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Three-body correlations and finite-size effects in Moore-Read states on a sphere
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Two- and three-body correlations in partially filled degenerate fermion shells are studied numerically for
various interactions between the particles. Three distinct correlation regimes are defined, depending on the
superharmonic, subharmonic, or harmonic forms of Haldane pair pseudopotential at short range. The harmonic
form applies to electrons in the first excited Landau ledl). Their correlations near half filing are
confirmed to have a simple three-body form characteristic of the Moore-R&Rdl Pfaffian state, consisting
of the maximum avoidance of the triplet state with the smallest relative angular momentum. To study MR
correlations quantitatively, three-body amplitudes and pseudopotentials are introduced and calculated. Exact
sum rules derived for the amplitudes imply that MR correlations depend on the gaairainteraction largely
through the short-range behavior of the corresponding three-body interaction. In the calculated spectra of a
model three-body repulsion, higher-energy bands are identified in additigmeteiously known MR ground
state and its elementary chargegiasiparticl¢ and neutralpair-breaking excitations. The pair-breaker dis-
persion curve is determined, and the quasiparticles are correctly described by a generalization of the composite
fermion model appropriate for Halpermtype electron pairing with Laughlin correlations between the pairs.

The known problem of the exact few-electron ground states having small overlaps with MR trial states on a
sphere is also resolved by showing that the short-range three-body pseudopotential coefficients are more
sensitive to the surface curvature than the two-body dleesling to a slow convergence of the overlaps as a
function of the electron numberHence, the MR state and its excitations are believed to be a more accurate
description of the experimentalzg quantum Hall states than could be inferred from previous, small-size

calculations.
DOI: 10.1103/PhysRevB.71.045324 PACS nuntger73.43~f, 71.10.Pm
[. INTRODUCTION non-Laughlin half-filled FQH states suggests pairing in both

LL, and CF-LL,. Proposed trial states include Halpéfiand
The fractional quantum HallFQH) effect? is a many- Haldane-Rezayf states with Laughlin correlations between

body phenomenon consisting of the quantization of Hall conspin-triplet and -singlet pairs, respectively, and the
ductance and the simultaneous vanishing of longitudinal reMoore-Read?° Pfaffian state that can be defined as a zero-
sistance of a high-mobility quasi-two-dimensional electronenergy ground state of a short-range three-body reputSion.
gas at a strong magnetic fieBland low densityo, corre- ~ These pair states have all been studied in great eetil
sponding to certain universal fractional values of the Landalpecause of their anticipated exotic properties, such as non-
level (LL) filling factor »=2moA? (wherex=1hc/eBis the ~Abelian QP statisticS or existence of pair-breakingB)
magnetic length This macroscopic effect is a consequencen€utral fermion excitation¥*> However, choosing the cor-
of the formation of incompressible liquid ground states'€Ct One for specific real FQH systems is somewnhat problem-
(GS'9 with quasiparticle(QP) excitations? It depends on &tiC. In the following we concentrate on th:?galf—fllled Ll
correlations in partially filled degenerate LL's, entirely deter- and pairing in CF-L1, is addressed elsewhere.

. o o The trouble with Halperin staté (in which the electrons
mlneq by a Haldane pseuo_lopoter?ndéfmed as the pair in- form tightly-bound pairs, and these pairs form an even-
teraction energy, as function of relative pair angular mo-

denominator Laughlin state, as appropriate for bosmthat
mentumR,. g bprop 5

. . because the relative angular momentum of the constituent
_ The most prominent FQH states in §.lowest LGL) are  pairs is not a conserved quantity, it is more of an intuitive
given by Jain sequentef filled composite fermion® (CF)  concept for the correlations than a well-defined trial wave

levels. In Haldane hierarchy;" they result from Laughlin  fynction obeying all required symmetries. For example, de-
correlation$®* (between electrons or QF’dnduced by  scription of the pair-pair interaction by an effective pseudo-
pseudopotentials that are superharmbnic at short range. potential is not rigoroud® and the harmonic criteridf?
However, the FQH states with different, non-Laughlin corre-that would relate the occurrence of Laughlin pair-pair corre-
lations occur as well. E.g., pairing in a half-filled Lifirst  |ations with an electron pseudopotential is not exact. Conse-
excited LU is firmly established in the=2 state!®-2'while  quently, it has not been clear what model interaction induces
correlations between CF's in their CF-Llresponsible for such correlationsand ground stajeIn fact, it has beelter-
the FQH effed??3at v=3 or :: are not yet completely un- roneously assume®f that this paired state results for
derstood. pseudopotentials attractive at short range rather than har-
The lack of superharmonic behavior of the pseudopotenmonically repulsive as in LL, which would suggest that it is
tial at short range together with the occurrence of clearlynot an adequate trial state for tlneg FQH effect.
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The Moore-Read wave function on the other hand is welhalf filling, consisting of a complete avoidance &f;=3.
defined?>-27 However, it only occurs for interactions with Therefore, rather thaassumingthat the Moore-Read wave
very particular short-range behavior, while the pseudopoterfunction describes the FQI-plzg state, we demonstrate di-
tials in realistic experimental systems depend on sample paectly to what extent its defining property is realized in this
rameters such as the layer width magnitude, tilt of the state. We also find thaR3=3 is not avoided when, is
magnetic field, etc. Moreover, finite-size calculations indi-subharmonidqas in CF-LL), proving that the origin of in-
cate that realistic Coulomb pseudopotentials are too weak @ompressibility atyzg is different.
short rangeby up to ~10% for w=0) to induce a Moore- In Sec. V we analyze the energy spectraWf(some
Read ground staf€:3” This would seem to imply that the known previously for smaller systeinand confirm the oc-
Moore-Read state does not describemhé FQH state quite  curence of the zero-energy Moore-Read state and its elemen-
as accurately as a Laughlin state describes the a@tuél tary chargedQP) and neutralPB) excitations. A continuous
ground states. The occurrence of hh:eg FQH effect could PB dispersion is determined, and the QP’s are correctly de-
still be attributed to the observation that the calculated exciscribed by a generalization of the composite fermion model
tation gaps are much less sensitive to the details of theppropriate for Halperip-type electron pairing with Laugh-
pseudopotential than the wave functions. However, poor adin correlations between the pairs. In particular, higher bands
curacy of the Moore-Read wave function puts doubt on then the spectra oW are identified as containing additional
occurrence of those of its properties in realistie3 systems ~ quasielectron-quasihol®QE-QH) pairs and explained using
that depend more critically on the correlations. As theseHalperin picture'?
properties(including non-Abelian QP)sare so much more In Sec. VI we calculatéon a sphereoverlaps of different
fascinating than plain incompressibility, the question oftrial states with the corresponding few-particle eigenstates of
whether they indeed remain only an unrealized theoreticafarious pair interactions. While the overlaps of the Moore-
concept is quite significant. Theoretical insight is especiallyRead state with electron ground states in blave been pub-
valuable in this problem because of the difficulty with directlished previously, here we also calculate them for all elemen-
experimental evidenc®. tary excitationgto verify that Moore-Read correlations are a

valid description also beyond the ground staé®d show
Il. OUTLINE their dependence on the short-range harmonicity of pseudo-
potential. The discussion of finite-size errors and of resolu-

The main subject of this paper is the analysis of two- andion of the known problem of small overlaps on a sphere by
three-body correlations in half-filled LL’s with different pair explaining their slow convergence with the electron number
interactions, especially in a half-filled LLThe most impor-  are important because the “numerical experiments” in small
tant results ar¢) application of three-body pseudopotentials systems are the most reliable tool for identifying the2
and amplitudes to study three-body correlatiofis, direct ~ FQH state as a Moore-Read state.
demonstration of “Moore-Read correlations” consisting of
the tendency to maximally avoid the “compact” triplet state
with the smallest relative angular momentum in the low- lll. TWO-BODY CORRELATIONS
energy many-body states near half fillingj) discovery of

. . . A. Haldane pair pseudopotential
the equivalence of Halperin pairing and the Moore-Read pairp P

Pfaffian state, andiv) resolution of the problem of small ~ Within a degenerate LL, the many-body Hamiltonian only
overlaps between exact few-electron ground states angPntains the interaction term, which is completely deter-
Moore-Read trial states on a sphere. mined by the discretéHaldane pseudopotentiaV/,(R ) de-

Because a number of minor original conclusions are infined as pair interaction energy, as a function of relative
termixed with those known or anticipated previougtjat ~ pair angular momenturk,. For identical fermions/bosons,
nevertheless are often invoked to make the paper more self2; takes on odd/even integer values, respectively, and the
contained, below we give a more detailed list of new results |arr9§f R, corresponds to a larger average pair separation
presented in the following sections. In Sec. Ill we comparey(r?). On a sphereR,=2l-L,, wherel is the single-particle
Haldane pair pseudopotentials(R,) and pair amplitudes angular momentum of the shellL ), andL, is the total pair
G.(R,) calculated at% and% filling of LL,, LL,, and angular momentumWe use the following standard notation
CF-LL,. for Haldané spherical geometryt=Q+n for the nth LL,

In Sec. IV we extend Haldane’s concept and introduce2Q=4mR*B/¢, is the magnetic monopole strength
triplet pseudopotentiald/; and amplitudesG;, defined as ®o=hc/e is the flux quantumR is the sphere radius, and
functions of triplet relative angular momentuR,. A sum ~ A=R/\Q is the magnetic lengthimportantly, V,(R,) com-
rule is derived for the amplitudes which implies that only bines information about both interaction potentiét) and
anharmonig® contributions toV; induce triplet correlations. the single-particle wave functions allowed within the Hilbert
This result justifies the use of a short-range three-body repubpace restricted to a LL. The pseudopotentials obtained for
sion W that is nonzero only for the minimum allowed value the electrons in Lk and LL;, and for Laughlin QE’s in
of R3=3 to model actua(Coulomb interaction in LL;. We  CF-LL; are shown in Fig. 1. The result for CF-LLis
also demonstrate that whavy is nearly harmonic at short obtained™“? from the N-electron energy spectra in Lat
range(as in LLy), thenVj is slightly superharmonic at small the value of 2=3N-5 corresponding to a pair of QE’s in the
Rs, and simple “Moore-Read” triplet correlations result at Laughlin vz% state(within the lowest bands of such spectra,
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B. Pair amplitudes ) ) . . ) )
FIG. 2. Pair-correlation functiongair amplitudel’, vs relative

The pair correlations induced by a specilig(R,) are  pair angular momenturiR,) calculated on a sphere for the lowest
conveniently described by a discrete pair amplitude function.=0 states ofN particles interacting through pseudopotentials
G-(R,), defined as the number of paits/, with a givenR,  shown in Fig. 1, at values ofl Zorresponding to different FQH

divided by the total pair number states at filling factors’=3 andz.
N\~ v=1 statd82land v== state?223 respectively. Finally, the
Ro) = R,). 1 3 11 > Y- » U
G:(R2) (2) NolR) @) 21=3N-3 sequence describes the Laugﬁlnﬂ:% state in
LL,.
It immediately follows from the expression for the total in-  The pair amplitude calculated for a completely filled shell
teraction energy of ahl-body state (the v=1 state with a given 2 is a decreasing straight line
N 4 +1-2R,
E= R)Va(R 2 MRy = ————, 3
<2>%gz( 2)Va(Ro) (2) Gy (Ry) @2+ 3

that the low-energy many-body states generally have a largd¥hich is a finite-size edge effect. In thé-2 < limit corre-
small amplitude at those values &, corresponding to sponding to an infinite planeM3"(R,)=N and the ratio
small/large repulsioV,(R,). In Fig. 2 we compare the pair N5"(R2)/N=I"(R,)=1 is the appropriately renormalized
amplitudes obtained in Haldane spherical geometry fopair amplitude in this geometry.

N=12 and 14 particles confined in angular momentum shells The overall linear decrease @f,(R,) appears also at
with degeneracg=2l+1 corresponding to the filling factors »<1, and it should be ignored in the analysis of correlations.
v~ 1 and3 and interacting through the pseudopotentials ofTherefore, in Fig. 2 we actually plot

Fig. 1. Although for each systefV,,N,g) we only show the

data for the lowest.=0 state, virtually identicalG,(R,) I)(Ry) = 1+92(Rz) - G¥(R,) @
functions are obtained for all low-energy states of each sys- 22 Gyl '
tem.

The chosen values of 2ndN correspond to three differ- jn which the linear decrease is eliminated and the scaling
ent sequences of finite-size spherical systems known to repppropriate for an infinite plane is used, to ensure that
resent the following FQH states observed prerimentall_y Or,(1) < G,(1), thatT'»(R,) =1 for finite-sizer=1 states, and
a plane. The =2N-3 sequence describes the pairedinatr,(R,) converges to the pair-correlation function on the
Moore-Read® v:% state in LL; (corresponding to the total plane wherN is increased.
electron filling factorr=3) and thev=7; state of QE’s in In all frames,I', is significantly different from 1 only at
CF-LL, identified numericall{ for N=6, 10, and 14, and small R,, and the oscillations around this value quickly de-
corresponding to the FQH effédtat v=3. The 2=3N-7  cay beyondR,~ 7. This can be interpreted as a short corre-
sequence describes tkieot well understoo}jvzi states in  lation rangef in all studied systems and it justifies the use of
both LL; (Ref. 17 and CF-LL,%® corresponding to the finite-size calculationgrequiring thaté<R).
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03 (a) No14, 21-2N-3 || (0) N=12, 21=3N-7 | [ (©) N=10, 21=3N-3 It is well known that for Laughlin correlations, because of

the simple form of single-particle wave functions in{,lthe
~~~~~~~~~ < complete avoidance oR,=1 pairs(possible atysé) ap-

\ N —R~ h pears in form of a Jastrow factor in the Laughlin wave func-
""" tion. It justifies the mean-field CF picture that essentially
attributes reduction of the many-body degeneracy caused by
a R,=1 hardcoreg(or “correlation hole) to an effective, re-
duced magnetic field.

For QE’s, the tendency to have smgl(3) and, conse-
quently, significantj,(1) (compared to a Laughlin-correlated

FIG. 3. Dependence of pair amplitudgs on parametew of  State at the same) has been interpretétlas pairing or clus-
pair interactiorl , defined by Eq(5), calculated on a sphere for the tering. However, the numerical studies are not conclusive
lowestL =0 states oN-particle systems representing the same FQHabout how the clusters correlate with one another, and the
states as used in Fig. 2. question of the origin of the excitation gap observed at

v=g or ; remains open. _

Clearly, three different interactions result in quite different N @ partially filled LL, the situation is more complicated.
correlations. In Ll (8—(c), the dominant tendency is the BecauseV,(Ry) is nearly harmonic at short rande~3),
avoidance ofR,=1 (Laughlin correlationsat a cost of hav- the energy is nearly independent of the relative occupation of
ing a large number of pairs witR,=3. Around half filling of ~ the R,=1 and 3 pair states. Therefore, the correlations can-
LL, (d),(e), the numbers of pairs witlR,=1 and 3 are about Nnot be easily expressed in terms of pair amplitu@gthough
equal and both small. Finally, in a partially filled CF-LL the linear combination ofj,(1) and G,(3) equal to the total

.,

G,
'
]

0.0

(g—(i), the R,=3 pair state is maximally avoided. energyE is obviously minimized at its corresponding value
_ _ _ _ _ of a]. However, it turns out that it is the short-range three-
C. Model interaction and pair-correlation regimes body correlations that determine the low-energy states in this

The fact thatl',~1 at long range also explains why the regime. Soon after its introduction, the half-filled Moore-
low-energy wave functions are virtually insensitive to the Read state was sho#/rto be an exact zero-energy eigenstate
exact form ofV,(R,) beyond a few leading parameters at of a model short-range three-body repulsion, and the spectra
R,=1,3,... . Furthermore, due to the sum rules obeyed byof this interaction were later studied in det&i** Below we
pair amplitude€81741 the harmonic pseudopotentials analyze the three-body correlations directly, by the calcula-
VH(R,)=co—cR, (with constantc, andc;) induce no cor-  tion of an appropriate correlation function.
relations, and only the anharmonic contribution¥$6R,) at

small R, (short rangg affect the pair-correlation functions. IV. THREE-BODY CORRELATIONS
Indeed, simple model pseudopotentials with only two nonva- .
nishing leading parameters are kndw#'-36to accurately re- A. Three-body pseudopotential
produce correlations shown in Fig. 2. Let us define such |n analogy to the avoidance of the strongly repulsive pair
Ua(R2) with states, the three-body states with sufficiently high energy
U (1)=1-a (compared to the rest of the three-body specjrwitl also
@ ' be avoided in the low-energy many-body states. For the
U.(3) = al2 5) pairs, the eigenstates are uniquely labeled7by and the

criterion for the avoidance of a specifig, is'®!” that it
Uy and U, are the two extremal pseudopotentials with onlycorresponds to the dominant positive anharmonic term of
one anharmonic termU,, is harmonic throughR,=1, 3, Va(R,). The three-body states are also labeled by the relative
and 5, and thus it favors equally the avoidance of bothwith respect to the center of masangular momenturiR ;.
R,=1 and 3 pairs(any distribution of the pair amplitude The allowed values ar&k;=3 or R3=5, and largerks
between thék,=1, 3, and 5 states that satisfies the sum rulegneans larger expectation value of the area spanned by the
yields the same total enerds). three particle§? On a sphereR;=3l-Ls, wherelg is the

In Fig. 3 we plotG,(1) andG,(3) as a function ofw for  total triplet angular momentum.
the lowestL =0 state in three finite-size systems representing Since no degeneracies appear in YR ;) energy spec-
the same series of FQH states as used in Fig. 2. The corrgum for R3<9, its low-R3 part can be considered a three-
lations in a partially filled Lly (Laughlin correlations LL,,  body pseudopotential analogous¥g(R,). The three-body
and CF-LL are well reproduced by, with =0, % and 1, pseudopotential¥/3(R3) obtained for different pair pseudo-
respectively. The correlations at=0 (i.e., in LLy) and at  potentialsV,(R,) of Fig. 1 are shown in the upper frames of
a=1 (i.e., in CF-LLy) can easily be expressed in terms of Fig. 4. The nonmonotonic behavior ¥(R3) in frame (c)
pair amplitudes. WithJ(1) or U(3) being the only nonvan- most likely precludes the tendency to avoid fRe=3 triplet
ishing (and positive coefficient, it follows from Eq(2) that  state in QE systems. On the other hand, it seems plausible
the low-energy states must have the minimum allowedhat the monotonic character ¥(R3) in frame (b) might
(within the available Hilbert spagej,(1) or G,(3), respec- lead to the avoidance of the sari;=3 triplet state in a
tively. partially filled LL;.
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energy shifted G3(R3,B3) = <‘If|’ﬁ123(7?,3, Ba) |\P> . (8)
and stretched 9x

Triplet amplitudes defined in this way are normalized to

2
2] \/\< S Gx(Rs B9 =1, ©)
> R3.83

so that they measure the fraction of all triplets being in a

06 (a) electrons, LL, || (b) electrons, LL, (c) QE's, CF-LL, given eigenstate
. T N T N T T T T v T v T N T T T T T T v T
3 5,7 9 3 5,7 9 3 5,7 9 _
R R R. N\™
’ 1_35 ’ G3(R3,B3) = <3 ) N3(R3,B3). (10
The energy of is expressed as
o N
= E={, ) 2 Ga(RaBa)Va(RaBa). (11
] R3.B3
On a sphere, triplet amplitudes are connected with the third-
oo (e) =0.54 order parentage coefficieAtsGs(L3, B3;L3,B3), i.e., the ex-
T s B 7 @ pansion coefficients of a totally antisymmetric stdtein a
R basis of product states in which particlé4,2,3 and

(4,5,...,N) are in the 3- and(N-3)-body eigenstates

FIG. 4. (a—(c) Triplet interaction pseudopotentialsiplet inter- |L B2 and\L’ L), respectively
313 313/ ’

action energy/s vs relative triplet angular momentufs) for pair

pseudopotentials shown in Fig. 1. is the magnetic length(d) L - L A 12
Dependence of coefficienté; on parameterw of pair interaction Gs(lLs o) ,E, GalLa.BaiLa o)l (12

U, defined by Eq.(5). (e) Pseudopotential/3(R3) calculated for Labs

pair interactionUo s Note that to obey standard notation for parentage coeffi-

cients, in the above equation we use total angular momentum
The dependence &f;(R3) onV,(R,) can be captured by Lj instead of the relative oneR;=3l-L;, to label triplet
plotting the leading/; coefficients as a function of parameter states. Also, we omit inde¥ in G and G.
a of the model pair pseudopotentidl,, as shown in frame ~ The operator identify}
(d). ForR;<9 the triplet wave functions are fixed and so are . ~ ~y
their G, amplitudes, and hence the dependentgs) are all L2+ N(N-2)17=2 L (13
linear. Only arounda~% is theV3(R3) function superlinear =
for small R, as shown on an example far=0.54 in frame  connects the totalN-body angular momenturflL) with the
(e). single-particle and pair angular momeimtandL;;. We used
it earlier to show that harmonic pair pseudopotentials cause
no correlations. Here, we generalize it to the form
B. Three-body amplitudes

_ _ ~, N(N=K)~, (N-2\7" -
In order to test the hypothesis of the avoidance of the L +ﬁl ko2 > L (14)
R4=3 triplet eigenstate in partially filled LL. we introduce ig<-<ig

“triplet amplitude” G5(R3). It is defined in analogy to gy taking the expectation values of both sides of the above
Haldane pair amplitud&as an expectation value of the op- equation in thetotally antisymmetrig stateW and using the
eratorP;; (R3,83) projecting a many-body sta®¥ onto the  expansion of¥ in terms of theKth-order parentage coeffi-
subspace in which the three partici@s are in an eigenstate cients we obtain

|R3,B3) (here,Bsis an additional index to distinguish degen-

erate multiplets at the sanm@,; it can be omitted forR; L(L+1) +M|(| +1) = NIN-1)
<9). The interaction Hamiltonian written in a three-body K-1 K(K-1)
form using P reads XD Gu(Li, Br)L(Lg + 1),
A ~ Lk:Bk
H= 2 2 Pi(RaBa) V(Rs,By). (6) (15)
i<j<k Rg,B3
The triplet amplitude is an additionalbesides normalizatiorsum rule obeyed by the
amplitudesgy.

_1 e .
B A Just as for the specifi€=2 case discussed earlférthe
Gas(Ra,Ba) = (3) <\I’|i<2<kpiik(R3'ﬁ3)|qf>’ (") above sum rulg¢15) together with an appropriate version of
! Eqg. (2) or (11) immediately implies that if thé-body inter-
which for a totally antisymmetriel is equivalent to action pseudopotentidly is linear inLg(Lx+1), all N-body
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FIG. 5. Dependence of triplet amplitudgs on parameter of
pair interactiorlJ , defined by Eq(5), calculated on a sphere for the
lowestL =0 states ofN-particle systems representing the same FQH
states as used in Figs. 2 and 3. FIG. 6. TheGs(3) vs a curve for V:% shown in Fig. %a),

magnified and replotted for different particle numbbis

multiplets with the samé. are degenerate. In the limit of

infinite LL degeneracyy=2l+1 corresponding to an infinite QE’s, although we are not able to define their correlations
sphere radiugvanishing curvatung i.e., to the planar geom- more specifically.

etry, the linearity inLc(L¢+1) translates into the linearity in Let us now discuss observation§)—(iii) in more
Rk=Kl-Lg, and it turns out that the linear part ¥f(Rx) detail. In Fig. 6 we plotG5(3) as a function ofx for N=6 to
causes no correlations. 14 (only even values, because the Moore-Read state at

For K=3, this is precisely what justifies the 388'of a  21=2N-3 is a paired staje For eachN, G5(3) drops to es-
model short-range three-body repulsion as simpl&V&R 5) sentially a zero atyy= % This result is consistent with the
of Eq. (17) to model actualCoulomb interactions in Ll,.  calculations of overlaps of the exact ground states of modi-
Equation(15) shows thatV does not have to be understood fied Coulomb interaction with the exact Moore-Read trial
as a three-body pseudopotential of @mrealisti¢ contact state?®:37
three-body repulsicil V;.j == 8(z;) 8(zy), but merely as a Note that although the avoidance @&;=3 triplets at
dominant anharmonic contribution 6, at small’R 5. v:% can be extracted from the Moore-Read wave function,
we demonstrate that it really occurs in a system with pair
interactions. Therefore, rather thassuminghat the Moore-
Read wave function correctly describes the% state in LLy,

Let us now turn back to the numerical results. In Fig. 5 wewe demonstrate directly to what extent its defining property
plot the dependence of the leadigig(R3) coefficients oy, is realized in this system. This result has not been presented
calculated in the lowedt =0 state of three different systems so quantitatively before.
belonging to the same sequences of finite-size FQH states as It is difficult to reliably extrapolate the values af, ob-
used earlier in Figs. 2 and 3. Clearly, all triplet amplitudestained from Fig. 6 to an infinitéplana) system. However,
significantly depend onv, but we especially want to point we notice the following connection with Fig.(d) that de-
out the following three features f@®;=3: (i) the tendency to pends on R much more regularly. The pair amplitudes
avoid R,=1 pairs ata~0 is not synonymous with the G,=[G,(1),G5(3),...] of the R3<9 triplets can be calcu-
avoidance ofR;=3 triplets atv:%, (i) G5(3) vanishesfor  lated. On a sphere, they slightly depend érich curvaturg,
a=3 atv=3, (i) G5(3) increaseswhena increases beyond but the values appropriate for a plarthe g—co limit)

% in all frames. are [Z,Z], [1_6’5’1_6]’ and [1_6’§’E] for R3=3, 5, and 6,

Before we concentrate on the Moore-Read state, let ugespectively. Using these values and E2). one can deter-
note that observatiofiii ) implies that electron correlations at Mine the rangex over whichV;(Ry) is superlinear at short
v=2 are distinctly different from QE correlations a3,  range. The requirement thgfVa(3) — Va(5)]> V5(5) - V4(6)
even though these twdncompressiblestates belong to the andV3(5)—V3(6) > V3(6)—V3(7) limits « to a rather narrow
same “universality clas$® (one smoothly evolves into the window of approximately
other without loss of incompressibility under a continuous
transformation of the pair pseudopotentialhis confirms 1
the suspicion based on the form of triplet pseudopotential 05<a+ 4 <0.58. (16)
V5(R5) of Fig. 4(c) that (against an earlier assumptfdn
Halperin paired statéis not an adequate description for sys- For a reason we do not completely understélogt that is
tems with subharmonic pseudopotentials at short range. loonnected with a neglected and complicated behavior of
particular(against our earlier expectatitfrbut in agreement  V,(R ;) at R3> 7], the value ofay in finite systemgsee Fig.
with our later numerical resuff§ such model appears inap- 6) is much closer to the lower limit of Eq16). Therefore,
propriate for the QE’s in CF-LLat v:% or % corresponding  we expect thaty, will follow this lower limit with increasing
to the FQH states atzg andlil. Instead of Halperin pairing, 2I, and the value appropriate for a planar system should be
grouping of pairs into larger clusters seems to occur for theeven closer to% than the finite-size results of Fig. 6. And

C. Three-body correlation hole
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FIG. 7. (a), (b) Energy spectrdtotal interaction energy¥ vs FIG. 9. The same as Figs. 7 and 8 but for odd particle numbers

total angular momenturh) calculated on a sphere for even num- N and for 2=2N-2 (a) and 2=2N-3 (b). Energy dispersiolc) is
bers of particlesN interacting through triplet pseudopotential de- for the pair-breaking band marked in frarti®. \ is the magnetic
fined by Eq.(17), at the values of 222N-3 corresponding to the length.

L=0 Moore-Read ground statéc) Energy dispersior{excitation
energyE as a function of wavevectd) for the excited magnetoro-
ton band.\ is the magnetic length. Similar results were first ob-
tained by Read and RezafRef. 3J).

present an interpretation using Halperin pairing picture.
The three-body interaction matrix elements needed for di-
agonalization in the configuration interacti¢@l) basis are
_ _ o connected with the triplet spectruly(R 3, 83) through ex-
sinceUy, accurately models Coulomb interaction ind.we  pansion parametersCA=(A|B) analogous to the pair
conclgdg that theR3_> 3” corrglatlons must be an accurate cjepsch-Gordan coefficients
description for experimental=3 FQH state(even in narrow
samples This conclusion is quite different from an earlier (Mg, My, Mg|ValMmy, ms,mg) = >, cﬁs'n/?f*m cﬁs'n/?lsm
discussion of finite-size numerical wave functi#f¥ which Raps 2% el
seemed to imply that a10% short-range enhancement of X V(R Ba) (19)
the Coulomb pseudopotential calculated ¥o+0 in LL, is sV P
needed to reach good overlap with the Moore-Read state. For V=W the above formula reduces to just one term. How-
ever, diagonalization d¥; is still far more difficult than of a
V. ENERGY SPECTRA OF SHORT-RANGE THREE-BODY (aISO L'ConserVing V2 because of a Iarger number of non-
REPULSION zero Cl matrix elementgéby over 10 times in the systems
discussed further in this sectipn
Knowing 1that what defines the Moore-Read state is that
e'ec”‘?”s |n§-f|!led LL; completely avoid theRs=3 triplet A. Moore-Read »=2 incompressible ground-state and excited
state?’ let us discuss the energy spectra of the model short- 2
range three-body repulsion magnetoroton bands
In Figs. 1a) and 7b) we present the results fof=12 and
W(R3) = OR33 (17) 14 and 2=2N-3. It is well known that for even values &f

which induces precisely this type of correlations. Similar cal-ar.]t?] fIcE)r_g=.2N—3.ttL1ere ,'[S. elx?ctly ?_?edst?'s 'f\,;h? sptictrum
culations for slightly smaller systems were earlier carried outV! =V, 1.e., WIth No Triplet amplitude dics=o. In other
by Wer?® and by Read and Reza¥fiOur spectra in Figs. 7 words, the Hilbert subspace witR;>3 for all triplets con-
and 8a) are equivalent, shown here for completeness and t gins exaclt_lty é)ne :I?tf ?in th'g C?SEG‘; ZAI\tlQ—23Nt_h& aI_I states
identify (ignored beforg higher-energy bands, while spectra ave ampiitudes akeg=s, and a ere Is more
in Figs. 8b), 8(c), and 9 are original. There is no disagree- than one such state. For odd valuedpho such states occur

’ ' ’ . . for at 2=<2N-3, and at 2>2N-3 there are always more
ment between our numerics and previous wBrk; but we than one. This fact makes the Moore-Read state yet another

. beautiful extension of the Laughlin idea for the ; state at

.':’;::gs;;.::.. 21=3N-3 being the only state in its Hilbert space with no
* pair amplitude afk,=1. Just as the avoidance of more than
Lt L one pair state generated the Whmte%,%,..., sequence, the
Wl Leattiene avoidance of not just pairs, but tripleter K-body states
gives rise to incompressibility at new values of
The analogy to the Laughlimz% state goes beyond the
(a) N=12, 2=22 incompressible ground state. The low-energy excitations
VLD B DI N=14 224 [og (I N=16, 228 clearly form a band that resembles the magnetoroton cirve.
0 5 10 150 5 10 150 5 10 15 In frame (c) we overlay data obtained for differeNt=6 to

L L L 14 and plotted as a function of wave vectofthe charge-

FIG. 8. The same as Fig. 7 but foi=2N-2 (a) and 2=2N neutral excitations carrying >0 on a sphere move along
-4 (b), (c) corresponding to two QH’s and two QE’s in the Moore- great circles of radiu®, but on a plane they would move
Read state, respectively. along straight lines wittk=L/R). The continuous character
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of this band and the minimum &t~1.5\" (very close to C. Quasiparticles
_ . 1 ..
k=~1.4\"" of the Laughlinv=3 state are clearly visible In Fig. 8 we present sample spectra obtained for even
(similar curve has_ been shown previoudlyhere we only values ofN and 2=(2N-3)+1. As shown previousl$&3! at
add a proper scaling with). 21=(2N-3)+1 there is always a band d=0 states at
L=N,, N,-2,..., corresponding to two QH’s in CF-Lg of
B. Pairing and Laughlin pair-pair correlations degeneracyg,=N,+2. This is shown in frame(a) for

N=12. Unlike for a Laughlinvz% state of unpaired elec-

Before we move on to the spectra at#2N-3 in search  trons, the increase ofl by unity from the value correspond-
of the elementary charge excitations of the Moore-Readng to a full CF-LL, creates not one but two QH’s, as pre-
state, let us recall Halperit%concept of Laughlin states of dicted by Eq.(19) for the picture of Laughlin-correlated
R,=1 pairs that we have also used earlier for the half fillingpairs. Note that the same is true for the finite-size Ja;r%
of both LL, (Ref. 17 and CF-LL;.%**4The increase of,(1)  states with two CF LL filled; however, no combination
compared to a Laughlin-correlated state at the sawisible (N, 2l) corresponds to a single QH in a finite-size Moore-
in Fig. 3(a@) can be thought of as pairing for botbhv% and1. Read statdthe conditiongy=N,+1 leads to a half integral
However, whether theR, pairs will keep far apart from value ofg), while for the Jainv=2/5 state it occurs for even
one another by avoiding small values of their relatipair- N, at 2:%(5N—7). Similarly as in Fig. 7, the first excited
pair) angular momentuniwhat we would consider Laughlin  pand above the 2QH states contains an additional QE-QH
correlations among the pajrshas not been established pair, and it extends m:(3|6_3)+|’i=|\1, exactly as marked
in either LL; or CF-LL;. Actually, the fact that only for i frame(a).
N=6,10,14,.. (and not forN=8 or 12 do theL=0 ground At 21=(2N-3)-1 no states can ha&=0, but the lowest
states occur in CF-L{ suggests that Halperin's idea could pang is expected to contain two QE’s in CF-Lbf degen-
not be correct for the interacting QE’s. However, for theeracy 0;=N,. Indeed, in spectrgb) and (c) obtained for
half-filled LL, the occurrence of a large value @§(1) and,  N=14 and 16, the low-energy bandslatN,—2,Ny—4,...,
at the same time, the vanishing@f(3) finally offers support  can pe found as expectedithough they are not as well
for this idea in the Moore-Read state. By effectively actingresolved as the QH bands
as a short-range three-body repulsidh Coulomb repulsion What is the electric charg® of the QE's and QH's?
in LL, allows grouping electrons into paifat » as large as  Being proportional to the LL degeneracy, it can be obtained
%), but it prevents the third electron from getting too close tofrom the ratio ofg" and g=N/v calculated in theN—
a pair. As a result, the pairs exist but each pair attains a hamginit. For a Jainv=n/(2pn+1) state ofn completely filled
core that results in Laughlin correlation with all other pairscg-| s, the degeneracy of each onayis=N/n, which leads
(or unpaired electronsand that can be modeled by a ficti- to the well-known resultQ/e=g*/g=(2pn+1)"L. For the
tious flux attachment in a standard way. present casgg=2N, g'=N,=3N, and the result is precisely

Let us demonstrate how this picture works for the SPeCtrad hat should be expected fone L state of 2-charged boson
in Fig. 7. As a result of the appropriate CF paird2 8

transformatiori,36-44N electrons at P=(2N+3)+ A are con-
verted toN,=3N CF’s about exactly filling their effective Q=el4. (20)
CF-LLy shell with 2,=2(21-1)-7(N,—1)=(N,—1)+24A,

L.e., with the effective degeneracy D. Spectra for odd particle numbers

If the Halperirt? picture could be simply extended to fi-
nite v=% systems with odd electron numbeXs they would
contain NZ:%(N—l) pairs and N;=1 unpaired electron,
These CF's correspond to the,=1 pairs of electrons, and forming a two-component Laughlin-correlated fldfdwhat
their effective angular momentunhg is obtained from actually happens is quite differefitas shown in our two
L,=21-1 by attachment of seven flux quanta to eachsample energy spectra in Figgapand 9b).
pair (four to account for the pair-pair hard core due to At 2I=(2N-3)+1 there is a band oE=0 states that in-
Pauli exclusion principle, four to model pair-pair Laughlin deed correspond to a pair of QH’s of the two-component
correlations, and 1 in the opposite direction to convert théjuid. In the CF picture, each QH haézé(Nﬁ 1) which

pairs to fermionk At exactly 2=2N-3, theN-body (Moore-  gives the totalL=N,,N,~2,..., exactly as obtained for
Read ground state is equivalent to a full CF-glwith  N=11 in frame(a).

Jo=N,+2A. (19)

ls=5(N,-1), i.e., to a Laughlin state d|, pairs. The mag- At 21=2N-3 noE=0 states occur, and the numerical re-
netoroton band describes QE-QH pair states, with one CEults for differentN always show a band m:g% ,%N,

excited from the full CF-Ll to the empty CF-LL with  that seems to describe dispersion of an excitonic state of a
I7=15+1=5(N,+1). This band extends up tb=lg+I;=N,.  pair of QP’s of opposite charge. This becomes more convinc-
Higher states above the magnetoroton band contain addirg in Fig. 9c), where the data obtained for differeNtis
tional QE-QH pairs, and the characteristic steps are clearlyfor the first time plotted together as a function of wave
visible in the energy spectra in Fig.[8.g., atL=(2I(*)—1) vectork, and a clear magnetoroton-type minimum appears at
+(2I1—1)=N—2 for two QE-QH pairg k=1.0N"L. The valueslz%(NiS) of the QP angular mo-
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=2 ‘e o o P g PR g g FIG. 11. Squared overlaps of the lowestL=0 eigenstate
b {." . -~../ all*° : . . 8 2 of pair interactionU,, defined by Eq(5) calculated on a sphere at
w ot * QE+QH §, : '§u S 21=2N-3, with the corresponding eigenstates of three-body repul-
%E's s 20Hs  § g sion W (Moore-Read staje electron interaction in the lowest and
17.07 (d) ||Pv=52 () ol F excited LL (the narrow solid line is for layer widtlv=3.5\), and
AU A SACS S A A SR A A A A QE interaction in the Laughlim=§ state, plotted as a function of
L L L Frames(a) and (b) correspond tdN=12 and 14 particles.

FIG. 10. (a)(c) Energy spectra similar to those in Figs. 7-9, but . .
obtained for the Coulomb pair pseudopotential of the first exciteoaﬁeCtS the nearly harmonic behavior¥f(R,) at short range

LL in Fig. 1(b). (d)(f) Spectra of the same systems obtained forthat is essential fc;r the avoida.nce. of th:.?; triplet state.
parametel,(1) increased by 9%. As a result, thev=3 wave function in experimental systems
depends much less on the width than, e.g., the excitation gap

menta that would explain the observed rangeLofio not ~ controlied by the magnitude af. .
agree with the prediction of a Laughlin-correlated state with On t[u_e ot_hc_er hand, the_strong ‘?ep‘?”dence of correlations
N,=2(N-1) andN;=1. Nevertheless, knowing their angular O @~ 2 I finite systems is clear in Figs(a, 5(a), and 6,
momenta is enough to predict the chargg 4 of these(uni- and it is in contrast with the behavior at~0 or 1, corre-
dentified QP's sponding to the much less sensitive finite-size FQH states in
The reason why this low-energy band cannot be describe-o @nd CF-LL. Remarka_bly, the gap above the incom-
by a two-component CF modéhctually, for any combina- pressible groun_d state al '22N_3. pers_lst%’a over a wide
tion of N, and N,) is that they are not pair-pair or pair- range ofa despite even a large distortion of its wave func-

electron, but pair-breakingPB) excitations(that by defini- tion, while jche QP excitations quickly mix with the con-
tion do not conservél; or N,) introduced by Greiteet al2” tinuum of hlgher states whevl, becomes too subharmonic
and later studied in detail by Bonesté&ISuch excitations or super_harmomc at s_hort range. .
generally occur in paired systems and they are expected to be A major problem with the _c_alculatlons on a sphere is the
charge-neutraldespite being fermionsvhich explains their slzé dependenc_ﬂG) of the cr_ltlcal value_ (.)fa at which the
continuous energy dispersion in a magnetic field. Still, itavmdance oR3=3 occ_urs. Itis clzear_ly V'S'ble.'n the plots of
might be possible to decompose them into two more eIemerF—quared overlapg, (@) =|(da| ¢u)|* with _the (a_lgenstatesba
tary, charged QP’s. of _Ua, calculat_ed for _the corresponding elgenstaﬂgsof
various other interactionsi: three-body repulsionV and
5 electron and QE pair pseudopotentiglsin LLy, LL4, and
VI.RELEVANCE TO THE  »=3 FQH STATE CF-LL,, respectively. For Lk, the overlaps ; have been
Earlier diagonalization studi&s?6:2737 using Coulomb  calculated for both narrow=0) and wide(w=3.5\; e.g.,
pseudopotential in L|_showed the.=0 ground states with a W=20 nm atB=20 T) layers. Note also that the eigenstate of
gap at 2=2N-3 but no clear indication of QP excitations W used in the calculation of overlaps is automatically prop-
identifiecP? in the spectra of the model three-body repulsionerly symmetrizedin the original forn# it is nof®).
W. As shown in the top frames of Fig. 10 obtained for In Fig. 11 we plot the overlaps for the lowdst0 states
N=12 electrons, the magnetoroton QE-QH band and of th&t 2=2N-3. Clearly, the exact Moore-Read eigenstat&\bf
two-QE bands can indeed hardly be found in these spectiig an excellent ground state &f, at a~0.425. So is the
due to mixing with higher states, and only the two-QH bandsground state of Coulomb pair interaction in LLlbut at a
are well separated. different «=0.5. The disagreement between these two val-
The problem with the identification of the Coulomb ues ofa does not disappear in wide samples, as inclusion of
,,:% ground state in L with the Moore-Reador any othey ~ W even a5s large as \Toes not noticeably change the Cou-
trial state is that the former is very sensitive to the relativelomb »=73 ground state. Specifically, the overlaps between
values of the leading pseudopotential coefficients, while théhe Moore-Read state and the Coulombg ground state
exact form ofV,(R,) dependdat least, in principleon the  calculated forN=14 are only|(¢y| #c1)[?=0.48, 0.58, and
layer widthw in experiments, and oN in finite-size calcu- 0.71 forw/A=0, 1.75, and 3.5, respectively
lations. As to the width dependence, it turns out that increas- The behavior ofog(«) plotted with narrow dotted lines is
ing w from zero to realistic experimental values only weakly also noteworthy. The QE-QE interaction at half filling can be
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N=14,21=2N-3  N=14, 21=2N-3+1 N=15, 21=2N-3 only an elegant idea, not realized in known even-
QE+QH 2QP's pair-breaker denominator FQH statesit v:g or g). Fortunately, the dis-
® /N © N agreement appears to be largely artificial. The size depen-
x /’ /(\\ d \ dence(16) of aq can be traced to the size dependence of the
L~ N 7 pair amplitudes G,(R,) of the triplet eigenstates at
\\ L=% \ R3=3,5,6.,..., directly caused by the surface curvature. This
/ \N is obtained by combining the following observatiofis:the
~—i occurrence of R3;>3" three-body correlations defining the
Moore-Read state depends not directly on the specific short-

2QH's | (e) A
\ =1/ /Y range behavior of pair pseudopotenti@| but on the form of
VA T A / \ triplet pseudopotential/; at smallRg; (ii) the relation be-

4 . . ..
-~ \ N // \ tweenV, andV; (on a sphergis more size sensitive than the
N \ =2 \ short-range harmonic behavior of Coulomb interacgnlt
> No AN is therefore only due to the surface curvature ttiatfinite

- —T T - —T T ' — systems on a sphe)rex0<% is different from the value
03 04 05 0603 04 05 0603 04 05 06 1 . N

o o o a=3 appropriate for the Coulomb pseudopotential injLL

This is consistent with larger overlaps calculated for the
FIG. 12. Similar to Fig. 11(solid and dashed lines mean the Moore-Read state on a toréfs.

same but for different_ Iow-engrgy states atl=22N-3) and _ At N— o, we expect thabzoz% in coincidence with the
E)ZN‘S) +1, qorr_espofndr:ngr:o patl)r SE'and QI—NIAEtates and the pairpenavior ofV,(R,) in the same limit, and that the energy

reaking excitation of the three-body interactior spectra of Couloml, and modeM interactions should be-

described byJ, quite well for N=14 (where the calculations come similar. To improve the agreementat 14, for which
indicate a finite-siz& =0 ground state with a gaand some- We were able to calculate the spectva(1) must be slightly
what worse forN=12 (where the ground state is compress-enhanced in accordance with E@6). For example, for
ible). But even more interestingly, the Moore-Read state apN=12 the near vanishing @(3) at 2=2N-3 occurs when
pears nearly orthogonal to the QE staft®e exact value for V,(1) is increased by 9% from its Coulomb value, in good
N=14 is [(¢i| ¥op)|*=0.03, which we interpret as yet an- agreement with the result of Motf.The N=12 electron en-
other strong indication against the QE pairinguai%. ergy spectra calculated for this interaction with marked fea-
In Fig. 12 we plot similar overlaps calculated for various tures associated with the QP’s are shown in bottom frames of
excitations. Frame&), (d) correspond to a QE-QH paith) Fig. 10.
to two QE's, () to two QH's, and(c), (f) to the PB neutral- The above discussion yields the following statemefijs.
fermion excitation. We only show the curves for the QE-QHFinite-size calculations on a sphere using Coulomb pair in-
states atlL =6 and 7 near the magnetoroton minimum, for teraction do not correctly reproduce correlations of an infi-

two-QE and -QH states at smalk 1 (corresponding to large  pjse =5 state. They use pseudopotentials corresponding to
QP-QP separation for which the curves are less dependent on__ ' ’ y D P P g

. . ~1 different from ay<2 leading to the avoidance of
QP-QP interaction effecktsand for the PB a’r_:% near the < 2 ! _ 1 a0= 2 ng vol
energy minimum and at a lard 1?5 Al frames show simi- R3=3. Thea=ay=3; coincidence is probably recovered for

lar behavior to Fig. 11, only the disagreement betweer{\liOO which would me”an that t_he real,_ infinite systems at
do have the R;> 3" correlations while the correlations

the eigenstates oV and the Coulomb eigenstates is more?~ 2 ¢ ) ) | )
pronounced. The QP excitations of the three-body repulsiol! finite systems are different and size depend@ntin fi-
W remarkably well describe actual excitations of a systen{lite Systems, correctR;>3" correlations are recovered if
with a two-body interactio,,. However, not for the value the pair pseudopotential is appropriately enhanced at short
of a corresponding to the Coulomb interaction in L{re- ~ fange.(iii) Assuming that that ther=a,=73 coincidence is
gardless of the layer widih The overlaps between eigen- restored in infinite system@r in different, e.g., toroidal ge-
states ofW and the electron eigenstates inLare even ©Ometry, the equivalence of Coulomb al interactions at
lower than those for the Moore-Read state. The specific valbalf filling is not limited strictly to the Moore-Read ground
ues forN=14 andw=0 (and forw=3.5\ in parenthesgsare  State. The(+e/4)-charged QP's and the neutral-fermion PB
[ganl c)[2=0.03, 0.00, 0.27, 0.19, 0.12, 0.46.03, 0.02, identified in the spectra dfV accurately describe tshe low-
0.39, 0.31, 0.20, 0.60or theL=2,3....,7 states of the mag- €nergy charge excitations in the r¢@oulombh v=73 sys-
netoroton QB-QH band, 0.47, 0.16, 0.0{0.52, 0.28, 0.1  tems. Although the effective interactions between QP’s may
for the L=1, 3, 5 states of two QE's, and 0.39, 0.12, 0.39,lead to their binding or dressingust as atv=3 QH’s and
0.27(0.53,0.17, 0.64, 0.3%or theL=1, 3, 5, 7 states of two “reversed-spin” QE’s bind to form skyrmiopsthey are
QH'’s, respectively. The values for the PB bandlfor13 are  simple objects with an elegant interpretation in terms of
0.45, 0.19, 0.41, 0.31, 0.39.56, 0.34, 0.44, 0.46, 0.47or  Laughlin-like three-body correlations.
L=2,1...,2 respectively. Such small overlaps preclite
dicated interpretation of excited states in Fig. (&D and VIl. CONCLUSION
10(b) as QE’s ofW .

This invokes the question raised in the introduction of We have studied two- and three-body correlations in par-
whether the Moore-Read trial state and its QP excitations argally filled degenerate shells for various interactions between
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the particles. Variation of the relative strength of two leadingQP’s (Refs. 27 and 3]l (that naturally occur for Halperif

pair pseudopotential coefficients drives the correlationstate and the PB excitatio&2° The bands of few-QP states

through three distinct regimes. The intermediate regime, comear half filling are well described by a CF picture appropri-

responding to the nearly harmonic pseudopotential at shogte for Laughlin pair-pair correlations.

range, describes correlations among electrons in, lpar- Finally, the problem of numerical calculations on a sphere

ticularly in the v=3 FQH state. associated with the surface curvature is addressed. It is found
In contrast to the correlations between electrons ig &t that finite-size models using Coulomb interaction between

between Laughlin QE's in CF-LL.(whose pseudopotentials glectrons do not correctly reproduce correlations of the

are strongly superharmonic and subharmonic at short rangg,:g FQH state due to the distortion of triplet wave func-

respectively, the intermediate regime is not characterized bytions. Especially for the excitations of th@% ground state,

a simple avoidance of just one pair ei_genstate correspondir‘[gle overlaps with the Moore-Read-like correlated states are
to the strongest anharmonic repulsion. Instead, we have

L 5
shown that near half filling the low-energy states for suchrather small. However, it is argued that the FQH state
interactions have simple three-body correlations. In resem(_)bsehrv;d exgerlrlrell\ﬂ/ltally 'g nzrrqwl systerﬂs IS dﬁjsct:)rlb_ed
blance of Laughlin pair correlations, they consist of thefmelrJrZ q f(ract)trir th):ats?nalﬁgirzeé c?;cuﬁgﬁoitsatecgr?sneCﬁgntl et:’?(;
maximum avoidance of the triplet state with the SmaIIGStori in of its incompressibility is recisel. the avgidangé of
relative angular momenturiRs=3, i.e., with the smallest thegR =3 triplet starl)te and it)g elepmenta yexcitations are the
area spanned by the three partidlesanalogy to pair corre- + /43-_h pd P’ ’ d th t |p|;y

lations, avoidance means here the minimization of a triple“e )-charged QP's and the neutra '

amplitude.

In particular, at exactly half filling, this corresponds to the
fact?” that the Moore-Read ground state is the zero-energy
eigenstate of a model short-range three-body repul¥ibn This work was supported in part by Grant No. DE-FG
with the only pseudopotential parameter R;=3. The 02-97ER45657 of the Materials Science Program - Basic En-
Moore-Read ground state is a three-body analog of thergy Sciences of the U.S. Department of Energy. A.W. ac-
Laughlin v:% state withR,>1. It is separated by a finite knowledges support by the Polish Ministry of Scientific Re-
excitation gap from a magnetoroton band with a minimum atsearch and Information Technology under Grant No.
k=~1.5\"% Its elementary excitations are thee/4)-charged 2P03B02424.
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