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Theory of radiative recombination from the metastable excited states of quantum dots
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The radiative recombination of an exciton~electron-hole pair! confined in a semiconductor quantum dot is
studied within a general model based on the effective-mass approximation. The dependence of the photolumi-
nescence spectrum on the size of the dot and the magnetic field describe well a series of recent experimental
results. In particular, a characteristic splitting of the main photoluminescence peak into a doublet or triplet is
observed at the critical size and magnetic field, as a consequence of the appearance of metastable states in the
exciton spectrum.@S0163-1829~98!06915-X#
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I. INTRODUCTION

Recent progress in the semiconductor technology led
the development of various methods for the preparation
quasi-zero-dimensional quantum dots.1,2 The electron–ion-
beam lithography combined with wet or dry etching allow
for a confinement of a well-controlled number of electro
within rectangular or circular dots with diameters
10 – 100 nm.3 Another method involved the lithographi
creation of miniature electrodes above the surface of a qu
tum well, producing an electric lateral confinement free
edge defects.4,5 Also reported was a direct growth of so
called self-assembled quantum dots~SAD’s!, by means of
the metal-organic chemical vapor deposition, metal-orga
vapor phase epitaxy, or molecular-beam epitaxy, where
dots are spontaneously formed in form of islands of loca
increased thickness, due to the high strain present in the
posited layer.6–11 The SAD’s are typically very small, e.g
for InxGa12xAs/GaAs structures the dot diameter reaches
nm,7 and for InAs/GaAs even 6 nm.11 The confining barriers
can also be created by the focused-laser-beam~FLB!-
induced local interdiffusion of atoms between a pair
coupled quantum wells, e.g., in the GaAs/AlxGa12xAs
structure.12

A common feature of all quantum dots created by vario
growth techniques is that they are always in the form o
small islet of a semiconductor material embedded in a s
rounding crystal structure of another material, typically in
quantum-well structure. This common property results in
similar behavior of all quantum dots, especially from t
point of view of their optical properties. As demonstrated
a series of experiments with various types of dots, the p
toluminescence~PL! spectrum probing the recombination
excitons localized in the dots can be characterized by a s
ting of the main peak, compared to a single-peak spectrum
the free exciton in a quantum well.7,12,13 This splitting is
sensitive to the diameter of the dot, and is accompanied
small blueshift.7,13 In the presence of a magnetic field th
570163-1829/98/57~15!/9069~12!/$15.00
to
f

n-
f

ic
e

y
e-

3

f

s
a
r-

a

o-

it-
of

a

additional third peak can be observed,14 but only at small
fields. At strong fields all splittings disappear, and only t
main peak in the PL spectrum is observed.

The PL spectrum of a single quantum dot in the abse
of a magnetic field was studied by Brunneret al.12 The
sample used in the experiment was prepared using the
method. The PL measurements were carried out at a t
perature of 5 K, and various diameters of the dot. At a la
dot size (;1000 nm) only one PL peak was observed. W
the decrease of the dot diameter, the PL maximum exhib
a characteristic splitting and a small blueshift. The maxim
splitting ~10 meV! occurred for the size of;450 nm. Below
450 nm the blueshift continued, but the splitting decreas

The radiative recombination from quantum dots in t
presence of a perpendicular magnetic field was recently
amined by Bayeret al.14 The InxGa12xAs/GaAs quantum-
dot structures used in the experiment were fabricated u
the high-resolution electron-beam lithography. The re
rangement of the PL spectrum was observed under the v
tion of both the dot diameter and the magnetic field. T
maximum number of three resolved transitions were repo
in the PL spectrum of dots with the diameter of 35 nm.
zero magnetic field a main line at 1.435 eV and a shoulde
1.440 eV appeared, and both showed a weak dependenc
the magnetic field in the range of low fields (B<2 T). At
B54 T an additional feature appeared at 1.445 eV, a
shifted slightly with an increase of the field. AtB58 T only
the main peak remained. For the 34- and 41-nm dots, at m
two PL peaks were observed at lower magnetic fields, an
8 T the PL spectrum resembled that of the 35-nm dot.

Since the quantum dots seem to offer the possibility of
application in future optical or optoelectronic devices~such
as the quantum-dot-based lasers8,10 or optical memories15!,
an understanding of the optical properties of these system
needed. A number of papers have already appeared, w
this problem was approached using the band structure
scription of the quantum dot.16 In this paper we shall explain
the observed properties of the PL from quantum dots wit
9069 © 1998 The American Physical Society
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9070 57JACAK, KRASNYJ, KORKUSIŃSKI, AND WÓJS
a simple and general model, where the appearance of
higher peaks in the PL spectrum is related to the occurre
of the metastable excited states in the exciton energy s
trum. The model can be applied at least to a qualitative
scription of various types of quantum dots.

II. MODEL

For the model analysis, we assume that the dot is qu
two-dimensional~2D!, i.e., that it is formed within a narrow
quantum well~x-y plane! with an intersubband spacing sig
nificantly exceeding the characteristic excitation energies
sociated with the lateral confinement. The 2D model app
very well to a wide class of quantum dots with the except
of very small pyramidal InAs/GaAs SAD’s~typically around
1231236 nm!.10,11 However, slightly larger lens-shape
InxGa12xAs/GaAs SAD’s~e.g., diameter 36 nm and heigh
4.4 nm in Ref. 9! can be to a good approximation describ
by an effective 2D confinement that accounts for their
geometry.16 Further, we assume a rotational symmetry of t
lateral confining potential, which is obvious for circular do
but also well justified in the case of rectangular, electrica
defined dots.17 This holds also for lens-shaped but not f
pyramidal SAD’s. The assumption of rotational symme
leads to the conservation of thezth component of total an
gular momentum of the system, and hence, e.g., to degen
cies in the energy spectrum and to selection rules for opt
transitions. If possible deviations from a circular shape~ne-
glected in our model! are not too strong, one can expect th
the associated splittings of energy levels are small, and
additional allowed optical transitions have little oscillat
strength. The magnetic field is aligned across the quant
dot plane, i.e., along thez axis ~in a 2D model an in-plane
component of the field couples only to the electron spin; t
can be included by rescaling the Zeeman energy!.

As the dot is treated as a small and local perturbation
the crystal field of a surrounding semiconductor, and the
teraction between the quantum dot and the carriers ha
electric nature, the empty dot attracts the conduction elec
and repels the valence hole~or vice versa!. However, the
hole can be captured by an electron localized in the do
result of the electron-hole Coulomb attraction. This effec
strongly sensitive to the variation of the dot diameter and
magnetic field, and gives rise to the understanding of
experimentally observed PL phenomena.7,12–14

The lateral potential of an empty quantum dot of radiusL,
which attracts the electron and repels the hole, will be
sumed in the Gaussian form:7V0 exp(2r2/L2), where the
signs ‘‘2’’ and ‘‘ 1’’ correspond to the electron and hole
respectively. The HamiltonianH of the electron-hole pair
confined in a quantum dot, and in a perpendicular magn
field B, written in the effective-mass approach for the si
plest two-band semiconductor, contains the single-part
terms He and Hh , and the Coulomb interaction potenti
VC(re ,rh)52e2/eure2rhu, scaled by the dielectric constan
e. The single-electron Hamiltonian is

He52
\2

2me
De1Ve~r e!1

1

2
\vcel ze, ~1!

whereme is the effective mass andvce5eB/cme is the cy-
clotron frequency. The single-hole HamiltonianHh is ob-
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tained fromHe by replacing the subscripts:e→h, and re-
versing the sign of the angular-momentum term~due to the
opposite charge!. We restrict the calculus to the two-ban
model, including only the heavy-hole subband~the light
holes give a weaker contribution to the dot PL spectrum, a
the intersubband mixing can often be neglected due to str
etc.9!, and hence in the ideal 2D case the effective hole m
is the in-plane heavy-hole mass of a given material. Ho
ever, in a more realistic case, the effective hole mass coul
certain approximation take into account the weak inters
band mixing, actual dimensionality of the dot, and the effe
associated with the dot-barrier interface.

The bare single-particle potentials in the presence o
magnetic field are

Ve~r !52V0 expS 2
r 2

L2D1
1

8
mevce

2 r 2

5\v0eF2
1

a
expS 2

ar 2

2l0e
2 D 1

1

8

vce
2 r 2

v0e
2 l0e

2 G , ~2!

Vh~r !51V0 expS 2
r 2

L2D1
1

8
mhvch

2 r 2

5\v0eF1
1

a
expS 2

ar 2

2l0e
2 D 1

1

8

vce
2 r 2

v0e
2 l0e

2 •

me

mh
G , ~3!

where v0e
2 52V0 /meL

2, l0e
2 5\/mev0e , and a5\v0e /V0

52l0e
2 /L2.

We will confine our considerations to the case
V0/L25const, i.e., constant curvature of the potent
v0e5const. This still allows for a variation of the dot diam
eter, as the parametera controls the depth of the confinin
potentialV0 and, connected with it, the radiusL. Increase of
a corresponds to decrease of the dot dimensions, as show
Fig. 1.

FIG. 1. Schematic picture explaining the physical meaning
parametera5\v0e /V0 , controlling the size of a quantum dot; th
curvature\v0e is fixed.
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57 9071THEORY OF RADIATIVE RECOMBINATION FROM THE . . .
Within the Hartree approach we will look for the excito
wave functions in the form

F~re ,rh!5fe~re!fh~rh!, ~4!

wherefe andfh are the electron and hole wave function
satisfying the usual self-consistent equations. The elec
and hole Hartree HamiltoniansHe andHh , which include
particle-hole interaction, are obtained by adding the s
consistent interaction terms to the single-particle Hami
nians He and Hh ~1!, i.e., by replacing the single-particl
potentialsVe @Eq. ~2!# andVh @Eq. ~3!# by the effective Har-
tree potentialsUe andUh :

Ue~r e!5Ve~r e!2
e2

e E drh

ufh~rh!u2

ure2rhu
, ~5!

andUh is obtained fromUe by the interchange of subscript
e↔h. The properties of these potentials are crucial for
PL behavior, because the mutual influence of two carr
located in the dot turns out to be strongly sensitive to the
diameter and to the external magnetic field. These poten
occur to be generally of double-well shape, what genera
the doublets of states for the hole and for the electron, w
the same rotational symmetry~zero angular momentum!.
Products~4! of these single-particle states therefore descr
the joint electron-hole-pair~exciton! states, which are meta
stable against the dipole-type radiative interband transiti
~far-infrared!.

The electron and hole Hartree energiesEe and Eh ~the
eigenvalues ofHe andHh! are counted from the edges of th
conduction and valence bands, respectively. The total en
of the pair~exciton!,

E5Ee1Eh2
e2

e E dreE drh

ufe* ~re!u2ufh* ~rh!u2

ure2rhu
, ~6!

is thus counted from the band gapEg .

III. ELECTRON-HOLE-PAIR STATES
IN THE QUANTUM DOT

Provided that

e2

e E drh

ufh~rh!u2

ure2rhu
,

e2

eL
,\v0e , ~7!

where\v0e is of the order of the single-electron excitatio
energy in the dot, we can use perturbation methods to s
the Hartree equations defined byHe andHh . In the case of
the commonly used material GaAs, the right-hand relat
means L.20 nm for \v0e55 meV ~or L.2 nm for
\v0e550 meV!, and holds.

In the zeroth-order approximation, in Eq.~5! we neglect
the electron-hole interaction and thus find the eigenfuncti
fe and eigenenergiesEe of the single-electron Hamiltonian
He . The low-energy electron wave functions are localized
the region ofr;l0e . Thus, in order to find the electro
ground state, we can expandVe in the power series with
respect to the dimensionless parameterl0e /L,1 ~e.g., for
GaAs,l0e;15 nm for\v0e;5 meV!:

Ve~r !'2V01 1
2 meṽ ce

2 r 2, ~8!
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whereṽce
2 5v0e

2 1vce
2 /4[v0e

2 b2. In this approximation, the
ground-state energy and wave function have the form

Ee52V01\ṽce5\v0eS 2
1

a
1b D , ~9!

fe~r !5
1

Aple

expS 2
r 2

2le
2D , ~10!

wherele
25\/meṽce5l0e

2 /b. We can restrict our consider
ations to the interval 1>b21>a>0, so as to avoid the ar
tifact of our approach~E.0, i.e., the electron is not confine
in the dot!. In the absence of a magnetic field (B50), we
haveb51, and therefore the above condition simplifies
1>a>0.

In the next step of the perturbation, we put the zero
order electron wave function~10! into the hole Hartree po-
tential @cf. Eq. ~5!#, and arrive at the eigenequation for th
hole Hartree HamiltonianHh , with the potentialUh , read-
ing

Uh~r !5V0 expS 2
r 2

L2D1
1

8

me
2

mh
vce

2 r 22
e2

2l0e
2 Apb

3expS 2
br 2

2l0e
2 D I 0S 2

br 2

2l0e
2 D , ~11!

whereI 0 is the Bessel function.
From Eq.~11! it follows that the effective potential of the

hole Uh has two minima in the absence of a magnetic fie
~the positions of these minima will be denoted asr Lh50 and
r Rh.0!, and decays to zero forr→`. The subscriptsL and
R denote the left~central! and right ~outer! minima of the

FIG. 2. Typical shape of the hole Hartree potentialUh at B50
~solid line! and at a magnetic fieldB52 T ~dashed line!, for the size
parametera50.5. Insets show the minimum values ofUh , ULh ,
andURh , and the position of the second minimum,r Rh , as a func-
tion of the size parametera.
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9072 57JACAK, KRASNYJ, KORKUSIŃSKI, AND WÓJS
profile of this potential, respectively~cf. solid line in Fig. 2
for a50.5!. With the increase of the parametera ~corre-
sponding to a decrease of dot dimension!, the energies of the
pair of minima,ULh5Uh(0) andURh5Uh(r Rh), decrease.
Simultaneously, the second minimum approaches the
one, and disappears for a large enougha, i.e., a small enough
quantum dot (a;0.8). For the calculations, we used para
eters appropriate for the GaAs quantum well, and the qu
tum dot with the curvature of confinement\v0e57.5 meV.

In the presence of a magnetic field the potentialUh also
has two minima, but it tends to infinity forr→`, as a result
of the enhancement of the hole confinement due to the m
netic field~cf. dashed line in Fig. 2, fora50.5 andB52 T;
see also Fig. 7!. The minimaULh andURh decrease with an
increase ofa, and the second minimum approaches the fi
one ~i.e., r Rh decreases! and disappears for large enougha
(a;0.8). At a fixeda the potentialULh does not change
significantly with an increase of the magnetic field, butURh
grows rapidly. At high fields the second minimum disa
pears. The behavior of the hole potential is illustrated in
insets of Figs. 2 and 7, where all features described above
clearly visible.

It is important to notice that the appearance of a pair
wells in the effective binding potential of a hole~and further
also of an electron! is caused by the nonsingularity of th
bare lateral potential, combined with the singularity of t
electron-hole Coulomb interaction. This leads to a lo
minimum in the hole Hartree potential around the position
the electron, even if it coincides with the local maximum
the bare lateral potential of the dot. Actually, due to the fin
thickness of the well and the spread of the electron and h
wave functions across the dot, the effective Coulomb pot
tial as a function of the in-plane distance is not singul
However, for a narrow well it has a sharp minimum arou
ure2rhu50, and our arguments still hold. Note that calcu
tions performed for magnetoexcitons in a quantum w
trapped by donors or acceptors, where the bare confinem
has the atomiclike singularity, reveal the absence o
double-well effective Hartree potential structure, and in t
case no metastable states appear. This has also been
firmed experimentally.18

Taking the advantage of the double-well structure of
potentialUh , we can solve the hole motion by independen
studying the motions in the two wells, and later including t
coupling between the wells via the off-diagonal tunneli
matrix element. Thus the pair of lowest-energy hole sta
will be approximated by diagonalizing the HamiltonianHh
in the subspace spanned by the pair of ground states in
two wells treated separately:cLh andcRh , with the energies
ELh andERh , respectively. The ground state (i 51) and the
first excited state (i 52) of the hole are hence assumed in t
form

fh
~ i !~r !5cL

~ i !cLh~r !1cR
~ i !cRh~r !, ~12!

with the coefficients cL and cR calculated from the
minimum-energy condition. Due to the nonvanishing co
pling between the wells, the corresponding pair of energ
Eh

(1) andEh
(2) are always separated by a gap, even in the c

of degeneracy of the single-well levels (ELh5ERh). The de-
tails of the calculation are presented in Appendix A, and h
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let us notice that due to the same parity~zero angular mo-
mentum! of both single-well ground statescLh andcRh , the
two coupled statesfh

(1) andfh
(2) are also of the same parity

Summarizing, as a result of a double-well structure of
Hartree potential, the low-lying excited state appears in
hole energy spectrum with zero angular momentum, sim
to what occurs in the ground state. Hence we deal wit
doublet of hole states with a forbidden dipole radiative tra
sition.

In the absence of a magnetic field the energyEh
(1) is posi-

tive and the energyEh
(2) is negative~cf. solid lines in Fig. 3!.

This means that the state withi 51 does not describe a hol
localized in the quantum dot, and the hole is localized o
in the state withi 52. The coefficientucL

(2)u increases with
the increase ofa, but always remains smaller thanucR

(2)u ~cf.
Appendix A!, i.e., the hole in the state withi 52 is localized
on the ring around the second minimum of the potentialUh .

The inclusion of a magnetic field increases the confi
ment of the hole@Uh(r )→` for r→`#, which is now local-
ized in the dot in both states withi 51 and 2. The hole in the
state withi 51 is localized in the center of the dot around t
first minimum of the potentialUh (ucL

(1)u.ucR
(1)u), while in

the state withi 52 it is localized on the ring around th
second minimum (ucL

(2)u,ucR
(2)u). At a fixed magnetic field,

whena increases~i.e., the dot diameter decreases!, the val-
ues of Eh

(1) and Eh
(2) , and the difference between the

DE5uEh
(1)2Eh

(2)u, decrease~cf. dashed lines in Fig. 3, for
B52 T!. When the second minimum disappears~for
a;0.75!, the energy levels meet. At a fixeda, with the
increase of the magnetic field, the energyEh

(1) changes only
slightly, butEh

(2) rapidly increases. If the field is sufficientl
strong, the energy levels meet when the second minim
disappears~e.g., fora50.3 the levels meet atB;5 T!.

FIG. 3. Hole Hartree energiesEh
(1) ~hole in the dot center! and

Eh
(2) ~hole on a ring around the dot center! at magnetic fieldsB50

~solid line! and B52 T ~dashed line!, as a function of the size
parametera. The inset shows the difference between the ene
levels in the absence of a magnetic field.
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After having calculated the energies and wave functio
of the ground (i 51) and the first excited (i 52) states of the
hole, we shall now proceed with the perturbation calcul
and find for these states the pair of Hartree potentialsUe

(1)

andUe
(2) acting on the electron@cf. Eq. ~5!#. A brief descrip-

tion of this procedure is presented in Appendix B.
In the absence of a magnetic field, the hole is localiz

only for i 52, and in this case we consider only the functi
Ue

(2) , which decays to zero for infinite radii. The potenti
Ue

(2) usually also has two minima, the positions of which w
denote asr Le

(2)50 and r Re
(2).0. The characteristic shape o

this curve is presented in Fig. 4, fora50.5 ~solid line!, and
in Fig. 7~b!. When the parametera increases, the minimum
value ULe

(2)[Ue
(2)(0) increases, and decrease bo

URe
(2)[Ue

(2)(r Re
(2)) and the distance between the minimar Re

(2)

~equal roughly tor Rh
(2)!.

In the presence of a magnetic field, it is necessary
consider both functionsUe

(1) andUe
(2) , which rise to infinity

for infinite radii. The potentialsUe
(1) andUe

(2) usually have a
single minimum atr 50 ~cf. dashed lines in Fig. 4!. Only for
specific values ofa andB can the functionUe

(2) have a pair
of minima ~e.g., for a50.5 andB54 T!. Here, at a fixed
magnetic field, the minimum values of functionsUe increase
asa increases~cf. the inset in Fig. 4 forB52 T and Fig. 7!.

After a discussion of the properties of potentialsUe , we
shall put these functions into the electron Hartree Ham
tonianHe and solve the corresponding Schro¨dinger equation.
Since again, in general, we are dealing with a double-w
structure of the Hartree potentialUe , the two lowest ener-

FIG. 4. Typical shape of the electron Hartree potentialUe
(2)

~hole on a ring around the dot center! at a magnetic fieldB50
~solid line, size parametera50.5! and of the potentialsUe

(1) and
Ue

(2) ~hole in the dot center and on a ring around the dot cen
respectively! for B52 T ~dashed lines,a50.4!. Insets show the
minimum values of these potentials—both minima ofUe

(2) at B50,
and the first~left! minima of Ue

(1) and Ue
(2) at B52 T ~bottom

right!, and the position of the second~right! minimum atB50 ~top
left!, as functions of the size parametera.
s

,

d

o

l-

ll

gies and corresponding wave functions can be calcula
analogously as in the case of the hole~cf. Appendix A!.
WheneverUe

( i ) has two minima, there will be two low-
energy states with the same parity~zero angular momentum!
in the electron energy spectrum, denoted asfe

( i j ) ~j 51, 2
indicates the electron state andi indicates the hole state!.
These states are approximated in the form of linear com
nations of the ground states of the two uncoupled wells,

fe
~ i j !~r !5dL

~ i j !cLe
~ i !~r !1dR

~ i j !cRe
~ i !~r !. ~13!

The state withj 51 describes the electron localized in th
center of the dot (udL

( i1)u.udR
( i1)u), and the state withj 52

describes the electron localized on the ring around the
ond minimum of the potentialUe (udL

( i2)u,udR
( i2)u). Summa-

rizing, depending on whetherUe
( i ) has one or two minima,

there will or will not be a low-energy excited electron sta
with the same parity as the ground state.

Detailed calculations show that at zero and very we
magnetic fields, when the hole occupies the state withi 52
~energyEh

(2)!, the electron can occupy each of the two sta
with j 51 and 2~energiesEe

(21) andEe
(22)!. As shown in Fig.

5, whena increases,Ee
(21) increases andEe

(22) decreases. The
distance between the electron energy leve
DE5uEe

(22)2Ee
(21)u, initially decreases, and then reaches

minimum value ata;0.5 and increases again.

r,

FIG. 5. Electron Hartree energiesEe as a function of the size
parametera. Solid line: magnetic fieldB50, the bound states ar
Ee

(21) andEe
(22) ~hole on a ring around the dot center; electron in t

dot center and on a ring around the dot center, i.e., on top of
hole, respectively!. Dashed line: magnetic fieldB52 T; the bound
states areEe

(21) andEe
(11) ~electron in the dot center; hole on a rin

around the dot center and in the dot center, i.e., on top of
electron, respectively!. Insets: the distance between the energy le
els for B50 and 2 T~left!. E(22) andE(21): Exciton recombination
energies in the absence of a magnetic field~hole on a ring around
the dot center, electron in the dot center and on a ring around
dot center, i.e., on top of the hole, respectively!, as a function of the
size parametera ~right!.
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In relatively weak magnetic fields (B;2 – 3 T), each of
the two hole states withi 51 and 2~energiesEh

(1) andEh
(2)!

corresponds to the appropriate electron state withj 51 ~en-
ergyEe

(11) or Ee
(21) , respectively!. With the increase ofa, the

energiesEe
(11) andEe

(21) increase, while the distance betwe
them DE5uEe

(21)2Ee
(11)u decreases. Fora large enough

(a;0.6), the second minimum of the hole potential disa
pears, and the levelsEe

(11) and Ee
(21) meet ~cf. Fig. 5 for

B52 T!.
An interesting feature which occurs in higher magne

fields (B;4 – 6 T) is that, in a certain range of parametera
~dot size!, when the hole occupies a state withi 52, the
electron can be in each of the two states withj 51 and 2
~energiesEe

(21) andEe
(22)!. When the magnetic field increase

at a fixeda, the electron energiesEe
(11) and Ee

(21) increase,
grow closer to each other, and finally meet when the fi
exceeds the critical value. Fora both too small and too large
the second minimum of the electron potentialUe

(2) disap-
pears, and only one electron state withj 51 ~energyEe

(21)!
corresponds to the hole state withi 52.

Let us now turn to a description of joint electron-hole p
states. As shown above, the number of these states, with
total energy and zero electron and hole angular moment
determined by the number and depths of minima in the e
tron and hole Hartree potentialsUh and Ue , which signifi-
cantly depend on the dot size and magnetic field. The dep
dencies ofUh andUe

(2) have been plotted in the form of 3D
graphs in Fig. 7~potentialUe

(1) always has only one mini
mum atr 50, and has not been shown!. Combining the elec-
tron and hole states together, we can classify the poss
states of the electron-hole pair (i , j 51,2)

F~ i j !~rh ,re!5fh
~ i !~rh!fe

~ i j !~re!, ~14!

with energies

E~ i j !5Eh
~ i !1Ee

~ i j !1VC
~ i ! . ~15!

In the above,VC
( i ) stands for the Coulomb energy of the pa

@Eq. ~6!#, approximated by the expectation value of the Co
lomb potentialVC in the exciton state, where the hole occ
pies the statei , and the electron is in its zeroth-order sta
given by formula~10!. In this approximation the interactio
energy can be evaluated analytically@cf. expression~A29!#.

Out of four possible joint statesF ( i j ), the stateF (12) is
never stable or metastable, as none of the particles occu
a local minimum of its Hartree potential. The other thre
F (11), F (22), andF (21), can be stable or metastable, depen
ing on the dot size and the magnetic field~which govern their
energies with respect to the continuum of unbound electr
hole states!. In F (11) and F (22), the electron and hole
roughly speaking, sit on top of each other. InF (21), the
electron and hole are spatially separated, but both occ
local minima of their Hartree potentials~electron in the mini-
mum of its bare lateral potential and hole away from t
maximum of its bare lateral potential!.

The crucial property of states~14! is that the correspond
ing electron and hole Hartree states are all of the same p
~all have zero angular momentum!, and therefore the dipole
type radiative transitions between each pair of levels are
bidden. Hence, when the phonon-assisted relaxation
-

d

w
is

c-

n-

le

-

ies
,
-

n-

py

ity

r-
o-

cesses are suppressed due to the small dot dimensions,13 and
the only efficient relaxation mechanism involves the em
sion of a far-infrared photon, the excited states~14! aremeta-
stable. Unlike all other excited states, the metastable sta
make traps for confined excitons, and lead to the appeara
of additional, higher-energy peaks in the PL spectra of qu
tum dots. This property is crucial for our model, and resu
from the double-well structure of the effective electron a
hole potentials. Splittings of the electron and hole ene
levels gives rise to the explanation of the splittings of the
spectra. At this point our approach differs from the simp
model of the single well, described, e.g., by Raymondet al.9

Note that a splitting of the PL peak is observed even a
very low excitation power@cf. Fig. 6~c!#,12 which strongly
supports the explanation in terms of metastable states.

Since the energyE( i j ) is counted from the band gap, th
actual annihilation energy of the electron-hole pair in t
state (i j ) is \v ( i j )5Eg1E( i j ), while the distance betwee
the two PL peaks reads

DE~ i j ,i 8 j 8!5uE~ i j !2E~ i 8 j 8!u. ~16!

Following the earlier discussion of the stability of electro
and hole states depending on the magnetic field and the
radius, we can predict the following structure of the PL sp
tra.

In zero or very weak magnetic fields, there are tw
electron-hole pair states with (i j )5(21) and ~22!, and
thus there are two PL peaks separated byDE(21,22)

5uEe
(22)2Ee

(21)u. The dependence of the spectrum on the
size is shown in Fig. 6, where the experimental data
included for comparison. The intensities of peaks we
evaluated from the overlap of electron and hole wave fu
tions. With an increase ofa, the ground-state energyE21
increases, i.e., the main PL peak shifts toward higher e
gies, which has been verified by numerous experiments.
distance between the main and additional PL peaksDE(21,22)

at first decreases, and then reaches its minimum value
increases. At the criticala, when the distance between th
peaks reaches minimum~this critical a depends on\v0e!,
the two peaks have similar intensities, while for smaller a
larger dots the main peak dominates. This is exactly what
been observed in experiment.12

In relatively weak magnetic fields (B;2 – 3 T), there are
two electron-hole pair states with (i j )5(11) and~21!, and
thus there are two PL peaks separated
DE(11,21)5uEh

(11)2Ee
(21)1VC

(1)2VC
(2)u. With the increase of

a, the energiesE11 and E21 increase~i.e., both main and
additional PL peaks shift toward higher energies!, while the
distance between them at first changes only slightly, and t
rapidly decreases. Above the critical value ofa the energies
E11 andE21 meet.

In moderate magnetic fields (B;4 – 6 T), and for a cer-
tain range of the parametera, in addition to the doublet of
states with (i j )5(11) and~21!, the third electron-hole pair
state appears with (i j )5(22). Thus the third PL peak
emerges, separated from the second
DE(21,22)5uEe

(22)2Ee
(21)u. Whena is either too small or too

large, the triplet of peaks is replaced by a doublet, and
ther by a single peak for very small dots. Note that three
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FIG. 6. ~a! Left: electron Hartree potentialsUe
(2) ~hole on a ring around the dot center! for three different sizes of the quantum dot, in th

absence of the magnetic field. Right: corresponding PL spectra; dashed lines—peak intensities calculated from the electron-hole o
a50.3, 0.5, and 0.7; solid lines—experimental PL spectra after Ref. 12~single GaAs/AlxGa12xAs interlayer-diffused dot of diameterw!. ~b!
PL spectrum of an InxGa12xAs/GaAs SAD with diameter;13 nm; numbers 1–9 label spectra corresponding to different average dot
obtained with selective excitation, after Ref. 7.~c! PL spectra of a quantum dot with diameter 450 nm for various excitation powers,
Ref. 12.
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the maximum number of metastable states of a single exc
predicted within our model at any magnetic field and d
size, which agrees with the experiment of Bayeret al.14 In
strong fields (B>8 T) higher peaks subsequently disappe
and the PL spectrum consists of a single main peak, whic
also verified experimentally.14

Summarizing, depending on the size of the quantum
two types of a magnetic-field evolution of the PL spectru
are possible:~i! Medium dot: there are two peaks atB050,
the third one emerges atB1.0 and disappears atB2.B1 ,
and finally the second peak disappears atB3.B2 . ~ii ! Small
or large dot: there are two peaks for all fields below t
critical value, at which the higher peak disappears. The p
dicted behavior has been confirmed by experiment—
bottom-right inset in Fig. 7.

IV. CONCLUSION

In conclusion, the PL spectrum, due to recombination
the exciton captured by the quantum dot, has been stu
theoretically both in the absence and presence of a mag
field. The electron and hole effective potentials, determin
in the effective-mass approach, exhibit a double-well str
ture, which is a consequence of the nonsingularity of the b
lateral electron and hole potentials. The positions and de
of the pair of minima of these potentials depend strongly
the dot diameter. This results in a blueshift of the overall
n
t

r,
is

t,

e-
f.

f
ed
tic
d
-
re
hs
n
L

spectrum with a diminishing of the dot, and the splitting
the PL peak. This splitting is due to the existence of a d
blet of excitonic states, in which both electron and hole ha
zero angular momentum, and hence the dipole-type
infrared~FIR! transitions between these states are forbidd
Let us underline that the simple band-model description
the dot does not allow for such an effect. Moreover, t
splitting observed experimentally does not change even
very small excitation power,12 which supports the idea o
metastable states.

Inclusion of a magnetic field modifies electron and ho
confinements, and has a significant influence on the shap
the effective potentials. In weak magnetic fields the hole
tential has the shape of the double well, but both correspo
ing electron potentials have only a single minimum. The
fore, the two PL peaks are observed. For intermed
magnetic fields and for a certain size of the dot, an additio
minimum appears in the electron potential, leading to
appearance of an additional, third PL peak. In strong m
netic fields both potentials have a single-well structure due
the enhancement of the confinement for both carriers. It
duces the PL spectrum to a single peak. The presented
havior of the quantum dot PL spectrum agrees very well w
the available experimental data.7,12–14

Let us also state that the behavior described above all
for an understanding of the structure of the PL spectrum



e

9076 57JACAK, KRASNYJ, KORKUSIŃSKI, AND WÓJS
FIG. 7. Dependence of the hole~left! and electron~right! Hartree potentials~Uh andUe
(2)! on the size parametera for the magnetic fields

B50, 2, 4, 6, and 8 T. Potentials in vertical axes are given in the units of\v0e , and the horizontal axes are common for all graphs. AtB54
and 6 T the bound hole state withi 52 exists only below the critical value ofa, and atB58 T does not exist in the entire shown rang
a50.2 – 0.7.Inset: the experimental PL spectra, after Ref. 14; the measurements were carried out on InxGa12xAs/GaAs dots with diameters
34 nm ~I!, 35 nm~II !, and 41 nm~III !, and in magnetic fields 0–9 T.
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highly excited dots, when more than one exciton is captu
Recent experiments on highly excited lens-shap
InxGa12xAs/GaAs SAD’s ~Ref. 9! reveal the existence o
three peaks without the magnetic field, which split into fo
in the presence of a magnetic field. The third peak was a
observed for highly excited dots created by the interdiffus
method @cf. Fig. 6~c!#.12 A qualitative explanation of this
phenomenon is based on the existence of the singlet
triplet states of an electron pair in the many-exciton comp
~it is crucial to consider a two-electron–one-hole or a tw
hole–one-electron complex!. These states also have zero a
gular momentum, which leads to the metastability against
d.
d

r
o

n

nd
x
-
-
e

FIR dipole transition, and give rise to four peaks in the P
spectrum. However, the appropriate exchange term is v
small ~for GaAs!, and two of these four states are almo
degenerate, but this degeneracy is removed by the mag
field. It mimics the experimental behavior mentioned abo
For pyramidal InAs/GaAs SAD’s the theoretical approa
should account for the lack of the rotational symmetry of t
lateral potential. It may result in the appearance of allow
transitions, and thus in the modification of the PL spectru
However, if the nonrotational correction is small, addition
transitions are expected to have small oscillator stren
Therefore, compared to our model, we may expect qua
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tively similar PL spectrum, with broadened or fine-shap
maxima. It has been observed in experiments.11
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APPENDIX A

We consider a particle~hole! moving in an axially sym-
metric, double-well potentialUh , and subject to a magneti
field. Around each minimum, the potentialUh can be ex-
panded into a power series of radiusr , and in the proximity
of each minimum we can use the quadratic approximat
Thus, around the first minimum atr Lh50, we have

Uh~r !'ULh1 1
2 mhvLh

2 r 2, ~A1!

where the minimum value isULh5Uh(0), and thecurvature
around the minimum is given by a characteristic frequen
vLh , defined asmhvLh

2 5U h9(0). The ground-state wave
function and energy of a hole moving in such a single q
dratic well are

cLh~r !5ALh expF2
1

2 S sL

r

l0e
D 2G , ~A2!

ELh5ULh1\vLh , ~A3!

wheresL
25mhvLh

2 /mev0e
2 andALh5sL /Apl0e .

In the proximity of the second minimum atr Rh.0, the
potentialUh is approximated as

Uh~r !'URh1
1
2 mhvRh

2 ~r 2r Rh!
2, ~A4!

where the minimum value isURh5Uh(r Rh), and the curva-
ture is defined asmhvRh

2 5U h9(r Rh). The ground-state wave
function of a hole in this potential will be assumed in t
following form:

cRh~r !5ARh expF2
1

2 S sR

r 2r Rh

l0e
D 2

1 f hS sR

r

l0e
D G ,

~A5!

where sR
25mhvRh

2 /mev0e
2 . Note, that bothcLh and cRh

have the same parity~zero angular momentum!. The function
f h can be calculated by putting the above wave function i
the Schro¨dinger equation, what leads to the following diffe
ential equation:

2 f h9~z!12 f h8~z!~z2zRh!1@ f h8~z!#2

2
f h8~z!

z
1

zRh

z
2212

ERh2URh

\v0e
50, ~A6!

where z5sRr /l0e and zRh5sRr Rh /l0e . In the limit of z
→`, we expand the solutionf h into the series

f h~z!5 (
n51

`

an~zRh /z!n, ~A7!

and in the limit ofz→0, into
d

/

n.

y

-

o

f h~z!5 (
n51

`

bn~zRh•z!n. ~A8!

By substituting the above into Eq.~A6!, the series of coeffi-
cients a and b can be calculated up to a desire

order, namely, $a%5 1
2 , 1

4 , 1
6 21/12zRh

2 ,..., and $b%51,

2 1
2 ,2/9zRh

2 ,... . Since the series ofuanu andubnu are decreas-
ing, the asymptotic expansions forf h in both limits of z
→0 and` can be obtained by keeping a fixed number ofN
terms in Eqs.~A7! or ~A8!, respectively. The approximat
expression valid in the entire range ofz can be constructed
e.g., by adding the (N11)-order term to one of the limiting
expansions, with the coefficient calculated from the contin
ity condition. The eigenenergy associated with the wa
function cRh @cf. Eq. ~A5!# is

ERh5URh1\vRh , ~A9!

and the constantARh is found from the normalization condi
tion

ARh'
sR

A2pl0e

exp@ f h~zRh!#

3H 1

2
exp@2zRh

2 #1
Ap

2
zRh@11F~zRh!#J 21/2

,

~A10!
where

F~zRh!5
2

Ap
E

0

zRh
dz exp~2z2! ~A11!

is the error integral.
In the next step, the coupling between the two wells of

potentialUh is introduced via the tunneling matrix elemen
leading to the mixing of the two statescLh and cRh . The
coefficientscL and cR in Eq. ~12! are calculated from the
minimum-energy condition in the ground statefh

(1) , and the
orthogonality of two states:fh

(1)'fh
(2) . The energy of the

hole in the state with givencL andcR reads

Eh5cL
2E dr cLh~r !HhcLh~r !1cR

2E dr cRh~r !HhcRh~r !

12cLcRE dr cLh~r !HhcRh~r !. ~A12!

The condition for the vanishing of the variations ofEh with
respect tocL and cR can be conveniently written using th
coefficientscL* andcR* , defined as

FcL

cR
G5 1

12rh
2 F 1

2rh

2rh

1 GFcL*

cR*
G , ~A13!

whererh stands for the overlap integral:

rh5E dr cLh~r !cRh~r !. ~A14!

In terms ofcL* and cR* , the minimum-energy condition ha
the form of the following eigenequation:

FELh*
I LR

I RL

ERh* GFcL*

cR*
G5EhFcL*

cR*
G , ~A15!
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where we use the following notation:

ELh* 5
1

12rh
2 H E dr cLh~r !HhcLh~r !

2rh
2E dr cLh~r !HhcRh~r !J 'ELh2

rh
2bLh

12rh
2 ,

~A16!

ERh* 5
1

12rh
2 H E dr cRh~r !HhcRh~r !

2rh
2E dr cRh~r !HhcLh~r !J 'ERh2

rh
2bRh

12rh
2 ,

~A17!

I LR5
1

12rh
2 H E dr cRh~r !HhcLh~r !

2rh
2E dr cLh~r !HhcLh~r !J '

rhbLh

12rh
2 , ~A18!

I RL5
1

12rh
2 H E dr cLh~r !HhcRh~r !

2rh
2E dr cRh~r !HhcRh~r !J '

rhbRh

12rh
2 , ~A19!

where

bLh5UhS r Rh

sR
2

sL
21sR

2 D 2ULh2
1

2
\v0eS mhvLh

2

mev0e
2 D

3S r Rh

l0e

sR
2

sL
21sR

2 D 2

, ~A20!

bRh5UhS r Rh

sR
2

sL
21sR

2 D 2URh2
1

2
\v0eS mhvRh

2

mev0e
2 D

3S r Rh

l0e

sR
2

sL
21sR

2 D 2

. ~A21!

The overlap integralrh can be evaluated using the sadd
point method, and reads

rh5b expH 2
r Rh

2

l0e
2

sR
2sL

2

sR
21sL

22F f hS r Rh

l0e

sR
3

sR
21sL

2D
2 f hS r Rh

l0e
sRD G J , ~A22!

where the prefactorb has the form

b52
sL

sR
H sR

2

sR
21sL

2 expF2
r Rh

2

2l0e
2

sR
4

sR
21sL

2G
1

r Rh

l0e

sR
3

sR
21sL

2 Ap

2

sR
2

sR
21sL

2

-

3F11FS r Rh

l0e

sR
2

A2~sR
21sL

2!
D G J H expF2

r Rh
2 sR

2

l0e
2 G

1ApsR

r Rh

l0e
F11FS r Rh

l0e
sRD G J 21/2

. ~A23!

The secular equation associated with the eigensystem~A15!
reads

detUELh2Eh

I RL

I LR

ERh2Eh
U50, ~A24!

and ~assuming thatELh.ERh! has the solutions

Eh
~1!5ELh1gh , ~A25!

Eh
~2!5ERh2gh , ~A26!

where

gh5
ELh2ERh

2 HA11
4rh

2bLhbRh

~12rh
2!~ELh2ERh!

221J .

~A27!

For each of energiesEh , the coefficientscL* andcR* can be
now found, and the coefficientscL and cR are obtained via
transformation~A13!.

Additionally, the energy of the Coulomb interaction b
tween an electron in the zeroth-order ground state~10! and a
hole in the state with a given pair of coefficientscL andcR ,
can be written as

VC52
e2

el0e
ApbE drh expF2

br h
2

2l0e
2 G I 0F br h

2

2l0e
2 G

3ucLcLh~rh!1cRcRh~rh!u2. ~A28!

The value of this integral can be approximated using
saddle-point method:

VC52
e2

el0e
ApbH cL

21cR
2 expF2

br Rh
2

2l0e
2 G I 0Fbr Rh

2

2l0e
2 G12cLcR

3expF2
b

2 S r Rh

l0e

sR
2

sL
21sR

2 D 2G I 0Fb

2 S r Rh

l0e

sR
2

sL
21sR

2 D 2G J .

~A29!

APPENDIX B

The Hartree potential of an electron in the presence o
hole is defined by Eq.~5!. For the hole state in form~12!,
with a given pair of coefficientscL and cR , the interaction
term in expression~5! can be written as

W~r ![2
e2

e E dr 8
ufh~r 8!u2

ur2r 8u

5cL
2WL~r !1cR

2WR~r !12cLcRWLR~r !. ~B1!

The potentialsWL andWR are the Hartree potentials in th
presence of a hole occupying the left or right single-w
state, respectively, andWLR is the off-diagonal term:
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WL~r !52
e2

e E dr 8
ucLh~r 8!u2

ur2r 8u
52

e2

el0e
ALh

2 E dx
exp~2sL

2x82!

ux2x8u
52

e2

el0e
ApsL expS 2

sL
2x2

2l0e
2 D I 0S sL

2x2

2l0e
2 D , ~B2!

WR~r !52
e2

e E dr 8
ucRh~r 8!u2

ur2r 8u
52

e2

el0e
ARh

2 E dx8
exp@2sR

2~x82xRh!
222 f h~sRx8!#

ux2x8u
, ~B3!

WLR~r !52
e2

e E dr 8
cLh~r 8!cRh~r 8!

ur2r 8u
52

e2

el0e
ALhARhE dx8

exp@2sL
2x82/22sR

2~x82xRh!
2/22 f h~sRx8!#

ux2x8u
, ~B4!

where we use the dimensionless coordinatesx5r /l0e , x85r 8/l0e , andxRh5r Rh /l0e . The functionWR can be evaluated
using the saddle-point method:

WR~r !52
e2

el0e

sR
2

2p

2 exp@2 f h~sRr Rh /l0e!#

exp@2sR
2r Rh

2 /l0e
2 #1Ap@11F~sRr Rh /l0e!#sRr Rh /l0e

E dx8
exp@2sR

2~x82xRh!
222 f h~sRx8!#

ux2x8u

'2
e2

el0e

sR
2

p

1

exp@2sR
2r Rh

2 /l0e
2 #1Ap@11F~sRr Rh /l0e!#sRr Rh /l0e

E dx8
exp@2sR

2~x82xRh!
2#

ux2x8u
. ~B5!

We can see that, forr→`,

WR~r !→2
e2

er
1OS 1

r 2D . ~B6!

Introducing the variablex95x82x from expression~B5!, as follows:

E dx8
exp@2sR

2~x82xRh!
2#

ux2x8u
5exp@2sR

2~x21xRh
2 !#E

0

`

dx9exp@2sR
2x92#E

0

2p

duexp@2sR
2~2xx9 cosu

22xRhAx21x9212xx9 cosu!#. ~B7!

The subintegral function reaches its maximum atx950. Therefore, atx9/x!1, we can use the expansion

Ax21x9212xx9 cosu5xF11
x9

x
cosu1

1

2 S x9

x D 2

~12cos2 u!1¯ G . ~B8!

We include only first two terms, i.e., we approximate the functionWR as follows:

WR~r !522A
e2

el0e
sR

2 expF2S sR

r 2r Rh

l0e
D 2G E

0

`

dx9exp@2sR
2x92#E

0

2p

duexp@22sR
2x9~x2xRh!cosu#

52A
e2

el0e
sRApexpF2

1

2 S sR

r 2r Rh

l0e
D 2G I 0F1

2 S sR

r 2r Rh

l0e
D 2G , ~B9!

where

A5
A8

2p H expF2
1

2 S sR

r 2r Rh

l0e
D 2G1ApsR

r Rh

l0e
F11FS sR

r Rh

l0e
D G J 21

. ~B10!

The constant factorA8 was introduced in order to compensate for the rejection of multipliers in Eq.~B5!. This factor ensures
the proper asymptotical behavior of the functionWR for r→`. Because expression~B9! for r→` takes the form

WR~r !→2
e2

er
A1OS 1

r 2D , ~B11!

then the consistence with Eq.~B6! requires the choice ofA8 such thatA51. This leads to the expression

WR~r !52
e2

el0e
sRApexpF2

1

2 S sR

r 2r Rh

l0e
D 2G I 0F1

2 S sR

r 2r Rh

l0e
D 2G . ~B12!

We use further the same procedure to approximate the functionWLR :

WLR~r !52
e2

el0e
AprhAsL

21sR
2

2
expF2

sL
21sR

2

4l0e
2 S r 2

r RhsR
2

sL
21sR

2 D 2G I 0FsL
21sR

2

4l0e
2 S r 2

r RhsR
2

sL
21sR

2 D 2G . ~B13!
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Finally, the interaction part of the electron Hartree potentialW takes the form

W~r !52Ap
e2

el0e
H cL

2sL
2expF2

1

2 S sL

r

l0e
D 2G I 0F1

2 S sL

r
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2sRexpF2
1

2 S sR

r 2r Rh
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2 S sR

r 2r Rh

l0e
D 2G

12cLcRrhAsL
21sR

2

2
expF2

sL
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2

4l0e
2 S r 2

r RhsR
2

sL
21sR

2 D 2G I 0FsL
21sR

2

4l0e
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sL
21sR

2 D 2G J . ~B14!
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