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Transformation of statistics in fractional quantumHall systems
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Abstract

A Fermion to Boson transformation is accomplished by attaching to each Fermion a tube carrying a single quantum of 0ux
oriented opposite to the applied magnetic 2eld. When the mean 2eld approximation is made in Haldane’s spherical geometry,
the Fermion angular momentum lF is replaced by lB = lF − 1

2 (N − 1). The set of allowed total angular momentum multiplets
is identical in the two di5erent pictures. The Fermion and Boson energy spectra in the presence of many body interactions
are identical only if the pseudopotential V (interaction energy as a function of pair angular momentum L12) increases as
L12(L12 + 1). Similar bands of low energy states occur in the two spectra if V increases more quickly than this. c© 2001
Published by Elsevier Science B.V.

PACS: 71.10.Pm; 73.20.Dx; 73.40.Hm

Keywords: Fermion–Boson mapping; Fractional quantum Hall e5ect; Composite Fermion

1. Introduction

In two dimensional systems particle statistics can
be changed by making a Chern–Simons (CS) transfor-
mation (see for example [1] and references therein).
This transformation can be described as attaching to
each particle an in2nitesimal 0ux tube carrying a 2c-
titious 0ux � and a 2ctitious charge q, which couples
to the vector potential produced by the 0ux tubes on
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every other particle in the standard way. If q is equal
to the electron charge and � is an even number times
�0 = hc=e, the quantum of 0ux, no change in statistics
occurs. If � is and odd number times �0, Fermions
are transformed into Bosons. The “gauge 2eld” inter-
actions associated with the 2ctitious charge and vec-
tor potential produced by the 2ctitious 0ux make the
Hamiltonian of the system considerably more com-
plicated. Only when the mean 2eld approximation is
made does the problem simplify. Jain [2] introduced
the mean 2eld CS transformation to give a simple in-
tuitive picture of the hierarchy of fractional quantum
Hall (FQH) states in terms of the resulting compos-
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ite Fermions (CF). Shortly after the introduction of
the CF picture, Xie et al. [3] introduced the Fermion–
Boson mapping connecting a 2D Fermion system at
2lling factor �F to a 2D Boson system with 2lling fac-
tor �B = �F(1 − �F)−1. These authors noted that the
size of the Hilbert space for the Fermion and Boson
systems was identical, and they found that the F→B
mapping accurately transformed the ground state of
the Fermion system into that of the Boson system only
if these ground states were incompressible FQH states.
In this paper we show that the F→B transformation
leads to identical energy spectra if and only if the pseu-
dopotential V (L12) describing the interaction energy
as a function of the pair angular momentum L12 is
of the “harmonic” form VH(L12)=A+ BL12(L12 + 1)
where A and B are constants. Laughlin [4] correlations
occur when the actual pseudopotential V (L12) rises
more quickly with increasing L12 than VH(L12). Anhar-
monic e5ects (due to MV (L12)=V (L12) − VH(L12))
cause the interacting Fermion and interacting Boson
spectra to di5er for every value of the 2lling factor.
It is well known that in the Haldane spherical ge-

ometry [5] the mean 2eld CF transformation changes
an electron of angular momentum lF to a CF of angu-
lar momentum l∗F = |lF−p(N −1)| [6]. Here lF = SF,
one-half the strength (measured in units of �0) of
the magnetic monopole which produces the radial
magnetic 2eld B=2SF�0(4�R2)−1 at the spherical
surface of radius R on which the N electrons are con-
2ned, and p is an integer. For an N Boson system,
the composite Boson transformation replaces lB by
l∗B = |lB − p(N − 1)|. In the F→B mapping lF is
replaced by lB = |lF − 1

2 (N − 1)|.

2. Angular momentum addition: useful theorems

When a shell of angular momentum l contains N
identical particles (Fermions or Bosons), the result-
ing N particle states can be classi2ed by eigenvectors
|L;M; �〉, where L is the total angular momentum, M
its z-component, and � a label which distinguishes in-
dependent multiplets with the same L. In the mean
2eld CF (CB) transformation lF (lB) is transformed
to l∗F (l∗B). In trying to understand why the mean 2eld
CF picture correctly predicted the low lying band of
states in the electron spectrum, several simple conjec-
tures were proposed on the basis of numerical stud-

ies of a 2nite number of particles [7–10]. These con-
jectures have been elevated to the status of theorems
by rigorous mathematical proof [11] using partition
theory.

Theorem 1. The set of allowed total angular mo-
mentum multiplets of N Fermions each with angular
momentum l∗F is a subset of the set of allowed mul-
tiplets of N Fermions each with angular momentum
lF = l∗F + (N − 1).

Theorem 2. The set of allowed total angular momen-
tum multiplets of N Bosons each with angular mo-
mentum lB is identical to the set of multiplets for
N Fermions each with angular momentum lF = lB +
1
2 (N − 1).

From Theorem 2 it follows immediately that Theo-
rem 1 also applies to Bosons. Theorem 2 is a stronger
statement than a simple equality of sizes of the many
body Hilbert spaces [3].

3. Interaction e�ects

It has been shown that for the harmonic pseudopo-
tential VH(L12) the energy of any multiplet of angular
momentum L is given by E�(L)=A× 1

2N (N−1)+B×
{N (N−2)l(l+1)+L(L+1)}. The energy is indepen-
dent of �, so that everymultiplet with the same value of
L has the same energy. If BF =BB =B, then the spec-
trum of N Bosons each with angular momentum lB is
identical (up to a constant) to that of N Fermions each
with angular momentum lF = lB + 1

2 (N −1). This is a
rather surprising result because Fermions and Bosons
sample di5erent sets of values of the pair angular mo-
mentum. For example, for N =9 and lF = 12 (corre-
sponding to �F = 1

3) the allowed values of the Fermion
pair angular momentum consist of all odd integers be-
tween 1 and 23; for the corresponding Boson system
with lB =8 (�B = 1

2), the allowed values of L12 are all
even integers between 0 and 16.
Xie et al. [3] determined the Boson and Fermion

eigenfunctions by exact numerical diagonalization for
six particle systems connected through the F→B trans-
formation. They then transformed the Boson eigen-
functions into Fermion eigenfunctions by multiply-
ing them by

∏
i¡j(zi − zj), as required by the B→F
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Fig. 1. The energy spectra (energy E vs. angular momentum L) of eight Fermions at the monopole strength 2SF = 21 (2lling factor �F = 1
3 ;

circles) and 19 (two Laughlin quasielectrons; lines), and of eight Bosons at 2SB = 14 (�B = 1
2 ; circles) and 12 (two quasielectrons; lines)

for the Coulomb pseudopotential in the lowest Landau level (a)–(d), and for the model pseudopotentials H1 (a′)–(d′), and H3 (a′′)–
(d′′). � is the magnetic length.

transformation. The overlap of these transformed Bo-
son eigenfunctions with the exact Fermion eigenfunc-
tions was then evaluated. The overlap was close to
unity for incompressible quantum 0uid states when the
full Coulomb interaction was used, but it was consid-
erably smaller when certain model pseudopotentials
were used.
We have evaluated numerically the eigenstates of

an eight electron system at 2SF = 19 to 23 (these states
correspond to Laughlin �F = 1

3 states with 0, 1, or 2
QPs) for a number of di5erent pseudopotentials. In
frames (a)–(a′′) and (b)–(b′′) of Fig. 1 we contrast
the energy spectra for the Fermion and Boson sys-
tems at �F = 1

3 (�B = 1
2) for the Coulomb pseudopo-

tential appropriate for the lowest Landau level and
for the model pseudopotentials H1 and H3. H1 is de-

2ned to have only the largest pseudopotential coeN-
cient [V (L12 = 2lF−1) for Fermions and V (L12 = 2lB)
for Bosons] equal to its Coulomb value and all other
pseudopotential coeNcients equal to zero. H3 has the
two largest pseudopotential coeNcients equal to their
Coulomb values and all other coeNcients equal to
zero. In frames (c)–(c′′) and (d)–(d′′) we do the same
for the state containing two Laughlin quasielectrons
(QE). The lowest states in (a), (a′), (b), (b′) are quite
similar consisting of a Laughlin L=0 ground state.
The magnetoroton band (at 26L6 8) is apparent in
all four spectra, although the gaps and band widths
are di5erent for di5erent pseudopotentials. The lowest
states in (c), (c′), (d), (d′) are also similar containing
two QE’s with lQE = 1

2 (N − 1)= 7
2 giving L=N − 2,

N − 4, : : :=0, 2, 4, and 6. The pseudopotential H3
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used in (a′′)–(d′′) gives very di5erent results. We be-
lieve that this behavior results because the pseudopo-
tential used in H3 is not “short-range” in the sense that
it does not increase faster than VH(L12)) in the region
of non-vanishing V (L12). This behavior of the pseu-
dopotential results in correlations that are very di5er-
ent from Laughlin correlations, and it accounts for the
poor overlap found by Xie et al. [3] for certain model
pseudopotentials.

4. Quasiparticles

The F→B transformation allows us to better under-
stand the Boson [5] vs. Fermion [12,13] description
of QP’s in incompressible FQH states. Laughlin con-
densed states having �F = (2p + 1)−1 (where p is a
positive integer) occur at 2SF = (2p+1)(N−1) in the
Haldane spherical geometry. The CF transformation
gives an e5ective angular momentum l∗F = S

∗
F = S −

p(N−1)= 1
2 (N−1) when 2p 0ux quanta are attached

to each electron. Thus the N CFs 2ll the 2l∗+1 states
of the lowest CF shell giving an L=0 incompressible
ground state.
The F→B transformation gives 2SB =2SF −

(N − 1)=2p(N − 1) and a Boson 2lling factor
of �B = (2p)−1. Making a CB transformation gives
l∗B = S

∗
B = SB − p(N − 1)=0. This also gives an

L=0 incompressible ground state because each CB
has l∗B =0. Thus the CF description of a Laughlin
state has one 2lled CF shell of angular momentum
l∗F =

1
2 (N − 1), while the CB description has N CBs

each with angular momentum l∗B =0.
For 2SB =2p(N − 1) ± nQP, where the + and −

occur for quasiholes (QH) and quasielectrons (QE),
respectively, we de2ne 2l∗B = |2S∗B|= nQP. This gives
exactly the same set of angular momentum multiplets

as obtained in the CF picture with 2SF = (2p+1)(N−
1) ± nQP only if a hard core repulsion forbids the
Boson QE pair from having the largest allowed pair
angular momentum LMAX

12 =N [14]. This behavior is
observed in Fig. 1(c)–(c′), (d)–(d′) where the Boson
treatment of two QE’s predicts states at L=0, 2, 4, 6,
and 8, but the L=8 state does not occur in the low
energy band. Since the description of CBs (with hard
core QE interaction) and CFs give identical sets of
QP states, 2lled QP levels (implying daughter states)
occur at identical values of the applied magnetic 2eld.
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