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Two- and three-body correlations in partially filled degenerate fermion shells are studied numerically for
various interactions between the particles. Three distinct correlation regimes are defined, depending on the
superharmonic, subharmonic, or harmonic forms of Haldane pair pseudopotential at short range. The harmonic
form applies to electrons in the first excited Landau levelsLL1d. Their correlations near half filling are
confirmed to have a simple three-body form characteristic of the Moore-ReadsMRd Pfaffian state, consisting
of the maximum avoidance of the triplet state with the smallest relative angular momentum. To study MR
correlations quantitatively, three-body amplitudes and pseudopotentials are introduced and calculated. Exact
sum rules derived for the amplitudes imply that MR correlations depend on the actualspaird interaction largely
through the short-range behavior of the corresponding three-body interaction. In the calculated spectra of a
model three-body repulsion, higher-energy bands are identified in addition tospreviously knownd MR ground
state and its elementary chargedsquasiparticled and neutralspair-breakingd excitations. The pair-breaker dis-
persion curve is determined, and the quasiparticles are correctly described by a generalization of the composite
fermion model appropriate for Halperinp-type electron pairing with Laughlin correlations between the pairs.
The known problem of the exact few-electron ground states having small overlaps with MR trial states on a
sphere is also resolved by showing that the short-range three-body pseudopotential coefficients are more
sensitive to the surface curvature than the two-body onessleading to a slow convergence of the overlaps as a
function of the electron numberd. Hence, the MR state and its excitations are believed to be a more accurate
description of the experimentaln= 5

2 quantum Hall states than could be inferred from previous, small-size
calculations.

DOI: 10.1103/PhysRevB.71.045324 PACS numberssd: 73.43.2f, 71.10.Pm

I. INTRODUCTION

The fractional quantum HallsFQHd effect1,2 is a many-
body phenomenon consisting of the quantization of Hall con-
ductance and the simultaneous vanishing of longitudinal re-
sistance of a high-mobility quasi-two-dimensional electron
gas at a strong magnetic fieldB and low density%, corre-
sponding to certain universal fractional values of the Landau
level sLL d filling factor n=2p%l2 swherel=Îhc/eB is the
magnetic lengthd. This macroscopic effect is a consequence
of the formation of incompressible liquid ground states
sGS’sd with quasiparticlesQPd excitations.2 It depends on
correlations in partially filled degenerate LL’s, entirely deter-
mined by a Haldane pseudopotential3 defined as the pair in-
teraction energyV2 as function of relative pair angular mo-
mentumR2.

The most prominent FQH states in LL0 slowest LLd are
given by Jain sequence4 of filled composite fermion5,6 sCFd
levels. In Haldane hierarchy,7–11 they result from Laughlin
correlations12–14 sbetween electrons or QP’sd induced by
pseudopotentials that are superharmonic15–17 at short range.
However, the FQH states with different, non-Laughlin corre-
lations occur as well. E.g., pairing in a half-filled LL1 sfirst
excited LLd is firmly established in then= 5

2 state,18–21while
correlations between CF’s in their CF-LL1 responsible for
the FQH effect22,23 at n= 3

8 or 4
11 are not yet completely un-

derstood.
The lack of superharmonic behavior of the pseudopoten-

tial at short range together with the occurrence of clearly

non-Laughlin half-filled FQH states suggests pairing in both
LL1 and CF-LL1. Proposed trial states include Halperin12 and
Haldane-Rezayi24 states with Laughlin correlations between
spin-triplet and -singlet pairs, respectively, and the
Moore-Read25,26 Pfaffian state that can be defined as a zero-
energy ground state of a short-range three-body repulsion.27

These pair states have all been studied in great detail28–34

because of their anticipated exotic properties, such as non-
Abelian QP statistics25 or existence of pair-breakingsPBd
neutral fermion excitations.27,35 However, choosing the cor-
rect one for specific real FQH systems is somewhat problem-
atic. In the following we concentrate on the half-filled LL1,
and pairing in CF-LL1 is addressed elsewhere.36

The trouble with Halperin state12 sin which the electrons
form tightly-bound pairs, and these pairs form an even-
denominator Laughlin state, as appropriate for bosonsd is that
because the relative angular momentum of the constituent
pairs is not a conserved quantity, it is more of an intuitive
concept for the correlations than a well-defined trial wave
function obeying all required symmetries. For example, de-
scription of the pair-pair interaction by an effective pseudo-
potential is not rigorous,36 and the harmonic criterion16,17

that would relate the occurrence of Laughlin pair-pair corre-
lations with an electron pseudopotential is not exact. Conse-
quently, it has not been clear what model interaction induces
such correlationssand ground stated. In fact, it has beenser-
roneouslyd assumed27 that this paired state results for
pseudopotentials attractive at short range rather than har-
monically repulsive as in LL1, which would suggest that it is
not an adequate trial state for then= 5

2 FQH effect.
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The Moore-Read wave function on the other hand is well
defined.25–27 However, it only occurs for interactions with
very particular short-range behavior, while the pseudopoten-
tials in realistic experimental systems depend on sample pa-
rameters such as the layer widthw, magnitude, tilt of the
magnetic field, etc. Moreover, finite-size calculations indi-
cate that realistic Coulomb pseudopotentials are too weak at
short rangesby up to ,10% for w=0d to induce a Moore-
Read ground state.26,37 This would seem to imply that the
Moore-Read state does not describe then= 5

2 FQH state quite
as accurately as a Laughlin state describes the actualn= 1

3
ground states. The occurrence of then= 5

2 FQH effect could
still be attributed to the observation that the calculated exci-
tation gaps are much less sensitive to the details of the
pseudopotential than the wave functions. However, poor ac-
curacy of the Moore-Read wave function puts doubt on the
occurrence of those of its properties in realisticn= 5

2 systems
that depend more critically on the correlations. As these
propertiessincluding non-Abelian QP’sd are so much more
fascinating than plain incompressibility, the question of
whether they indeed remain only an unrealized theoretical
concept is quite significant. Theoretical insight is especially
valuable in this problem because of the difficulty with direct
experimental evidence.38

II. OUTLINE

The main subject of this paper is the analysis of two- and
three-body correlations in half-filled LL’s with different pair
interactions, especially in a half-filled LL1. The most impor-
tant results aresid application of three-body pseudopotentials
and amplitudes to study three-body correlations,sii d direct
demonstration of “Moore-Read correlations” consisting of
the tendency to maximally avoid the “compact” triplet state
with the smallest relative angular momentum in the low-
energy many-body states near half filling,siii d discovery of
the equivalence of Halperin pairing and the Moore-Read
Pfaffian state, andsivd resolution of the problem of small
overlaps between exact few-electron ground states and
Moore-Read trial states on a sphere.

Because a number of minor original conclusions are in-
termixed with those known or anticipated previouslysthat
nevertheless are often invoked to make the paper more self-
containedd, below we give a more detailed list of new results
presented in the following sections. In Sec. III we compare
Haldane pair pseudopotentialsV2sR2d and pair amplitudes
G2sR2d calculated at 1

2 and 1
3 filling of LL 0, LL1, and

CF-LL1.
In Sec. IV we extend Haldane’s concept and introduce

triplet pseudopotentialsV3 and amplitudesG3, defined as
functions of triplet relative angular momentumR3. A sum
rule is derived for the amplitudes which implies that only
anharmonic39 contributions toV3 induce triplet correlations.
This result justifies the use of a short-range three-body repul-
sion W that is nonzero only for the minimum allowed value
of R3=3 to model actualsCoulombd interaction in LL1. We
also demonstrate that whenV2 is nearly harmonic at short
rangesas in LL1d, thenV3 is slightly superharmonic at small
R3, and simple “Moore-Read” triplet correlations result at

half filling, consisting of a complete avoidance ofR3=3.
Therefore, rather thanassumingthat the Moore-Read wave
function describes the FQHn= 5

2 state, we demonstrate di-
rectly to what extent its defining property is realized in this
state. We also find thatR3=3 is not avoided whenV2 is
subharmonicsas in CF-LL1d, proving that the origin of in-
compressibility atn= 3

8 is different.
In Sec. V we analyze the energy spectra ofW ssome

known previously for smaller systemsd and confirm the oc-
curence of the zero-energy Moore-Read state and its elemen-
tary chargedsQPd and neutralsPBd excitations. A continuous
PB dispersion is determined, and the QP’s are correctly de-
scribed by a generalization of the composite fermion model
appropriate for Halperinp-type electron pairing with Laugh-
lin correlations between the pairs. In particular, higher bands
in the spectra ofW are identified as containing additional
quasielectron-quasiholesQE-QHd pairs and explained using
Halperin picture.12

In Sec. VI we calculateson a sphered overlaps of different
trial states with the corresponding few-particle eigenstates of
various pair interactions. While the overlaps of the Moore-
Read state with electron ground states in LL1 have been pub-
lished previously, here we also calculate them for all elemen-
tary excitationssto verify that Moore-Read correlations are a
valid description also beyond the ground stated and show
their dependence on the short-range harmonicity of pseudo-
potential. The discussion of finite-size errors and of resolu-
tion of the known problem of small overlaps on a sphere by
explaining their slow convergence with the electron number
are important because the “numerical experiments” in small
systems are the most reliable tool for identifying then= 5

2
FQH state as a Moore-Read state.

III. TWO-BODY CORRELATIONS

A. Haldane pair pseudopotential

Within a degenerate LL, the many-body Hamiltonian only
contains the interaction term, which is completely deter-
mined by the discretesHaldaned pseudopotentialV2sR2d de-
fined as pair interaction energyV2 as a function of relative
pair angular momentumR2. For identical fermions/bosons,
R2 takes on odd/even integer values, respectively, and the
larger R2 corresponds to a larger average pair separation
Îkr2l. On a sphere,R2=2l −L2, wherel is the single-particle
angular momentum of the shellsLL d, andL2 is the total pair
angular momentum.sWe use the following standard notation
for Haldane7 spherical geometry:l =Q+n for the nth LL,
2Q=4pR2B/f0 is the magnetic monopole strength
f0=hc/e is the flux quantum,R is the sphere radius, and
l=R/ÎQ is the magnetic length.d Importantly,V2sR2d com-
bines information about both interaction potentialVsrd and
the single-particle wave functions allowed within the Hilbert
space restricted to a LL. The pseudopotentials obtained for
the electrons in LL0 and LL1, and for Laughlin QE’s in
CF-LL1 are shown in Fig. 1. The result for CF-LL1 is
obtained11,40 from the N-electron energy spectra in LL0, at
the value of 2l =3N−5 corresponding to a pair of QE’s in the
Laughlinn= 1

3 stateswithin the lowest bands of such spectra,
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the dependence of energy on angular momentum is, up to a
constant, the QE-QE pseudopotentiald.

B. Pair amplitudes

The pair correlations induced by a specificV2sR2d are
conveniently described by a discrete pair amplitude function
G2sR2d, defined3 as the number of pairsN2 with a givenR2

divided by the total pair number

G2sR2d = SN

2
D−1

N2sR2d. s1d

It immediately follows from the expression for the total in-
teraction energy of anN-body state

E = SN

2
Do

R2

G2sR2dV2sR2d s2d

that the low-energy many-body states generally have a large/
small amplitude at those values ofR2 corresponding to
small/large repulsionV2sR2d. In Fig. 2 we compare the pair
amplitudes obtained in Haldane spherical geometry for
N=12 and 14 particles confined in angular momentum shells
with degeneracyg=2l +1 corresponding to the filling factors
n, 1

3 and 1
2 and interacting through the pseudopotentials of

Fig. 1. Although for each systemsV2,N,gd we only show the
data for the lowestL=0 state, virtually identicalG2sR2d
functions are obtained for all low-energy states of each sys-
tem.

The chosen values of 2l andN correspond to three differ-
ent sequences of finite-size spherical systems known to rep-
resent the following FQH states observed experimentally on
a plane. The 2l =2N−3 sequence describes the paired
Moore-Read25 n= 1

2 state in LL1 scorresponding to the total
electron filling factorn= 5

2d and then= 1
2 state of QE’s in

CF-LL1 identified numerically36 for N=6, 10, and 14, and
corresponding to the FQH effect22 at n= 3

8. The 2l =3N−7
sequence describes thesnot well understoodd n= 1

3 states in
both LL1 sRef. 17d and CF-LL1,

36 corresponding to the

n= 7
3 state18–21 and n= 4

11 state,22,23 respectively. Finally, the
2l =3N−3 sequence describes the Laughlin2 n= 1

3 state in
LL0.

The pair amplitude calculated for a completely filled shell
sthe n=1 stated with a given 2l is a decreasing straight line

G2
fullsR2d =

4l + 1 − 2R2

ls2l + 1d
, s3d

which is a finite-size edge effect. In the 2l →` limit corre-
sponding to an infinite plane,N2

fullsR2d=N and the ratio
N2

fullsR2d /N;GfullsR2d=1 is the appropriately renormalized
pair amplitude in this geometry.

The overall linear decrease ofG2sR2d appears also at
n,1, and it should be ignored in the analysis of correlations.
Therefore, in Fig. 2 we actually plot

G2sR2d = 1 +
G2sR2d − G2

fullsR2d

G2
fulls1d

, s4d

in which the linear decrease is eliminated and the scaling
appropriate for an infinite plane is used, to ensure that
G2s1d~G2s1d, that G2sR2d=1 for finite-sizen=1 states, and
thatG2sR2d converges to the pair-correlation function on the
plane whenN is increased.

In all frames,G2 is significantly different from 1 only at
small R2, and the oscillations around this value quickly de-
cay beyondR2,7. This can be interpreted as a short corre-
lation rangej in all studied systems and it justifies the use of
finite-size calculationssrequiring thatj!Rd.

FIG. 1. Pair interaction pseudopotentialsspair interaction energy
V2 vs relative pair angular momentumR2d for electrons in the
lowest sad and first excited LLsbd, and for QE’s of the Laughlin
n= 1

3 statescd. The values ofV2 in framescd were calculated by Lee
et al. sRef. 40d and are only known up to a constant.l is the
magnetic length.

FIG. 2. Pair-correlation functionsspair amplitudeG2 vs relative
pair angular momentumR2d calculated on a sphere for the lowest
L=0 states ofN particles interacting through pseudopotentials
shown in Fig. 1, at values of 2l corresponding to different FQH
states at filling factorsn= 1

2 and 1
3.
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Clearly, three different interactions result in quite different
correlations. In LL0 sad–scd, the dominant tendency is the
avoidance ofR2=1 sLaughlin correlationsd at a cost of hav-
ing a large number of pairs withR2=3. Around half filling of
LL1 sdd,sed, the numbers of pairs withR2=1 and 3 are about
equal and both small. Finally, in a partially filled CF-LL1
sgd–sid, theR2=3 pair state is maximally avoided.

C. Model interaction and pair-correlation regimes

The fact thatG2<1 at long range also explains why the
low-energy wave functions are virtually insensitive to the
exact form ofV2sR2d beyond a few leading parameters at
R2=1,3,… . Furthermore, due to the sum rules obeyed by
pair amplitudes,16,17,41 the harmonic pseudopotentials
V2

HsR2d=c0−c1R2 swith constantc0 and c1d induce no cor-
relations, and only the anharmonic contributions toV2sR2d at
small R2 sshort ranged affect the pair-correlation functions.
Indeed, simple model pseudopotentials with only two nonva-
nishing leading parameters are known17,27,36to accurately re-
produce correlations shown in Fig. 2. Let us define such
UasR2d with

Uas1d = 1 −a,

Uas3d = a/2. s5d

U0 andU1 are the two extremal pseudopotentials with only
one anharmonic term.U1/2 is harmonic throughR2=1, 3,
and 5, and thus it favors equally the avoidance of both
R2=1 and 3 pairssany distribution of the pair amplitude
between theR2=1, 3, and 5 states that satisfies the sum rules
yields the same total energyEd.

In Fig. 3 we plotG2s1d andG2s3d as a function ofa for
the lowestL=0 state in three finite-size systems representing
the same series of FQH states as used in Fig. 2. The corre-
lations in a partially filled LL0 sLaughlin correlationsd, LL1,
and CF-LL1 are well reproduced byUa with a<0, 1

2, and 1,
respectively. The correlations ata=0 si.e., in LL0d and at
a=1 si.e., in CF-LL1d can easily be expressed in terms of
pair amplitudes. WithUs1d or Us3d being the only nonvan-
ishing sand positived coefficient, it follows from Eq.s2d that
the low-energy states must have the minimum allowed
swithin the available Hilbert spaced G2s1d or G2s3d, respec-
tively.

It is well known that for Laughlin correlations, because of
the simple form of single-particle wave functions in LL0, the
complete avoidance ofR2=1 pairs spossible atnø

1
3d ap-

pears in form of a Jastrow factor in the Laughlin wave func-
tion. It justifies the mean-field CF picture that essentially
attributes reduction of the many-body degeneracy caused by
a R2=1 hardcoresor “correlation hole”d to an effective, re-
duced magnetic field.

For QE’s, the tendency to have smallG2s3d and, conse-
quently, significantG2s1d scompared to a Laughlin-correlated
state at the samend has been interpreted36 as pairing or clus-
tering. However, the numerical studies are not conclusive
about how the clusters correlate with one another, and the
question of the origin of the excitation gap observed at
n= 3

8 or 4
11 remains open.

In a partially filled LL1 the situation is more complicated.
BecauseV2sR2d is nearly harmonic at short rangesa, 1

2
d,

the energy is nearly independent of the relative occupation of
the R2=1 and 3 pair states. Therefore, the correlations can-
not be easily expressed in terms of pair amplitudesfalthough
the linear combination ofG2s1d andG2s3d equal to the total
energyE is obviously minimized at its corresponding value
of ag. However, it turns out that it is the short-range three-
body correlations that determine the low-energy states in this
regime. Soon after its introduction, the half-filled Moore-
Read state was shown27 to be an exact zero-energy eigenstate
of a model short-range three-body repulsion, and the spectra
of this interaction were later studied in detail.28,31 Below we
analyze the three-body correlations directly, by the calcula-
tion of an appropriate correlation function.

IV. THREE-BODY CORRELATIONS

A. Three-body pseudopotential

In analogy to the avoidance of the strongly repulsive pair
states, the three-body states with sufficiently high energy
scompared to the rest of the three-body spectrumd will also
be avoided in the low-energy many-body states. For the
pairs, the eigenstates are uniquely labeled byR2, and the
criterion for the avoidance of a specificR2 is16,17 that it
corresponds to the dominant positive anharmonic term of
V2sR2d. The three-body states are also labeled by the relative
swith respect to the center of massd angular momentumR3.
The allowed values areR3=3 or R3ù5, and largerR3
means larger expectation value of the area spanned by the
three particles.42 On a sphere,R3=3l −L3, whereL3 is the
total triplet angular momentum.

Since no degeneracies appear in theV3sR3d energy spec-
trum for R3,9, its low-R3 part can be considered a three-
body pseudopotential analogous toV2sR2d. The three-body
pseudopotentialsV3sR3d obtained for different pair pseudo-
potentialsV2sR2d of Fig. 1 are shown in the upper frames of
Fig. 4. The nonmonotonic behavior ofV3sR3d in frame scd
most likely precludes the tendency to avoid theR3=3 triplet
state in QE systems. On the other hand, it seems plausible
that the monotonic character ofV3sR3d in frame sbd might
lead to the avoidance of the sameR3=3 triplet state in a
partially filled LL1.

FIG. 3. Dependence of pair amplitudesG2 on parametera of
pair interactionUa defined by Eq.s5d, calculated on a sphere for the
lowestL=0 states ofN-particle systems representing the same FQH
states as used in Fig. 2.
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The dependence ofV3sR3d on V2sR2d can be captured by
plotting the leadingV3 coefficients as a function of parameter
a of the model pair pseudopotentialUa, as shown in frame
sdd. ForR3,9 the triplet wave functions are fixed and so are
their G2 amplitudes, and hence the dependencesV3sad are all
linear. Only arounda, 1

2 is theV3sR3d function superlinear
for small R3, as shown on an example fora=0.54 in frame
sed.

B. Three-body amplitudes

In order to test the hypothesis of the avoidance of the
R3=3 triplet eigenstate in partially filled LL1, we introduce
“triplet amplitude” G3sR3d. It is defined in analogy to
Haldane pair amplitude,3 as an expectation value of the op-

eratorP̂ijksR3,b3d projecting a many-body stateC onto the
subspace in which the three particlesi jk are in an eigenstate
uR3,b3l shere,b3 is an additional index to distinguish degen-
erate multiplets at the sameR3; it can be omitted forR3
,9d. The interaction Hamiltonian written in a three-body

form usingP̂i jk reads

Ĥ = o
i, j,k

o
R3,b3

P̂i jksR3,b3d VsR3,b3d. s6d

The triplet amplitude is

G3sR3,b3d = SN

3
D−1

kCu o
i, j,k

P̂i jksR3,b3duCl, s7d

which for a totally antisymmetricC is equivalent to

G3sR3,b3d = kCuP̂123sR3,b3duCl. s8d

Triplet amplitudes defined in this way are normalized to

o
R3,b3

G3sR3,b3d = 1, s9d

so that they measure the fraction of all triplets being in a
given eigenstate

G3sR3,b3d = SN

3
D−1

N3sR3,b3d. s10d

The energy ofC is expressed as

E = SN

3
D o

R3,b3

G3sR3,b3dV3sR3,b3d. s11d

On a sphere, triplet amplitudes are connected with the third-
order parentage coefficients43 G3sL3,b3;L38 ,b38d, i.e., the ex-
pansion coefficients of a totally antisymmetric stateC in a
basis of product states in which particless1,2,3d and
s4,5,… ,Nd are in the 3- andsN−3d-body eigenstates
uL3,b3l and uL38 ,b38l, respectively,

G3sL3,b3d = o
L38,b38

uG3sL3,b3;L38,b38du
2. s12d

Note that to obey standard notation for parentage coeffi-
cients, in the above equation we use total angular momentum
L3 instead of the relative one,R3=3l −L3, to label triplet
states. Also, we omit indexC in G3 andG3.

The operator identity41

L̂2 + NsN − 2dl̂2 = o
i, j

L̂i j
2 s13d

connects the totalN-body angular momentumsLd with the
single-particle and pair angular momental andLij . We used
it earlier to show that harmonic pair pseudopotentials cause
no correlations. Here, we generalize it to the form

L̂2 +
NsN − Kd

K − 1
l̂2 = SN− 2

K− 2
D−1

o
i1,¯,iK

L̂i1¯iK
2 . s14d

By taking the expectation values of both sides of the above
equation in thestotally antisymmetricd stateC and using the
expansion ofC in terms of theKth-order parentage coeffi-
cients we obtain

LsL + 1d +
NsN − Kd

K − 1
lsl + 1d =

NsN − 1d
KsK − 1d

3o
LK,bK

GKsLK,bKdLKsLK + 1d,

s15d

an additionalsbesides normalizationd sum rule obeyed by the
amplitudesGK.

Just as for the specificK=2 case discussed earlier,41 the
above sum rules15d together with an appropriate version of
Eq. s2d or s11d immediately implies that if theK-body inter-
action pseudopotentialVK is linear inLKsLK+1d, all N-body

FIG. 4. sad–scd Triplet interaction pseudopotentialsstriplet inter-
action energyV3 vs relative triplet angular momentumR3d for pair
pseudopotentials shown in Fig. 1.l is the magnetic length.sdd
Dependence of coefficientsV3 on parametera of pair interaction
Ua defined by Eq.s5d. sed PseudopotentialV3sR3d calculated for
pair interactionU0.54.
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multiplets with the sameL are degenerate. In the limit of
infinite LL degeneracyg=2l +1 corresponding to an infinite
sphere radiussvanishing curvatured, i.e., to the planar geom-
etry, the linearity inLKsLK+1d translates into the linearity in
RK=Kl −LK, and it turns out that the linear part ofVKsRKd
causes no correlations.

For K=3, this is precisely what justifies the use28,31 of a
model short-range three-body repulsion as simple asWsR3d
of Eq. s17d to model actualsCoulombd interactions in LL1.
Equations15d shows thatW does not have to be understood
as a three-body pseudopotential of ansunrealisticd contact
three-body repulsion27 Vi; jk=oi jkdszijddszikd, but merely as a
dominant anharmonic contribution toV3 at smallR3.

C. Three-body correlation hole

Let us now turn back to the numerical results. In Fig. 5 we
plot the dependence of the leadingG3sR3d coefficients ona,
calculated in the lowestL=0 state of three different systems
belonging to the same sequences of finite-size FQH states as
used earlier in Figs. 2 and 3. Clearly, all triplet amplitudes
significantly depend ona, but we especially want to point
out the following three features forR3=3: sid the tendency to
avoid R2=1 pairs at a,0 is not synonymous with the
avoidance ofR3=3 triplets atn= 1

2, sii d G3s3d vanishesfor
a< 1

2 at n= 1
2, siii d G3s3d increaseswhena increases beyond

1
2 in all frames.

Before we concentrate on the Moore-Read state, let us
note that observationsiii d implies that electron correlations at
n= 5

2 are distinctly different from QE correlations atn= 3
8,

even though these twosincompressibled states belong to the
same “universality class”27 sone smoothly evolves into the
other without loss of incompressibility under a continuous
transformation of the pair pseudopotentiald. This confirms
the suspicion based on the form of triplet pseudopotential
V3sR3d of Fig. 4scd that sagainst an earlier assumption27d
Halperin paired state12 is not an adequate description for sys-
tems with subharmonic pseudopotentials at short range. In
particularsagainst our earlier expectation44 but in agreement
with our later numerical results36d such model appears inap-
propriate for the QE’s in CF-LL1 at n= 1

2 or 1
3, corresponding

to the FQH states atn= 3
8 and 4

11. Instead of Halperin pairing,
grouping of pairs into larger clusters seems to occur for the

QE’s, although we are not able to define their correlations
more specifically.

Let us now discuss observationssid–siii d in more
detail. In Fig. 6 we plotG3s3d as a function ofa for N=6 to
14 sonly even values, because the Moore-Read state at
2l =2N−3 is a paired stated. For eachN, G3s3d drops to es-
sentially a zero ata0< 1

2. This result is consistent with the
calculations of overlaps of the exact ground states of modi-
fied Coulomb interaction with the exact Moore-Read trial
state.26,37

Note that although the avoidance ofR3=3 triplets at
n= 1

2 can be extracted from the Moore-Read wave function,
we demonstrate that it really occurs in a system with pair
interactions. Therefore, rather thanassumingthat the Moore-
Read wave function correctly describes then= 1

2 state in LL1,
we demonstrate directly to what extent its defining property
is realized in this system. This result has not been presented
so quantitatively before.

It is difficult to reliably extrapolate the values ofa0 ob-
tained from Fig. 6 to an infinitesplanard system. However,
we notice the following connection with Fig. 4sdd that de-
pends on 2l much more regularly. The pair amplitudes
G2=fG2s1d ,G2s3d ,…g of the R3,9 triplets can be calcu-
lated. On a sphere, they slightly depend on 2l son curvatured,
but the values appropriate for a planesthe g→` limit d
are f 3

4 , 1
4
g, f 9

16 , 1
8 , 5

16
g, and f 3

16 , 5
8 , 3

16
g for R3=3, 5, and 6,

respectively. Using these values and Eq.s2d one can deter-
mine the rangea over whichV3sR3d is superlinear at short
range. The requirement that1

2fV3s3d−V3s5dg.V3s5d−V3s6d
andV3s5d−V3s6d.V3s6d−V3s7d limits a to a rather narrow
window of approximately

0.5, a +
1

4l
, 0.58. s16d

For a reason we do not completely understandfbut that is
connected with a neglected and complicated behavior of
V3sR3d at R3.7g, the value ofa0 in finite systemsssee Fig.
6d is much closer to the lower limit of Eq.s16d. Therefore,
we expect thata0 will follow this lower limit with increasing
2l, and the value appropriate for a planar system should be
even closer to1

2 than the finite-size results of Fig. 6. And

FIG. 5. Dependence of triplet amplitudesG3 on parametera of
pair interactionUa defined by Eq.s5d, calculated on a sphere for the
lowestL=0 states ofN-particle systems representing the same FQH
states as used in Figs. 2 and 3. FIG. 6. The G3s3d vs a curve for n= 1

2 shown in Fig. 5sad,
magnified and replotted for different particle numbersN.
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sinceU1/2 accurately models Coulomb interaction in LL1, we
conclude that the “R3.3” correlations must be an accurate
description for experimentaln= 5

2 FQH stateseven in narrow
samplesd. This conclusion is quite different from an earlier
discussion of finite-size numerical wave functions26,37 which
seemed to imply that a,10% short-range enhancement of
the Coulomb pseudopotential calculated forw=0 in LL1 is
needed to reach good overlap with the Moore-Read state.

V. ENERGY SPECTRA OF SHORT-RANGE THREE-BODY
REPULSION

Knowing that what defines the Moore-Read state is that
electrons in1

2-filled LL1 completely avoid theR3=3 triplet
state,27 let us discuss the energy spectra of the model short-
range three-body repulsion

WsR3d = dR3,3 s17d

which induces precisely this type of correlations. Similar cal-
culations for slightly smaller systems were earlier carried out
by Wen28 and by Read and Rezayi.31 Our spectra in Figs. 7
and 8sad are equivalent, shown here for completeness and to
identify signored befored higher-energy bands, while spectra
in Figs. 8sbd, 8scd, and 9 are original. There is no disagree-
ment between our numerics and previous work,28,31 but we

present an interpretation using Halperin pairing picture.
The three-body interaction matrix elements needed for di-

agonalization in the configuration interactionsCId basis are
connected with the triplet spectrumV3sR3,b3d through ex-
pansion parametersCB

A;kAuBl analogous to the pair
Clebsch-Gordan coefficients

km1,m2,m3uV3um4,m5,m6l = o
R3,b3

Cm1,m2,m3

R3,b3* Cm4,m5,m6

R3,b3

3V3sR3,b3d. s18d

For V3=W the above formula reduces to just one term. How-
ever, diagonalization ofV3 is still far more difficult than of a
salso L-conservingd V2 because of a larger number of non-
zero CI matrix elementssby over 10 times in the systems
discussed further in this sectiond.

A. Moore-Read n= 1
2 incompressible ground-state and excited
magnetoroton bands

In Figs. 7sad and 7sbd we present the results forN=12 and
14 and 2l =2N−3. It is well known that for even values ofN
and for 2l =2N−3 there is exactly one state in the spectrum
with E=0, i.e., with no triplet amplitude atR3=3. In other
words, the Hilbert subspace withR3.3 for all triplets con-
tains exactly one state in this case. At 2l ,2N−3, all states
have amplitudes atR3=3, and at 2l .2N−3 there is more
than one such state. For odd values ofN, no such states occur
for at 2l ø2N−3, and at 2l .2N−3 there are always more
than one. This fact makes the Moore-Read state yet another
beautiful extension of the Laughlin idea for then= 1

3 state at
2l =3N−3 being the only state in its Hilbert space with no
pair amplitude atR2=1. Just as the avoidance of more than
one pair state generated the wholen= 1

3 , 1
5 ,…, sequence, the

avoidance of not just pairs, but tripletssor K-body statesd
gives rise to incompressibility at new values ofn.

The analogy to the Laughlinn= 1
3 state goes beyond the

incompressible ground state. The low-energy excitations
clearly form a band that resembles the magnetoroton curve.31

In frame scd we overlay data obtained for differentN=6 to
14 and plotted as a function of wave vectork sthe charge-
neutral excitations carryingL.0 on a sphere move along
great circles of radiusR, but on a plane they would move
along straight lines withk=L /Rd. The continuous character

FIG. 7. sad, sbd Energy spectrastotal interaction energyE vs
total angular momentumLd calculated on a sphere for even num-
bers of particlesN interacting through triplet pseudopotential de-
fined by Eq.s17d, at the values of 2l =2N−3 corresponding to the
L=0 Moore-Read ground state.scd Energy dispersionsexcitation
energyE as a function of wavevectorkd for the excited magnetoro-
ton band.l is the magnetic length. Similar results were first ob-
tained by Read and RezayisRef. 31d.

FIG. 8. The same as Fig. 7 but for 2l =2N−2 sad and 2l =2N
−4 sbd, scd corresponding to two QH’s and two QE’s in the Moore-
Read state, respectively.

FIG. 9. The same as Figs. 7 and 8 but for odd particle numbers
N and for 2l =2N−2 sad and 2l =2N−3 sbd. Energy dispersionscd is
for the pair-breaking band marked in framesbd. l is the magnetic
length.
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of this band and the minimum atk<1.5l−1 svery close to
k<1.4l−1 of the Laughlin n= 1

3 stated are clearly visible
ssimilar curve has been shown previously;31 here we only
add a proper scaling withNd.

B. Pairing and Laughlin pair-pair correlations

Before we move on to the spectra at 2l Þ2N−3 in search
of the elementary charge excitations of the Moore-Read
state, let us recall Halperin’s12 concept of Laughlin states of
R2=1 pairs that we have also used earlier for the half filling
of both LL1 sRef. 17d and CF-LL1.

36,44The increase ofG2s1d
compared to a Laughlin-correlated state at the samen visible
in Fig. 3sad can be thought of as pairing for botha, 1

2 and 1.
However, whether theR1 pairs will keep far apart from
one another by avoiding small values of their relativespair-
paird angular momentumswhat we would consider Laughlin
correlations among the pairsd has not been established
in either LL1 or CF-LL1. Actually, the fact that only for
N=6,10,14,… sand not forN=8 or 12d do theL=0 ground
states occur in CF-LL1 suggests that Halperin’s idea could
not be correct for the interacting QE’s. However, for the
half-filled LL1, the occurrence of a large value ofG2s1d and,
at the same time, the vanishing ofG3s3d finally offers support
for this idea in the Moore-Read state. By effectively acting
as a short-range three-body repulsionW, Coulomb repulsion
in LL1 allows grouping electrons into pairssat n as large as
1
2d, but it prevents the third electron from getting too close to
a pair. As a result, the pairs exist but each pair attains a hard
core that results in Laughlin correlation with all other pairs
sor unpaired electronsd, and that can be modeled by a ficti-
tious flux attachment in a standard way.

Let us demonstrate how this picture works for the spectra
in Fig. 7. As a result of the appropriate CF
transformation,17,36,44N electrons at 2l =s2N+3d±D are con-
verted toN2= 1

2N CF’s about exactly filling their effective
CF-LL0 shell with 2l0

* =2s2l −1d−7sN2−1d=sN2−1d±2D,
i.e., with the effective degeneracy

g0
* = N2 ± 2D. s19d

These CF’s correspond to theR2=1 pairs of electrons, and
their effective angular momentuml0

* is obtained from
L2=2l −1 by attachment of seven flux quanta to each
pair sfour to account for the pair-pair hard core due to
Pauli exclusion principle, four to model pair-pair Laughlin
correlations, and 1 in the opposite direction to convert the
pairs to fermionsd. At exactly 2l =2N−3, theN-bodysMoore-
Readd ground state is equivalent to a full CF-LL0 with
l0
* = 1

2sN2−1d, i.e., to a Laughlin state ofN2 pairs. The mag-
netoroton band describes QE-QH pair states, with one CF
excited from the full CF-LL0 to the empty CF-LL1 with
l1
* = l0

* +1=1
2sN2+1d. This band extends up toL= l0

* + l1
* =N2.

Higher states above the magnetoroton band contain addi-
tional QE-QH pairs, and the characteristic steps are clearly
visible in the energy spectra in Fig. 7fe.g., atL=s2l0

* −1d
+s2l1

* −1d=N−2 for two QE-QH pairsg.

C. Quasiparticles

In Fig. 8 we present sample spectra obtained for even
values ofN and 2l =s2N−3d±1. As shown previously,28,31 at
2l =s2N−3d+1 there is always a band ofE=0 states at
L=N2, N2−2,…, corresponding to two QH’s in CF-LL0 of
degeneracyg0

* =N2+2. This is shown in framesad for
N=12. Unlike for a Laughlinn= 1

3 state of unpaired elec-
trons, the increase of 2l by unity from the value correspond-
ing to a full CF-LL0 creates not one but two QH’s, as pre-
dicted by Eq. s19d for the picture of Laughlin-correlated
pairs. Note that the same is true for the finite-size Jainn= 2

5
states with two CF LL filled; however, no combination
sN,2ld corresponds to a single QH in a finite-size Moore-
Read statesthe conditiong0

* =N2+1 leads to a half integral
value ofgd, while for the Jainn=2/5 state it occurs for even
N, at 2l = 1

2s5N−7d. Similarly as in Fig. 7, the first excited
band above the 2QH states contains an additional QE-QH
pair, and it extends toL=s3l0

* −3d+ l1
* =N, exactly as marked

in frame sad.
At 2l =s2N−3d−1 no states can haveE=0, but the lowest

band is expected to contain two QE’s in CF-LL1 of degen-
eracy g1

* =N2. Indeed, in spectrasbd and scd obtained for
N=14 and 16, the low-energy bands atL=N2−2,N2−4,…,
can be found as expectedsalthough they are not as well
resolved as the QH bandsd.

What is the electric chargeQ of the QE’s and QH’s?
Being proportional to the LL degeneracy, it can be obtained
from the ratio of g* and g=N/n calculated in theN→`
limit. For a Jainn=n/ s2pn+1d state ofn completely filled
CF-LL’s, the degeneracy of each one isg* =N/n, which leads
to the well-known resultQ /e=g* /g=s2pn+1d−1. For the
present case,g=2N, g* =N2= 1

2N, and the result is precisely
what should be expected for an= 1

8 state of 2e-charged boson
pairs12

Q = e/4. s20d

D. Spectra for odd particle numbers

If the Halperin12 picture could be simply extended to fi-
nite n= 1

2 systems with odd electron numbersN, they would
contain N2= 1

2sN−1d pairs and N1=1 unpaired electron,
forming a two-component Laughlin-correlated fluid.17 What
actually happens is quite different,27 as shown in our two
sample energy spectra in Figs. 9sad and 9sbd.

At 2l =s2N−3d+1 there is a band ofE=0 states that in-
deed correspond to a pair of QH’s of the two-component
fluid. In the CF picture, each QH hasl0

* = 1
2sN2+1d which

gives the totalL=N2,N2−2,…, exactly as obtained for
N=11 in framesad.

At 2l =2N−3 no E=0 states occur, and the numerical re-
sults for differentN always show a band atL= 5

2 , 7
2 ,… , 1

2N,
that seems to describe dispersion of an excitonic state of a
pair of QP’s of opposite charge. This becomes more convinc-
ing in Fig. 9scd, where the data obtained for differentN is
sfor the first timed plotted together as a function of wave
vectork, and a clear magnetoroton-type minimum appears at
k<1.0l−1. The valuesl = 1

4sN±5d of the QP angular mo-
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menta that would explain the observed range ofL do not
agree with the prediction of a Laughlin-correlated state with
N2= 1

2sN−1d andN1=1. Nevertheless, knowing their angular
momenta is enough to predict the charge ±e/4 of thesesuni-
dentifiedd QP’s.

The reason why this low-energy band cannot be described
by a two-component CF modelsactually, for any combina-
tion of N1 and N2d is that they are not pair-pair or pair-
electron, but pair-breakingsPBd excitationssthat by defini-
tion do not conserveN1 or N2d introduced by Greiteret al.27

and later studied in detail by Bonesteel.35 Such excitations
generally occur in paired systems and they are expected to be
charge-neutralsdespite being fermionsd which explains their
continuous energy dispersion in a magnetic field. Still, it
might be possible to decompose them into two more elemen-
tary, charged QP’s.

VI. RELEVANCE TO THE n= 5
2 FQH STATE

Earlier diagonalization studies17,26,27,37 using Coulomb
pseudopotential in LL1 showed theL=0 ground states with a
gap at 2l =2N−3 but no clear indication of QP excitations
identified31 in the spectra of the model three-body repulsion
W. As shown in the top frames of Fig. 10 obtained for
N=12 electrons, the magnetoroton QE-QH band and of the
two-QE bands can indeed hardly be found in these spectra
due to mixing with higher states, and only the two-QH bands
are well separated.

The problem with the identification of the Coulomb
n= 1

2 ground state in LL1 with the Moore-Readsor any otherd
trial state is that the former is very sensitive to the relative
values of the leading pseudopotential coefficients, while the
exact form ofV2sR2d dependssat least, in principled on the
layer widthw in experiments, and onN in finite-size calcu-
lations. As to the width dependence, it turns out that increas-
ing w from zero to realistic experimental values only weakly

affects the nearly harmonic behavior ofV2sR2d at short range
that is essential for the avoidance of theR3=3 triplet state.
As a result, then= 5

2 wave function in experimental systems
depends much less on the width than, e.g., the excitation gap
controlled by the magnitude ofV2.

On the other hand, the strong dependence of correlations
on a, 1

2 in finite systems is clear in Figs. 3sad, 5sad, and 6,
and it is in contrast with the behavior ata,0 or 1, corre-
sponding to the much less sensitive finite-size FQH states in
LL0 and CF-LL1. Remarkably, the gap above the incom-
pressible ground state at 2l =2N−3 persists36 over a wide
range ofa despite even a large distortion of its wave func-
tion, while the QP excitations quickly mix with the con-
tinuum of higher states whenV2 becomes too subharmonic
or superharmonic at short range.

A major problem with the calculations on a sphere is the
size dependences16d of the critical value ofa at which the
avoidance ofR3=3 occurs. It is clearly visible in the plots of
squared overlapszusad= ukfa uculu2 with the eigenstatesfa

of Ua, calculated for the corresponding eigenstatescu of
various other interactionsu: three-body repulsionW and
electron and QE pair pseudopotentialsV2 in LL0, LL1, and
CF-LL1, respectively. For LL1, the overlapszLL1 have been
calculated for both narrowsw=0d and widesw=3.5l; e.g.,
w=20 nm atB=20 Td layers. Note also that the eigenstate of
W used in the calculation of overlaps is automatically prop-
erly symmetrizedsin the original form25 it is not26d.

In Fig. 11 we plot the overlaps for the lowestL=0 states
at 2l =2N−3. Clearly, the exact Moore-Read eigenstate ofW
is an excellent ground state ofUa at a<0.425. So is the
ground state of Coulomb pair interaction in LL1, but at a
different a<0.5. The disagreement between these two val-
ues ofa does not disappear in wide samples, as inclusion of
w even as large as 3.5l does not noticeably change the Cou-
lomb n= 5

2 ground state. Specifically, the overlaps between
the Moore-Read state and the Coulombn= 5

2 ground state
calculated forN=14 are onlyukcWucC1lu2=0.48, 0.58, and
0.71 forw/l=0, 1.75, and 3.5, respectively

The behavior ofzQEsad plotted with narrow dotted lines is
also noteworthy. The QE-QE interaction at half filling can be

FIG. 10. sad–scd Energy spectra similar to those in Figs. 7–9, but
obtained for the Coulomb pair pseudopotential of the first excited
LL in Fig. 1sbd. sdd–sfd Spectra of the same systems obtained for
parameterV2s1d increased by 9%.

FIG. 11. Squared overlapsz of the lowest L=0 eigenstate
of pair interactionUa defined by Eq.s5d calculated on a sphere at
2l =2N−3, with the corresponding eigenstates of three-body repul-
sion W sMoore-Read stated, electron interaction in the lowest and
excited LL sthe narrow solid line is for layer widthw=3.5ld, and
QE interaction in the Laughlinn= 1

3 state, plotted as a function ofa.
Framessad and sbd correspond toN=12 and 14 particles.
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described byU1 quite well forN=14 swhere the calculations
indicate a finite-sizeL=0 ground state with a gapd and some-
what worse forN=12 swhere the ground state is compress-
ibled. But even more interestingly, the Moore-Read state ap-
pears nearly orthogonal to the QE statessthe exact value for
N=14 is ukcWucQElu2=0.03d, which we interpret as yet an-
other strong indication against the QE pairing atn= 3

8.
In Fig. 12 we plot similar overlaps calculated for various

excitations. Framessad, sdd correspond to a QE-QH pair,sbd
to two QE’s,sed to two QH’s, andscd, sfd to the PB neutral-
fermion excitation. We only show the curves for the QE-QH
states atL=6 and 7 near the magnetoroton minimum, for
two-QE and -QH states at smallL=1 scorresponding to large
QP-QP separation for which the curves are less dependent on
QP-QP interaction effectsd, and for the PB atL= 7

2 near the
energy minimum and at a largeL= 15

2 . All frames show simi-
lar behavior to Fig. 11, only the disagreement between
the eigenstates ofW and the Coulomb eigenstates is more
pronounced. The QP excitations of the three-body repulsion
W remarkably well describe actual excitations of a system
with a two-body interactionUa. However, not for the value
of a corresponding to the Coulomb interaction in LL1 sre-
gardless of the layer widthd. The overlaps between eigen-
states ofW and the electron eigenstates in LL1 are even
lower than those for the Moore-Read state. The specific val-
ues forN=14 andw=0 sand forw=3.5l in parenthesesd are
ukcWucC1lu2=0.03, 0.00, 0.27, 0.19, 0.12, 0.46s0.03, 0.02,
0.39, 0.31, 0.20, 0.60d for theL=2,3,… ,7 states of the mag-
netoroton QE1QH band, 0.47, 0.16, 0.07s0.52, 0.28, 0.14d
for the L=1, 3, 5 states of two QE’s, and 0.39, 0.12, 0.39,
0.27s0.53, 0.17, 0.64, 0.32d for theL=1, 3, 5, 7 states of two
QH’s, respectively. The values for the PB band forN=13 are
0.45, 0.19, 0.41, 0.31, 0.34s0.56, 0.34, 0.44, 0.46, 0.47d for
L= 5

2 , 7
2… , 13

2 , respectively. Such small overlaps precludesin-
dicatedd interpretation of excited states in Fig. 10sad and
10sbd as QE’s ofW .

This invokes the question raised in the introduction of
whether the Moore-Read trial state and its QP excitations are

only an elegant idea, not realized in known even-
denominator FQH statessat n= 5

2 or 3
8d. Fortunately, the dis-

agreement appears to be largely artificial. The size depen-
dences16d of a0 can be traced to the size dependence of the
pair amplitudes G2sR2d of the triplet eigenstates at
R3=3,5,6,…, directly caused by the surface curvature. This
is obtained by combining the following observations:sid the
occurrence of “R3.3” three-body correlations defining the
Moore-Read state depends not directly on the specific short-
range behavior of pair pseudopotentialV2, but on the form of
triplet pseudopotentialV3 at smallR3; sii d the relation be-
tweenV2 andV3 son a sphered is more size sensitive than the
short-range harmonic behavior of Coulomb interactionV2. It
is therefore only due to the surface curvature thatsin finite
systems on a sphered a0,

1
2 is different from the value

a= 1
2 appropriate for the Coulomb pseudopotential in LL1.

This is consistent with larger overlaps calculated for the
Moore-Read state on a torus.26

At N→`, we expect thata0< 1
2 in coincidence with the

behavior ofV2sR2d in the same limit, and that the energy
spectra of CoulombV2 and modelW interactions should be-
come similar. To improve the agreement atNø14, for which
we were able to calculate the spectra,V2s1d must be slightly
enhanced in accordance with Eq.s16d. For example, for
N=12 the near vanishing ofG3s3d at 2l =2N−3 occurs when
V2s1d is increased by 9% from its Coulomb value, in good
agreement with the result of Morf.37 The N=12 electron en-
ergy spectra calculated for this interaction with marked fea-
tures associated with the QP’s are shown in bottom frames of
Fig. 10.

The above discussion yields the following statements.sid
Finite-size calculations on a sphere using Coulomb pair in-
teraction do not correctly reproduce correlations of an infi-
nite n= 5

2 state. They use pseudopotentials corresponding to
a< 1

2, different from a0,
1
2 leading to the avoidance of

R3=3. Thea=a0= 1
2 coincidence is probably recovered for

N→` which would mean that the real, infinite systems at
n= 5

2 do have the “R3.3” correlations while the correlations
in finite systems are different and size dependent.sii d In fi-
nite systems, correct “R3.3” correlations are recovered if
the pair pseudopotential is appropriately enhanced at short
range.siii d Assuming that that thea=a0= 1

2 coincidence is
restored in infinite systemssor in different, e.g., toroidal ge-
ometryd, the equivalence of Coulomb andW interactions at
half filling is not limited strictly to the Moore-Read ground
state. Thes±e/4d-charged QP’s and the neutral-fermion PB
identified in the spectra ofW accurately describe the low-
energy charge excitations in the realsCoulombd n= 5

2 sys-
tems. Although the effective interactions between QP’s may
lead to their binding or dressingsjust as atn= 1

3 QH’s and
“reversed-spin” QE’s bind to form skyrmionsd, they are
simple objects with an elegant interpretation in terms of
Laughlin-like three-body correlations.

VII. CONCLUSION

We have studied two- and three-body correlations in par-
tially filled degenerate shells for various interactions between

FIG. 12. Similar to Fig. 11ssolid and dashed lines mean the
samed but for different low-energy states at 2l =s2N−3d and
s2N−3d 61, corresponding to pair QE and QH states and the pair-
breaking excitation of the three-body interactionW.
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the particles. Variation of the relative strength of two leading
pair pseudopotential coefficients drives the correlations
through three distinct regimes. The intermediate regime, cor-
responding to the nearly harmonic pseudopotential at short
range, describes correlations among electrons in LL1, par-
ticularly in then= 5

2 FQH state.
In contrast to the correlations between electrons in LL0 or

between Laughlin QE’s in CF-LL1 swhose pseudopotentials
are strongly superharmonic and subharmonic at short range,
respectivelyd, the intermediate regime is not characterized by
a simple avoidance of just one pair eigenstate corresponding
to the strongest anharmonic repulsion. Instead, we have
shown that near half filling the low-energy states for such
interactions have simple three-body correlations. In resem-
blance of Laughlin pair correlations, they consist of the
maximum avoidance of the triplet state with the smallest
relative angular momentumR3=3, i.e., with the smallest
area spanned by the three particlessin analogy to pair corre-
lations, avoidance means here the minimization of a triplet
amplituded.

In particular, at exactly half filling, this corresponds to the
fact27 that the Moore-Read ground state is the zero-energy
eigenstate of a model short-range three-body repulsionW
with the only pseudopotential parameter atR3=3. The
Moore-Read ground state is a three-body analog of the
Laughlin n= 1

3 state withR2.1. It is separated by a finite
excitation gap from a magnetoroton band with a minimum at
k<1.5l−1. Its elementary excitations are thes±e/4d-charged

QP’s sRefs. 27 and 31d sthat naturally occur for Halperin12

stated and the PB excitation.27,35The bands of few-QP states
near half filling are well described by a CF picture appropri-
ate for Laughlin pair-pair correlations.

Finally, the problem of numerical calculations on a sphere
associated with the surface curvature is addressed. It is found
that finite-size models using Coulomb interaction between
electrons do not correctly reproduce correlations of the
n= 5

2 FQH state due to the distortion of triplet wave func-
tions. Especially for the excitations of then= 5

2 ground state,
the overlaps with the Moore-Read-like correlated states are
rather small. However, it is argued that then= 5

2 FQH state
observed experimentally in narrow systems is described
much better by the Moore-Read trial state than could be in-
ferred from the small-size calculations. Consequently, the
origin of its incompressibility is precisely the avoidance of
theR3=3 triplet state, and its elementary excitations are the
s±e/4d-charged QP’s and the neutral PB.
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