
the quantum numbers of the states predicted by the TCF
theory. The spectra seem to match the predictions for large
interparticle separations, i.e., for large L for the neutral mode
(top panel) and for small L for the quasiparticles.

The picture emerging from these comparisons suggests that
the TCF description is reasonably accurate for the four-body
interactionH4. More specifically, it provides a correct counting
of the number of states in the low-energy band for situations
where the quasiparticles and quasiholes are far separated, and
the TCF wave functions are also an excellent approximation
of the exact eigenstates under the same conditions. We believe
that the deviations between the exact results and the TCF
theory are due to finite system sizes; unfortunately, it is not
possible to go to much larger systems than those studied here
to test this assertion more conclusively.

We close this section by making an interesting observation.
The tripartite wave function suggests that the neutral mode
of 3N particles with four-body interaction is analogous to
the neutral mode of N particles with two-body interaction,
and, in fact, also to the neutral mode of 2N particles for
three-body interactions. The similarity can be explicitly seen
in the spectra of the three interactions shown in Fig. 8. This
is a direct evidence for the multipartite nature of the wave
function.

TABLE I. Comparison between RR state and the second Landau level Coulomb ground state on the sphere for two different quantum well
widths w = 0 and w = 3 (quoted in units of the magnetic length). N is the number of electrons and 2Q is the number of flux quanta penetrating
the surface of the sphere; the full dimension of the L = 0 subspace is also given. For each case, the table gives the Coulomb energies of the
exact and the RR states, ECoulomb

exact and ECoulomb
RR , respectively, as well as the overlaps between them. Energies per particle are given in units of

e2
/ε�, where � = √

h̄c/eB is the magnetic length and ε is the dielectric constant of the background, and include the interaction with the uniform
positively charged background. Finite width calculations use the model described in Ref. 49. The overlaps for the 15 and 18 particle systems
at w = 0 were previously given in Ref. 6.

dim of L = 0 overlap ECoulomb
exact ECoulomb

RR overlap ECoulomb
exact ECoulomb

RR

N 2Q subspace (w = 0) (w = 0) (w = 0) (w = 3) (w = 3) (w = 3)

15 22 36 0.9836 −0.6490 −0.6486 0.9801 −0.4607 −0.4604
18 27 319 0.9369 −0.6480 −0.6471 0.8995 −0.4625 −0.4618
21 32 3603 0.8990 −0.6469 −0.6457 0.9316 −0.4631 −0.4625
24 37 50866 0.8100 −0.6463 −0.6449 0.8792 −0.4639 −0.4631
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FIG. 10. (Color online) Comparison of the TCF trial wave
functions with the exact spectra of the second LL Coulomb interaction
for systems with N = 15 particles. The notations are similar to that
of Figs. 5 and 6. (top) An L = 0 incompressible state and a clear
neutral mode is formed at 2Q = 22. (middle) Overlaps between
the low-energy modes and the TCF states appear to decrease with
increasing angular momenta (equivalently closer quasiholes). There
is a gap between low-energy modes and the bulk in the case of
small angular momenta (farthest quasiholes), which vanishes when
the quasiholes are close together. (bottom) A three-quasiparticle mode
in this scenario is similar to the quasiparticle mode in the four-body
interaction. TCF states capture all except the state at L = 6.5.

V. COMPARISON WITH EXACT COULOMB SOLUTION:
GROUND STATE

Having shown that the TCF wave functions are reasonably
good for the four-body interaction, we now test their validity
for the Coulomb interaction. This section and the next are
devoted to that issue. It is a priori far from obvious, and
actually counterintuitive, that the solutions of the four-body
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FIG. 11. (Color online) Comparison of the exact spectrum and
the TCF states for the cases where the number of particles is not a
multiple of three. The meaning of various symbols is the same as
in Figs. 5, 6, and 10. The states considered here are obtained from
the incompressible state with (N,2Q) = (15,22) shown in Fig. 10 by
removal of one electron and one flux (top); by removal of one electron
and two fluxes (middle); and addition of one electron and one flux
(bottom).

interaction should have anything to do with the solutions of the
Coulomb interaction. Nonetheless, one can explicitly test if a
connection exists. The current section presents comparisons
for the incompressible ground state, and the next for the
excitations. In the absence of LL mixing, as assumed here, the
Coulomb interaction is particle-hole symmetric, and therefore
a trial wave function at 2/5 also implies a trial wave function at
3/5 (and vice versa), and one can choose to study either fraction.
We remind the reader that “Coulomb interaction” refers to the
second LL Coulomb interaction in this article.
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FIG. 12. (Color online) Second LL Coulomb spectra of systems at and in the vicinity of the incompressible state with (N,2Q) = (21,32).
The arrows indicate the angular momentum quantum numbers predicted by the TCF model, where the encircled 2 indicates a doublet.

Several candidate wave functions can be considered for
the FQHE observed at filling fraction 2 + 2/5. The particle-
hole conjugate of the RR wave function occurs at a shift
−2; it is constructed by producing the RR 3/5 wave func-
tion by exact diagonalization of the four-body interaction
Hamiltonian, followed by particle-hole conjugation. The
Bonderson-Slingerland (BS) wave function8,9 occurs at shift 2
and can be written as

�BS = PLLL

{
�∗

2 �3
1 Pf

[
1

zα − zβ

]}
≈ Pf

[
1

zα − zβ

]
�CF−bosons

2
5

, (19)

where �n is the wave function with n filled Landau levels
and �CF−bosons

2
5

≈ PLLL�∗
2�

3
1 is the Jain CF wave function for

bosons at ν = 2/5. The Jain 2/5 wave function at shift 4 is
given by

�Jain = PLLL�2
1�2, (20)

and describes noninteracting composite fermions. Finally, a
BCF wave function at 3/5 can be constructed as11

�BCF = A

⎡⎣� 3
7

(
w1 . . . ,wN

2

)
� 3

7

(
z1 . . . ,z N

2

) N/2∏
i,j=1

(zi − wj )

⎤⎦ ,

(21)

where zi , wi is an arbitrary partition of the particles into two
equal parts and � 3

7
is the Jain CF wave function at 3/7. Particle-

hole conjugate of this BCF function occurs at a shift of −5.

It is possible to rule out a candidate state as a possible
explanation of the 2 + 2/5 FQHE by computing the exact
Coulomb ground state at the corresponding shift. A necessary
condition for the applicability of the trial wave function is
that the exact Coulomb ground state at that shift has L = 0
in the thermodynamic limit. A state with L �= 0 represents
quasiparticles or quasiholes of an incompressible FQHE state
with a different shift. We note that the condition L = 0 is
not sufficient, however, because there can be more than one
possibility at a given shift; a definitive confirmation of a theory
requires that excitations also be explained by the theory. An
instructive example in this context is the 2/5 FQHE in the
lowest LL, where two proposals, namely the Gaffnian44,46 and
Jain CF wave functions, have the same shift. In this case,
the mere fact that the Coulomb ground state has L = 0 is
insufficient to discriminate between the two. However, the
two models predict very different structure for quasiholes and
quasiparticles, and a study of the excitations rules out the
Gaffnian model.47,48

Figure 9 shows the evolution of the actual Coulomb ground
state as a function of the particle number N for the shifts
corresponding to the RR, BS, BCF, and Jain wave functions.
(Only one system is accessible to exact diagonalization at the
BCF shift.) The energies per particle include the contributions
from background-background and background-electron inter-
actions. To minimize the shift dependence, the energies are
rescaled by a factor of

√
ν2Q/N . We stress that this figure

is not to be treated as a comparison between the energies;
it is guaranteed that the exact Coulomb energy per particle
will extrapolate to the same value in the thermodynamic limit
independent of the shift, because the exact states at these shifts
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FIG. 13. (Color online) Evolution of states as the Hamiltonian is tuned from four-body model Hamiltonian to the Coulomb Hamiltonian for
N = 15. Each panel shows the low-energy states in a given L sector. The top panels show evolution for the ground state and neutral excitons; the
middle panels for three quasihole states, and the bottom panels for three quasiparticle states. The red line shows the evolution of the low-energy
states and blue lines show the higher energy states; the absence of any crossing between the red and the blue lines indicates that the Coulomb
solutions are adiabatically connected to the solutions of the four-body Hamiltonian. Note that L = 6.5 state in the three quasiparticle system,
which appears to be a part of the low-energy mode, is not predicted by the TCF theory.

will only have order-one energy differences. However, for
sufficiently large N , only one shift will produce a uniform
L = 0 ground state, whereas the states at nearby shifts will
contain quasiparticles or quasiholes of this state and will in
general have L �= 0. The exact Coulomb states at the RR, BS,
and BCF shifts continue to have zero angular momenta for
all systems that we have studied, indicating that the system
sizes accessible to our study are not able to discriminate
between them; they all remain viable candidates for the 2 + 2/5

FQHE.

It is noteworthy that as the system size is increased, the
angular momentum of the ground state at the shift 4 changes
to nonzero values, thereby ruling out the weakly interacting
CF-IQHE description for the 2 + 2/5 state. Same is true even
for cases where finite thickness corrections are included.50

This indicates that the physics of the second LL 2/5 FQHE is
distinct from the lowest LL 2/5 FQHE.

We next proceed to compute the overlap between the RR
state and the exact Coulomb state and also compare their
Coulomb energies as a function of N , shown in Table I. The
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FIG. 14. (Color online) Evolution of states as the Hamiltonian is tuned from four-body model Hamiltonian to the Coulomb Hamiltonian
for the cases where N is not a multiple of 3. There is a clear adiabatic connection between low-energy states of the two quasihole states (top
panels) and two quasiparticle states (bottom panels). In the center panels, all the angular momenta except L = 4 show adiabatic connection.
Note that in the middle panel, for L = 7, we have shown the first excited state in red because this state has a higher overlap with the TCF wave
function.

overlaps are quite large and provide nontrivial support for the
RR state.

We have also investigated if the ground state evolves
adiabatically (without gap closing) when the interaction is
changed from the four-body model interaction to the second
LL Coulomb. For this purpose, we diagonalize the Hamiltonian

H(λ) = (1 − λ)
HCoulomb − ECoulomb

�Coulomb
+ λ

H4 − E4

�4
(22)

as a function of the parameter λ. The parameters E4 and
ECoulomb are the energies of the lowest energy state in the
for the H4 and HCoulomb spectrum. Scaling factors �Coulomb

and �4 are chosen to be of the order of the gap between the

ground state and the first excited state in each interaction. If
there is no clear gap in the spectrum, the � are chosen to
be of the order of the gap between the lowest energy state
and the first excited state in the same angular momentum
sector. This Hamiltonian gives the four-body interaction in
λ = 0 limit and the second LL Coulomb in the λ = 1 limit (up
to an overall shift and a scaling factor). The results, shown
in the next section (see Fig. 13) along with the evolution
of the excitations, indicate that the gap does not close, thus
providing further support for the RR wave function. We have
not carried out similar calculations for the BS and the BCF
wave functions, which are outside the scope of our present
paper.
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VI. COMPARISON BETWEEN TCF WAVE FUNCTIONS
AND EXACT COULOMB SOLUTIONS: EXCITATIONS

We next compare the TCF excitations with the actual
Coulomb excitations. Exactly as done previously for H4, we
obtain the spectra and eigenstates by diagonalizing the second
LL Coulomb interaction (i) in the full Hilbert space and (ii)
in the TCF basis, and then compare the two results. Figure 10
shows the comparison for 15 particles for the ground state,
neutral excitations, quasiholes, and quasiparticles; this figure
is analogous to the previous Fig. 5. The incompressible TCF
state (RR state) has high overlap with the exact Coulomb
ground state and predicts the quantum numbers of the neutral
mode correctly. However the neutral mode of the Coulomb
system is not as clearly formed as it is for the four-body
interaction. As for the four-body interaction, we find that
the overlaps in general are better when the quasiparticle and
the quasihole of the neutral exciton are far separated. The
remaining panels of Fig. 10 test the validity of the TCF
model for quasihole and quasiparticle excitations (center and
bottom panels, respectively). The agreement between the TCF
states and the exact spectra is poor when the quasiholes or
quasiparticles are close together, but improves when they
are far separated (i.e., at small angular momenta). Figure 11
compares the trial wave functions with the exact spectra for
cases where the number of particles is not a multiple of 3. This
figure shows that the TCF model is reasonable for the Coulomb
solution, though not as accurate as it is for the four-body
interaction.

Figure 12 shows the spectra of incompressible state and
excitations of a system of N ∼ 21 particles, together with
predictions for quantum numbers from the TCF model. While
the TCF captures several features of the spectra correctly, in
general there is a poor agreement with the exact spectrum.
The neutral mode is not clearly formed in Fig. 12(a), and the
number of predicted states do not appear to form a low-energy
band. The TCF model does capture some features, however.
Counting of the low-energy states at 2Q = 31 [Fig. 12(b)] is
correctly predicted in the small angular momentum sectors
(large interquasiparticle distance). The absence of low-energy
states in the odd angular momentum sectors in Figs. 12(d)
and 12(e) is also consistent with the TCF model.

Finally, Figs. 13 and 14 show the evolution of the ground
state as well as various excitations for the model interaction in
Eq. (22), which interpolates between the four-body interaction
and the Coulomb interaction. The relevant eigenstates of the
four-body interaction adiabatically evolve into the low-energy
Coulomb eigenstates without any gap closing within that
angular momentum sector. We believe that these adiabatic
evolutions make a strong case for a connection between the
four-body and the second LL Coulomb Hamiltonians.

VII. CONCLUSION

We have investigated in this paper the tripartite wave
functions for the second LL filling of 2 + 3/5. These reduce
to the RR wave function for the ground state and quasihole
excitations, but also provide a model for the neutral and
quasiparticle excitations. The excitations are modeled through
the standard CF excitations in the individual partitions.

We have studied the plausibility of the TCF wave functions
for the second LL Coulomb interaction as well as a four-
body interaction. Of course, only the Coulomb interaction is
relevant to experiment. The reason for studying the four-body
interaction is that it provides another route to testing the
validity of the TCF wave function for the Coulomb interaction
in a two step process: by showing that the TCF wave functions
are accurate for the four-body interaction, and then establishing
adiabatic continuity to the Coulomb interaction. This method
has proved useful in the studies of the MR state and also for
the topological exciton that occurs in a paired CF state with an
odd number of composite fermions.11,36

For the four-body interaction the TCF model is, by
construction, exact for the ground state and quasiholes. We
find that it is quite satisfactory for the neutral excitations, and
also for collections of quasiparticles and quasiholes when they
are well separated.

For the Coulomb interaction, the RR ground state is quite
accurate, with fairly high overlap with the exact Coulomb
state even for 24 electrons. The situation for the quasiparticles,
quasiholes, and neutral excitations is less convincing, however.
For N = 15 electrons, the overlaps and counting of the TCF
excited states closely match that found in the exact Coulomb
spectra, and there is also an adiabatic continuity between the
four-body spectrum and the Coulomb spectrum for the low-
energy states. However, as the system size is increased to
N = 21, the neutral excitations, quasiparticles, and quasiholes
seem to merge into the continuum of the spectrum, making it
impossible to identify these modes and compare the counting
of the states. Overall, while these results lend general support to
the RR/TCF physics at 2 + 3/5, further work will be necessary
for an unambiguous confirmation. The Bonderson-Slingerland
and the bipartite CF states also remain viable candidates. A
further study of their excitations will be necessary decisively
to distinguish between these proposals.

We finally note that experimental measurements of local
quasiparticle charge and the presence of upstream neutral
modes can also help distinguish between the various proposals.
The BCF proposal produces quasiparticles with charge e/10,
as opposed to a charge of e/5 predicted by RR and BS
constructions.6 The BCF and RR predict, for an ideal unrecon-
structed edge, upstream neutral edge modes51 at 2 + 2/5 but
none at 2 + 3/5 (because 2 + 2/5 is obtained by particle-hole
conjugation of 2 + 3/5), whereas BS implies upstream neutral
modes at both 2 + 2/5 and 2 + 3/5 (because this wave
function involves reverse flux attachment).52
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APPENDIX: MULTIPARTITE COMPOSITE
FERMION FUNCTIONS

The BCF and TCF wave functions can be straightforwardly
generalized to the case of multipartite CF wave functions. A
general incompressible wave function containing m partitions,
each with n filled �Ls, has the form

�m,n,p(z1, . . ,zNm) = A

⎡⎣m−1∏
j=0

ψ n
2pn+1

({zjN+i}i=1, . . ,N )

×
m−1∏

k<l=0

N∏
a,b=1

(zkN+a − zlN+b)

]
.

(A1)

In the above wave function, coordinates in the different CF
partitions are correlated by cross terms of single power similar
to the TCF and BCF states. The above multipartite wave

functions represent filling fractions

ν = nm

1 + (2p + m − 1)n
(A2)

and in the spherical geometry, incompressible states of this
function occur at flux values

2Q = N

ν
− (n + 2p). (A3)

The local charge of excitations can be calculated in a manner
similar to that of the TCF states. A single flux through the
state has a total charge of νe, but leads to formation of n

quasiholes in each of the m partitions. Therefore a single
localized excitation has a charge of

e

1 + (2p + m − 1)n
. (A4)

The bipartite Pfaffian wave function corresponds to the pa-
rameters (m,n,p) = (2,1,1) and the k = 3 RR wave function
corresponds to (3,1,1). Other tripartite CF functions of the
form (3,n,p) occur at filling fractions 2/3, 9/13, 3/7, 1/3,

etc. Bipartite states of class (2,2,1) and (2,3,1), which
correspond to filling fraction ν = 4/7 and ν = 3/5 were
studied in Ref. 11.
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9P. Bonderson, A. E. Feiguin, G. Möller, and J. K. Slingerland, Phys.
Rev. Lett. 108, 036806 (2012).

10M. Hermanns, Phys. Rev. Lett. 104, 056803 (2010).
11G. J. Sreejith, C. Töke, A. Wójs, and J. K. Jain, Phys. Rev. Lett.

107, 086806 (2011).
12A. Cappelli, L. S. Georgiev, and I. T. Todorov, Nucl. Phys. B 599,

499 (2001).
13J. K. Jain, Phys. Rev. Lett. 63, 199 (1989).
14J. K. Jain, Composite Fermions (Cambridge University Press,

Cambridge, 2007).
15R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
16W. Pan, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, K. W. Baldwin,

and K. W. West, Phys. Rev. Lett. 90, 016801 (2003).
17C.-C. Chang and J. K. Jain, Phys. Rev. Lett. 92, 196806 (2004);

C.-C. Chang, S. S. Mandal, and J. K. Jain, Phys. Rev. B 67,
121305(R) (2003); M. O. Goerbig, P. Lederer, and C. M. Smith,
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