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Theory of radiative recombination from the metastable excited states of quantum dots
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The radiative recombination of an excitéelectron-hole pajrconfined in a semiconductor quantum dot is
studied within a general model based on the effective-mass approximation. The dependence of the photolumi-
nescence spectrum on the size of the dot and the magnetic field describe well a series of recent experimental
results. In particular, a characteristic splitting of the main photoluminescence peak into a doublet or triplet is
observed at the critical size and magnetic field, as a consequence of the appearance of metastable states in the
exciton spectrum.S0163-182608)06915-X]

[. INTRODUCTION additional third peak can be obsen¥dput only at small
fields. At strong fields all splittings disappear, and only the
Recent progress in the semiconductor technology led tonain peak in the PL spectrum is observed.
the development of various methods for the preparation of The PL spectrum of a single quantum dot in the absence
quasi-zero-dimensional quantum dbfsThe electron—ion- of a magnetic field was studied by Brunnetal? The
beam lithography combined with wet or dry etching allowedsample used in the experiment was prepared using the FLB
for a confinement of a well-controlled number of electronsmethod. The PL measurements were carried out at a tem-
within rectangular or circular dots with diameters of perature of 5 K, and various diameters of the dot. At a large
10-100 nm® Another method involved the lithographic dot size (~1000 nm) only one PL peak was observed. With
creation of miniature electrodes above the surface of a quarthe decrease of the dot diameter, the PL maximum exhibited
tum well, producing an electric lateral confinement free ofa characteristic splitting and a small blueshift. The maximum
edge defect$® Also reported was a direct growth of so- splitting (10 me\) occurred for the size of 450 nm. Below
called self-assembled quantum d¢®AD’s), by means of 450 nm the blueshift continued, but the splitting decreased.
the metal-organic chemical vapor deposition, metal-organic The radiative recombination from quantum dots in the
vapor phase epitaxy, or molecular-beam epitaxy, where thpresence of a perpendicular magnetic field was recently ex-
dots are spontaneously formed in form of islands of locallyamined by Bayert all* The InGa,_,As/GaAs quantum-
increased thickness, due to the high strain present in the deet structures used in the experiment were fabricated using
posited layef 1! The SAD’s are typically very small, e.g., the high-resolution electron-beam lithography. The rear-
for In,Ga, _,As/GaAs structures the dot diameter reaches 13angement of the PL spectrum was observed under the varia-
nm,” and for InAs/GaAs even 6 nit. The confining barriers tion of both the dot diameter and the magnetic field. The
can also be created by the focused-laser-be&iB)- maximum number of three resolved transitions were reported
induced local interdiffusion of atoms between a pair ofin the PL spectrum of dots with the diameter of 35 nm. At
coupled quantum wells, e.g., in the GaAsf8k _,As zero magnetic field a main line at 1.435 eV and a shoulder at
structuret? 1.440 eV appeared, and both showed a weak dependence on
A common feature of all quantum dots created by varioughe magnetic field in the range of low fieldB£2 T). At
growth techniques is that they are always in the form of 8B=4 T an additional feature appeared at 1.445 eV, and
small islet of a semiconductor material embedded in a surshifted slightly with an increase of the field. Bt=8 T only
rounding crystal structure of another material, typically in athe main peak remained. For the 34- and 41-nm dots, at most
guantum-well structure. This common property results in awo PL peaks were observed at lower magnetic fields, and at
similar behavior of all quantum dots, especially from the8 T the PL spectrum resembled that of the 35-nm dot.
point of view of their optical properties. As demonstrated in  Since the quantum dots seem to offer the possibility of an
a series of experiments with various types of dots, the phoapplication in future optical or optoelectronic devigssich
toluminescencéPL) spectrum probing the recombination of as the quantum-dot-based lagéfsor optical memorie's),
excitons localized in the dots can be characterized by a splian understanding of the optical properties of these systems is
ting of the main peak, compared to a single-peak spectrum afeeded. A number of papers have already appeared, where
the free exciton in a quantum wélt?3 This splitting is  this problem was approached using the band structure de-
sensitive to the diameter of the dot, and is accompanied by scription of the quantum ddf.In this paper we shall explain
small blueshift’*® In the presence of a magnetic field the the observed properties of the PL from quantum dots within
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a simple and general model, where the appearance of the
higher peaks in the PL spectrum is related to the occurrence
of the metastable excited states in the exciton energy spec-
trum. The model can be applied at least to a qualitative de-
scription of various types of quantum dots. —T -

energy

2
{

1. MODEL

For the model analysis, we assume that the dot is quasi-
two-dimensional2D), i.e., that it is formed within a narrow
guantum well(x-y plane with an intersubband spacing sig- v
nificantly exceeding the characteristic excitation energies as- L
sociated with the lateral confinement. The 2D model applies Vo a=1
very well to a wide class of quantum dots with the exception = | <N\ [ ~ ¥~
of very small pyramidal InAs/GaAs SAD'&@ypically around L
12x12x 6 nm).1>! However, slightly larger lens-shaped Y
In,Ga _,As/GaAs SAD’s(e.g., diameter 36 nm and height
4.4 nm in Ref. 9 can be to a good approximation described
by an effeectlve 2D confinement that E_iCCOUﬂtS for their 3D FIG. 1. Schematic picture explaining the physical meaning of
geometryl. ,Fwther' we assume a rOtat'_onal sym_metry of theparametettz:ﬁw()e/vo, controlling the size of a quantum dot; the
lateral confining potential, which is obvious for circular dots, curvaturef wo, is fixed.
but also well justified in the case of rectangular, electrically
defined dots! This holds also for lens-shaped but not for

pyramidal SAD’s. The assumption of rotational symmetry i )
leads to the conservation of thzth component of total an-  VeSing the sign of the angular-momentum telue to the

gular momentum of the system, and hence, e.g., to degenergpposite charge We restrict the calculus to the two-band

cies in the energy spectrum and to selection rules for opticgf"odel, including only the heavy-hole subbafitie light
transitions. If possible deviations from a circular shape-  °I€S give a weaker contribution to the dot PL spectrum, and

glected in our modglare not too strong, one can expect thatthe intersubband mixing can often be neglected due to strain,

9 . . .
the associated splittings of energy levels are small, and th%tc'h)' and Ihencc:l In thehldleal 2D casfe the effective holle mass
additional allowed optical transitions have little oscillator 'S th€ In-plane heavy-hole mass of a given material. How-
strength. The magnetic field is aligned across the quantun?—ver’ in a more realistic case, the effective hole mass could to
dot plane, i.e., along the axis (in a 2D model an in-plane certain approximation take into account the weak intersub-
component of the field couples only to the electron spin; thid2nd mixing, actual dimensionality of the dot, and the effects

can be included by rescaling the Zeeman energy associated with the dot-barrier interface.

As the dot is treated as a small and local perturbation of The _bar_e single-particle potentials in the presence of a
the crystal field of a surrounding semiconductor, and the inMmagnetic field are
teraction between the quantum dot and the carriers has an
electric nature, the empty dot attracts the conduction electron r2
and repels the valence holer vice versa However, the V(r)=—-V, exp( iz

hole can be captured by an electron localized in the dot in

2fito,,

radius

tained fromH, by replacing the subscript&—h, and re-

1
2 .2
+ glf*ewcer

result of the electron-hole Coulomb attraction. This effect is 1 ar? 1 wir?
strongly sensitive to the variation of the dot diameter and the =hwge| — —exp< -—— ) + 3 Zce ~ } 2
magnetic field, and gives rise to the understanding of the @ 2Nge @oeNoe

experimentally observed PL phenoména:14
The lateral potential of an empty quantum dot of radius 2\ 1
which attracts the electron and repels the hole, will be as- v, (r)=+v, exp< r )+ = pune?y?
8

sumed in the Gaussian formeV, exp(—r?/L?), where the L

signs “—" and “ +” correspond to the electron and hole, 1 ar? 1 w22
respectively. The Hamiltoniai of the electron-hole pair =fiwoe +—ex;{ -— )+_ — He . (3
confined in a quantum dot, and in a perpendicular magnetic a 2\0e) 8 whehge Mn

field B, written in the effective-mass approach for the sim-
plest two-band semiconductor, contains the single-particlg, .. 2 _ o\ 7, 12 \2 =3/ and a=fh o NV
terms He and Hy, and the Coulomb interaction potential _, /ali%e 0ffel"s Roe™ M/ fe@oe: @~ R ®0e!Vo
Ve(re,rp) = —€% €|re—ry|, scaled by the dielectric constant ~— “70¢' ™~ * , . .

cuerh e hi We will confine our considerations to the case of

€. The single-electron Hamiltonian is Vo/L?=const, i.e., constant curvature of the potential
2 1 wge= const. This still allows for a variation of the dot diam-
He=— ﬂAe"—Ve(re)"— Eﬁwcelzer (1)  eter, as the parameter controls the depth of the confining
€ potentialV, and, connected with it, the radilis Increase of
where u, is the effective mass and..=eB/cu, is the cy-  « corresponds to decrease of the dot dimensions, as shown in
clotron frequency. The single-hole Hamiltonidh, is ob-  Fig. 1.
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Within the Hartree approach we will look for the exciton 0.3
wave functions in the form

D(re,rp)=de(re) dn(rn), 4 0.2 —

where ¢, and ¢, are the electron and hole wave functions, .
satisfying the usual self-consistent equations. The electror
and hole Hartree Hamiltoniar¥, and H,, which include
particle-hole interaction, are obtained by adding the self- o
consistent interaction terms to the single-particle Hamilto-g
niansH, and Hy, (1), i.e., by replacing the single-particle “=

0.0 —

potentialsV, [Eq. (2)] andV}, [Eg. (3)] by the effective Har- = .
tree potentialdJ, andUy,: 0.4
| pn(rn)|? .

Uelra)=Ve(ro)- fd ry ot ©)
|r Ml 0.2
andU,, is obtained fromJ, by the interchange of subscripts: 4

e—h. The properties of these potentials are crucial for the
PL behavior, because the mutual influence of two carriers -3
located in the dot turns out to be strongly sensitive to the dot 0
diameter and to the external magnetic field. These potential hoe
occur to be generally of double-well shape, what generates
the doublets of states for the hole and for the electron, with F'G- 2. Typical shape of the hole Hartree potentiglat B=0
the same rotational symmetrizero angular momentum (solid line) and at a magnetic fielB=2 T (dashed ling for the size
Products(4) of these single-particle states therefore descrip@drametera=0.5. Insets show the minimum values 0f,, Uvn,
the joint electron-hole-paifexciton states, which are meta- andUgp, and the position of the second minimury, as a func-
tion of the size parameter.

stable against the dipole-type radiative interband transitions
(far-infrared.

The electron and hole Hartree energkes and E,, (the
eigenvalues ot{, and,,) are counted from the edges of the
conduction and valence bands, respectively. The total energy

where®2,= wi,+ w2J4= w3.B2. In this approximation, the
ground-state energy and wave function have the form

. . 1
of the pair(exciton), Ee=—Vo+ h?)ce=hw06( - +81, (9)
e2 * r 2| g% r 2
E—E,1E,- o f dfef dr, |5 ( |e)|_|¢h|( wl ®
‘ et b= = p( 2A2>, 10
is thus counted from the band gé&g. mhe e

where\2=1/u @..= N5/ B. We can restrict our consider-
ations to the interval 28 1=a=0, so as to avoid the ar-
tifact of our approacE>0, i.e., the electron is not confined

lll. ELECTRON-HOLE-PAIR STATES
IN THE QUANTUM DOT

Provided that in the do}. In the absence of a magnetic fielB€0), we
have 8=1, and therefore the above condition simplifies to
il _e 1=a=0. |
— | dryv— |re_rh| —<fiwge, (7 In the next step of the perturbation, we put the zeroth-

order electron wave functiofiL0) into the hole Hartree po-
wherefi wg, is of the order of the single-electron excitation tential [cf. Eq. (5)], and arrive at the eigenequation for the
energy in the dot, we can use perturbation methods to solveole Hartree Hamiltoniark,, with the potentiall,,, read-
the Hartree equations defined b§ andy . In the case of ing
the commonly used material GaAs, the right-hand relation

means L>20 nm for Awg.=5meV (or L>2nm for r2\ 1 ,ue 2 o e?
i wge=50 meV), and holds. Un(r)=Vo eXP( 0zt 8 0o TNz V7B
In the zeroth-order approximation, in E¢h) we neglect h Oe
the electron-hole interaction and thus find the eigenfunctions Br? Br
¢ and eigenenergiels, of the single-electron Hamiltonian Xexp — ng |o( 2)\06) 11

H.. The low-energy electron wave functions are localized in
the region ofr~\q.. Thus, in order to find the electron wherel, is the Bessel function.

ground state, we can expandl in the power series with From Eq.(11) it follows that the effective potential of the
respect to the dimensionless parametgy/L<<1 (e.g., for  hole U, has two minima in the absence of a magnetic field
GaAs, A\ ge~15 nm forfwge~5 meV): (the positions of these minima will be denotedrag=0 and

L —2 o ren>0), and decays to zero for—«. The subscripts and
Ve(r)~—=Votsue@cd (8) R denote the leftcentra) and right(outey minima of the
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profile of this potential, respectivelief. solid line in Fig. 2 20
for «=0.5). With the increase of the parameter(corre-
sponding to a decrease of dot dimengjdhe energies of the
pair of minima,U,=Uy(0) andUg,=U(rgy), decrease.
Simultaneously, the second minimum approaches the first
one, and disappears for a large enoughe., a small enough
guantum dot &~0.8). For the calculations, we used param-
eters appropriate for the GaAs quantum well, and the quan-
tum dot with the curvature of confinemefitoge=7.5 meV.

In the presence of a magnetic field the potentiglalso
has two minima, but it tends to infinity for—oc, as a result e
of the enhancement of the hole confinement due to the mag- ¢5 | Tl @
netic field(cf. dashed line in Fig. 2, for=0.5 andB=2 T,
see also Fig. 7 The minimaU,, andUpg;, decrease with an -
increase ofa, and the second minimum approaches the first
one (i.e., rg, decreasesand disappears for large enough 0.0 | 2
(a~0.8). At a fixeda the potentialU,,, does not change
significantly with an increase of the magnetic field, blg, . I . I . I .

1.5 —

B=0T ——————

1.0 —

Ep, Mo

grows rapidly. At high fields the second minimum disap- 0.2 0.3 0.4 0.5 0.6
pears. The behavior of the hole potential is illustrated in the o
insets of Figs. 2 and 7, where all features described above are

clearly visible. (Z!ZIG. 3. Hole Hartree energids;,” (hole in the dot centg¢rand

It is important to notice that the appearance of a pair of " .(hc.’le on aring around the dqt centet magnc_etic fieldg:(?

. . L . (solid line and B=2 T (dashed ling as a function of the size
wells in the effectlvg binding potential of a _hoﬂand_further parametera. The inset shows the difference between the energy
also of an electronis caused by the nonsingularity of the levels in the absence of a magnetic field.
bare lateral potential, combined with the singularity of the
electron-hole Coulomb interaction. This leads to a local
minimum in the hole Hartree potential around the position oflet us notice that due to the same parigero angular mo-
the electron, even if it coincides with the local maximum of mentum of both single-well ground statef ,, and rp,, the
the bare lateral potential of the dot. Actually, due to the finitetwo coupled stateg\" and ¢{?) are also of the same parity.
thickness of the well and the spread of the electron and hol8ummarizing, as a result of a double-well structure of the
wave functions across the dot, the effective Coulomb potenHartree potential, the low-lying excited state appears in the
tial as a function of the in-plane distance is not singularhole energy spectrum with zero angular momentum, similar
However, for a narrow well it has a sharp minimum aroundto what occurs in the ground state. Hence we deal with a
[re—rp|=0, and our arguments still hold. Note that calcula-doublet of hole states with a forbidden dipole radiative tran-
tions performed for magnetoexcitons in a quantum wellsition.
trapped by donors or acceptors, where the bare confinement In the absence of a magnetic field the en&gﬁ) is posi-
has the atomiclike singularity, reveal the absence of aive and the energf(?) is negative(ct. solid lines in Fig. 3
double-well effective Hartree potential structure, and in thatrhis means that the state with- 1 does not describe a hole
case no metastable states appear. This has also been c@ftalized in the quantum dot, and the hole is localized only
firmed experimentally. in the state withi =2. The coefficienic{?)| increases with

Taking the advantage of the double-well structure of thethe increase of, but always remains smaller thmff)| (cf.
potentialU,,, we can solve the hole motion by independentlyAppendix A), i.e., the hole in the state wiih=2 is localized
studying the motions in the two wells, and later including theOn the ring a’lrour;d the second minimum of the potenial
coupling between the wells via the off-diagonal tnneling The inclusion of a magnetic field increases the confine-
matrix element. Thus the pair of lowest-energy hole State?nent of the holdU(r)— o for r— 0], which is now local-
Wi" be approximated by diagonalizir_wg b Hamiltonim. ized in the dot in b(h)th states with=1 a’md 2. The hole in the
in the subspace spanned by the pair of ground state§ n ths‘i[ate withi =1 is localized in the center of the dot around the
two wells treated separately; , and ¢y, with the energies . - . 1) 1) o
E,, andEgy. respectively. The ground state<(1) and the first minimum of the potentialy, (|c}™|>|ck’|), while in
f Lh @NGERn, TESPECIVEL. 9 .~ the state withi=2 it is localized on the ring around the
irst excited statei=2) of the hole are hence assumed in the . 2 2 ' e

second minimum |¢{?|<|c?)]). At a fixed magnetic field,

form when «a irzcl:)reaseii.(ez.), the dot diameter decreasethe val-
Dy = (D (i) ues of E;” and Ey”’, and the difference between them

Pn (=L PN+ Crdrilr), (12 AE=|EN—E®)|, decreasdcf. dashed lines in Fig. 3, for
with the coefficientsc, and cg calculated from the B=2T). When the second minimum disappeattor
minimum-energy condition. Due to the nonvanishing cou-a~0.79, the energy levels meet. At a fixed, with the
pling between the wells, the corresponding pair of energieincrease of the magnetic field, the enefgfy changes only
E(Y andE{? are always separated by a gap, even in the casslightly, butE{? rapidly increases. If the field is sufficiently
of degeneracy of the single-well levelg,(,=Eg;). The de- strong, the energy levels meet when the second minimum
tails of the calculation are presented in Appendix A, and herelisappearge.g., fora=0.3 the levels meet 8~5T).
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FIG. 5. Electron Hartree energi€s, as a function of the size
parameterwx. Solid line: magnetic field=0, the bound states are
EZY andeP? (hole on a ring around the dot center; electron in the
dot center and on a ring around the dot center, i.e., on top of the
hole, respectively Dashed line: magnetic fielB=2 T; the bound
states ar&€?Y andE™ (electron in the dot center; hole on a ring
around the dot center and in the dot center, i.e., on top of the
electron, respectively Insets: the distance between the energy lev-
els forB=0 and 2 T(left). E®?@ andE?Y: Exciton recombination
energies in the absence of a magnetic figldle on a ring around
) ) _ the dot center, electron in the dot center and on a ring around the

After having calculated the energies and wave functiongjot center, i.e., on top of the hole, respectivels a function of the
of the ground (=1) and the first excitedi & 2) states of the  sjze parametew (right).
hole, we shall now proceed with the perturbation calculus,
and find for these states the pair of Hartree potentif8  gies and corresponding wave functions can be calculated
andugf) acting on the electrofcf. Eq. (5)]. A brief descrip- analogously as in the case of the hagtd. Appendix A.
tion of this procedure is presented in Appendix B. WheneverU{) has two minima, there will be two low-

In the absence of a magnetic field, the hole is localizedenergy states with the same pariero angular momentum
only fori=2, and in this case we consider only the functionin the electron energy spectrum, denoteddég) (i=1, 2
U, which decays to zero for infinite radii. The potential indicates the electron state andndicates the hole state
Uff) usually also has two minima, the positions of which weThese states are approximated in the form of linear combi-
denote ag?=0 andr{>0. The characteristic shape of nations of the ground states of the two uncoupled wells,
this curve is presented in Fig. 4, far=0.5 (solid line), and B o o
in Fig. 7(b). When the parameter increases, the minimum (N =dM gl (r) +d8 yl)r). (13
value U®P=U®(0) increases, and decrease both
UR=U®(r) and the distance between the minimf@) ~ The state withj=1 ciifscnbeif the electron localized in the
(equal roughly ta 2). center of the dot |({"")|>[dk"|), and the state with=2

In the presence of a magnetic field, it is necessary t(gescrlt_)gs the electron Iocgllzed or1_2the rln_% around the sec-
consider both functionY) andU, which rise to infinity ond minimum of the potentidle (/d{'?|<|d&®)]). Summa-

for infinite radii. The potential&){" andU® usually have a  fzing, depending on whethds{) has one or two minima,
single minimum at =0 (cf. dashed lines in Fig.)4Only for  there will or will not be a low-energy excited electron state
with the same parity as the ground state.

Detailed calculations show that at zero and very weak

FIG. 4. Typical shape of the electron Hartree potentid?
(hole on a ring around the dot centeat a magnetic fieldBB=0
(solid line, size parametex=0.5) and of the potential&)(? and
U (hole in the dot center and on a ring around the dot center
respectively for B=2 T (dashed linesp=0.4). Insets show the
minimum values of these potentials—both minimaldf) atB=0,
and the first(left) minima of U{Y and U%® at B=2T (bottom
right), and the position of the secoridght) minimum atB=0 (top
left), as functions of the size parameter

specific values ofr andB can the functiorJ(?) have a pair
of minima (e.g., fora=0.5 andB=4T). Here, at a fixed L . Y
magnetic field, the minimum values of functiodg increase magneuc(gelds, when the hole occupies the state W@
asa increasescf. the inset in Fig. 4 foB=2T and Fig. 7.  (EN€rgyEy™), the electron can occupy each of the two states

After a discussion of the properties of potentibls, we ~ With j=1 and 2(energies€*" andE{*?). As shown in Fig.
shall put these functions into the electron Hartree Hamil55, whena increasesE(?! increases anB{? decreases. The
tonian, and solve the corresponding Sctlimger equation. distance  between  the  electron energy levels,
Since again, in general, we are dealing with a double-welAE=|EZ?—E)|, initially decreases, and then reaches its
structure of the Hartree potentibl,, the two lowest ener- minimum value ata~0.5 and increases again.
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In relatively weak magnetic fieldsB(~2—-3 T), each of cesses are suppressed due to the small dot dimeriSians,
the two hole states with=1 and 2(energiesE{"”) andE{?)  the only efficient relaxation mechanism involves the emis-
corresponds to the appropriate electron state yittl (en-  sion of a far-infrared photon, the excited statb4) aremeta-
ergyE(Y or E?Y, respectively. With the increase of, the stable Unlike all other exmt_ed states, the metastable states
energiesffs“) and 5531) increase, while the distance between make traps for_confmed excitons, a_md lead to the appearance
of additional, higher-energy peaks in the PL spectra of quan-
tum dots. This property is crucial for our model, and results
from the double-well structure of the effective electron and
hole potentials. Splittings of the electron and hole energy
levels gives rise to the explanation of the splittings of the PL
spectra. At this point our approach differs from the simple
model of the single well, described, e.g., by Raymenal?®

them AE=|EY-E(Y| decreases. Fom large enough
(a~0.6), the second minimum of the hole potential disap
pears, and the levelE{(™Y and E(*Y meet (cf. Fig. 5 for
B=2T).

An interesting feature which occurs in higher magnetic
fields B~4-6 T) is that, in a certain range of parameter

(dot sizg, when the hole occupies a state with 2, the  N\gte that a splitting of the PL peak is observed even at a
electron can be in each of the two states withl and 2 yery ow excitation powefcf. Fig. 6c)],*2 which strongly
(energie{™" andE{™?). When the magnetic field increases sypports the explanation in terms of metastable states.

at a fixeda, the electron energieB{*” and E(*") increase, Since the energ () is counted from the band gap, the

grow closer to each other, and finally meet when the fieldactual annihilation energy of the electron-hole pair in the
exceeds the critical value. Farboth too small and too large, state {j) is ﬁw(ii):Eg+ E(D, while the distance between

the second minimum of the electron potentlaf) disap-  the two PL peaks reads
pears, and only one electron state wjth 1 (energyE(e21))
corresponds to the hole state with 2.

Let us now turn to a description of joint electron-hole pair
states. As shown above, the number of these states, with low ) ] ) ) -
total energy and zero electron and hole angular momenta, fsollowing the earlier discussion of the stability of electron
determined by the number and depths of minima in the elec@d hole states depending on the magnetic field and the dot
tron and hole Hartree potentials, andU., which signifi- ~ 'adius, we can predict the following structure of the PL spec-
cantly depend on the dot size and magnetic field. The depef@-: o
dencies olU,, andU® have been plotted in the form of 3D N Z€ro or very weak magnetic fields, there are two
graphs in Fig. 7(potentialU{" always has only one mini- electron-hole pair states withij(=(21) and (22)’(2?92?
mum atr =0, and has not been showi€Combining the elec- thus there are o PL peaks separated D™

_|g(22) _E(21)
tron and hole states together, we can classify the possiblg|Ee. ~~Ee ‘|- The dependence of the spectrum on the dot
states of the electron-hole pair,j=1,2) size is shown in Fig. 6, where the experimental data are

included for comparison. The intensities of peaks were

AEGHID = [E) — g1 (16)

OD(ry,ra)=¢(ry) ¢ (ry), (14)  evaluated from the overlap of electron and hole wave func-
, . tions. With an increase of, the ground-state enerdys
with energies increases, i.e., the main PL peak shifts toward higher ener-

gies, which has been verified by numerous experiments. The
distance between the main and additional PL pekSs*??
In the aboveV{) stands for the Coulomb energy of the pair at first decreases, and then reaches its minimum value and
[Eq. (6)], approximated by the expectation value of the Cou-increases. At the criticak, when the distance between the
lomb potentialVc in the exciton state, where the hole occu- Peaks reaches minimuithis critical « depends orfi wge),
pies the staté, and the electron is in its zeroth-order statethe two peaks have similar intensities, while for smaller and
given by formula(10). In this approximation the interaction larger dots the main peak dominates. This is exactly what has
energy can be evaluated analyticaltf. expressior(A29)].  been observed in experimefit.
Out of four possible joint state® (), the stated*? is In relatively weak magnetic field88(~2-3 T), there are
never stable or metastable, as none of the particles occupi@© electron-hole pair states withj{=(11) and(21), and
a local minimum of its Hartree potential. The other three thus there are two PL peaks separated by
®(D, $(22) andd@Y, can be stable or metastable, depend-AEM2=|E(M—EFD+VE) - V@], With the increase of
ing on the dot size and the magnetic fiélchich govern their ~ a, the energiesE;; and E,; increase(i.e., both main and
energies with respect to the continuum of unbound electronadditional PL peaks shift toward higher energiaghile the
hole states In @™V and 2, the electron and hole, distance between them at first changes only slightly, and then
roughly speaking, sit on top of each other. 42V, the  rapidly decreases. Above the critical valuecothe energies
electron and hole are spatially separated, but both occupk11 andE;; meet.
local minima of their Hartree potentialslectron in the mini- In moderate magnetic field8¢-4—-6 T), and for a cer-
mum of its bare lateral potential and hole away from thetain range of the parametey; in addition to the doublet of
maximum of its bare lateral potentjal states with {(j)=(11) and(21), the third electron-hole pair
The crucial property of statg44) is that the correspond- state appears withij)=(22). Thus the third PL peak
ing electron and hole Hartree states are all of the same pari§merges, separated  from  the  second by
(all have zero angular momentynand therefore the dipole- AE?122=|EZD— gV, When« is either too small or too
type radiative transitions between each pair of levels are forkarge, the triplet of peaks is replaced by a doublet, and fur-
bidden. Hence, when the phonon-assisted relaxation prdher by a single peak for very small dots. Note that three is



57 THEORY OF RADIATIVE RECOMBINATION FROM THE . .. 9075

Y

4 a~05 (Lmiddle)

(a) (b w~ 13 nm

4 a~03 (L large) g( ) SAD
@ 5
Us g

& / NCFE, B

z
..... E 5]
E Lt :
0
z
5
2
5
£

ik

@ |
Ue ML 7ML| 8ML| oML
W50 95 100 105
WAVELENGTH (nm)
E,
- w =450 nm
AN @
(| g — H
sl 5. f\/l E,=1.77eV
.y \l!- 3 V\/\/
A 4 E
o a~0.7 (L small) | z
Ue g |
Q
A
______ E § 125 W
E = 2
2| 1o E,.=1.966V
[

166 170172 14 1T
ENERGY (eV)

Y

r & B fo

FIG. 6. (a) Left: electron Hartree potentialstéz) (hole on a ring around the dot centéor three different sizes of the quantum dot, in the
absence of the magnetic field. Right: corresponding PL spectra; dashed lines—peak intensities calculated from the electron-hole overlap for
a=0.3, 0.5, and 0.7; solid lines—experimental PL spectra after Ragihgle GaAs/AlGa _,As interlayer-diffused dot of diametevr). (b)

PL spectrum of an liGa, _,As/GaAs SAD with diameter-13 nm; numbers 1-9 label spectra corresponding to different average dot sizes
obtained with selective excitation, after Ref.(€¢) PL spectra of a quantum dot with diameter 450 nm for various excitation powers, after
Ref. 12.

the maximum number of metastable states of a single excitogpectrum with a diminishing of the dot, and the splitting of
predicted within our model at any magnetic field and dotthe PL peak. This splitting is due to the existence of a dou-
size, which agrees with the experiment of Bageral* In  plet of excitonic states, in which both electron and hole have
strong fields B=8 T) higher peaks subsequently disappearzero angular momentum, and hence the dipole-type far-
and the PL spectrum consists of a single main peak, which igfrared (FIR) transitions between these states are forbidden.
also verified experimentalfy’. Let us underline that the simple band-model description of
Summarizing, depending on the size of the quantum dokhe dot does not allow for such an effect. Moreover, the
two types of a magnetic-field evolution of the PL spectrumgpjitting observed experimentally does not change even at a
are possible(i) Medium dot: there are two peaks B§=0,  yery small excitation powe? which supports the idea of
the third one emerges &;>0 and disappears &,>B,, metastable states.
and finally the second peak disappear8gt-B,. (i) Small Inclusion of a magnetic field modifies electron and hole

or_t!arglje ?Ot: trtler?]_ar:ethtW(r)]_ p;zaks fokr é"." fields beI%/v theconfinements, and has a significant influence on the shape of
criical value, at which the higher peak disappears. 1he prég, , oo qtiye potentials. In weak magnetic fields the hole po-
dicted behavior has been confirmed by experiment—cf

S - tential has the shape of the double well, but both correspond-
bottom-right inset in Fig. 7. . . . L
ing electron potentials have only a single minimum. There-
fore, the two PL peaks are observed. For intermediate
IV. CONCLUSION magpnetic fields and for a certain size of the dot, an additional

In conclusion, the PL spectrum, due to recombination of MiNiMuM appears in the electron potential, leading to the
the exciton captured by the quantum dot, has been studigdPPearance of an additional, third PL peak. In strong mag-
theoretically both in the absence and presence of a magnetitetic fields both potentials haye a single-well structure due to
field. The electron and hole effective potentials, determinedhe enhancement of the confinement for both carriers. It re-
in the effective-mass approach, exhibit a double-well strucduces the PL spectrum to a single peak. The presented be-
ture, which is a consequence of the nonsingularity of the bargavior of the quantum dot PL spectrum agrees very well with
lateral electron and hole potentials. The positions and deptH&e available experimental dafta’~**
of the pair of minima of these potentials depend strongly on Let us also state that the behavior described above allows

the dot diameter. This results in a blueshift of the overall PLfor an understanding of the structure of the PL spectrum of
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highly excited dots, when more than one exciton is captured-IR dipole transition, and give rise to four peaks in the PL
Recent experiments on highly excited lens-shapedpectrum. However, the appropriate exchange term is very
In,Ga,_,As/GaAs SAD’s (Ref. 9 reveal the existence of small (for GaA9, and two of these four states are almost
three peaks without the magnetic field, which split into fourdegenerate, but this degeneracy is removed by the magnetic
in the presence of a magnetic field. The third peak was alstield. It mimics the experimental behavior mentioned above.
observed for highly excited dots created by the interdiffusionFor pyramidal InAs/GaAs SAD’s the theoretical approach
method [cf. Fig. 6c)].*? A qualitative explanation of this should account for the lack of the rotational symmetry of the
phenomenon is based on the existence of the singlet ardteral potential. It may result in the appearance of allowed
triplet states of an electron pair in the many-exciton complexransitions, and thus in the modification of the PL spectrum.
(it is crucial to consider a two-electron—one-hole or a two-However, if the nonrotational correction is small, additional
hole—one-electron complgxXThese states also have zero an-transitions are expected to have small oscillator strength.
gular momentum, which leads to the metastability against th&herefore, compared to our model, we may expect qualita-



57 THEORY OF RADIATIVE RECOMBINATION FROM THE . ..

tively similar PL spectrum, with broadened or fine-shaped

maxima. It has been observed in experiménts.
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APPENDIX A

We consider a particléhole) moving in an axially sym-

metric, double-well potentidl,,, and subject to a magnetic

field. Around each minimum, the potentibl, can be ex-
panded into a power series of radiysand in the proximity

9077

f(2)= 2, b(Zrn )" X))
By substituting the above into EGA6), the series of coeffi-
cients a and b can be calculated up to a desired
and {b}=1,
—1,2/922,,,... . Since the series d&,,| and|b,| are decreas-
ing, the asymptotic expansions fdp in both limits of z
—0 ando can be obtained by keeping a fixed numbeNof
terms in Egs.(A7) or (A8), respectively. The approximate
expression valid in the entire range otan be constructed,
e.g., by adding theN+ 1)-order term to one of the limiting
expansions, with the coefficient calculated from the continu-
ity condition. The eigenenergy associated with the wave-

of each minimum we can use the quadratic approximationgnction en [cF. Eq. (A5)] is

Thus, around the first minimum at;,=0, we have
Un(N)=~Un+ 3 unofsr?, (A1)

where the minimum value ¥, ,=U,(0), and thecurvature

Ern=Ugrntfiogn, (A9)

and the constamigy, is found from the normalization condi-
tion

around the minimum is given by a characteristic frequency

w n, defined asupw?,=U/(0). The ground-state wave
function and energy of a hole moving in such a single qua-

dratic well are

B 1( r\?
Yn(r)=App ex ARG WAL

Ecn=Upthop,

(A2)

(A3)

Whereafz ,u.hwfh/,uewée andA, = o /7 ge.
In the proximity of the second minimum ak,>0, the
potentialUy, is approximated as

Un(r)~Ugn+ 3 th@&n(r —rrn)?, (A4)

where the minimum value i§lg,=U(rgn), and the curva-

Anr~ éxeexqfh(zm]
1 —-1/2
X{Eexq_zéh]+gZRh[l'i'q)(th)] ,
(A10)
where
2 ZRh
D(zgp) = \/—; fo dz exp(—z%) (A11)

is the error integral.

In the next step, the coupling between the two wells of the
potentialUy, is introduced via the tunneling matrix element,
leading to the mixing of the two statef ,, and Y. The
coefficientsc, and cg in Eq. (12) are calculated from the

ture is defined agpw&,=U h(rrp). The ground-state wave minimum-energy condition in the ground staté”, and the
function of a hole in this potential will be assumed in the grthogonality of two statese(ML #{2. The energy of the

following form:

Yrn(r) =Agp €X —5|or oo + 1y O'R)\Oe ,
(A5)

where 04= upway wews,. Note, that bothy, and ¢y
have the same parifgero angular momentumThe function

hole in the state with given, andcg reads

En=cf f dr i n(r) Hnhn(r) +CR f dr Yre(r) Hnire(r)

dr ¢ n(r) Hnhrn(r). (A12)
The condition for the vanishing of the variations Bf with

+ ZCLCRJ’

f, can be calculated by putting the above wave function intgespect toc, andcg can be conveniently written using the
the Schrdinger equation, what leads to the following differ- coefficientsci andcg, defined as

ential equation:

—fh(@+2f)(2)(z—zrn) +[F1(D]?

fi(z) z Ern—U
P B oy RY "R,

z z hwoe (A6)

where z= ol /\ge @and zg,= orlrp/Nge- IN the limit of z
—oo, we expand the solutiofy, into the series

o

fh(z)= 21 an(zrn/2)",

n=

(A7)

and in the limit ofz— 0, into

CL 1 1 —pnl/ct
=— , Al13
cRl=Tp2l-pn 1k (A13)

wherep,, stands for the overlap integral:
Ph:f dr n(r) gra(r). (A14)

In terms ofc;” andcf, the minimum-energy condition has
the form of the following eigenequation:
el

ch|

ct

CR

o
Lth 'RL

h , (A15)

[ *
LR Rh
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where we use the following notation:

1
Eth:l——pﬁUdr Yn(r) Hndhn(r)

2h

_Pﬁf dr l//Lh(l’)th//Rh(r)] ~ELp— ih—;%

(A16)
Rh= 1,2 [fdr Urn(1) Hnthri(r)

Pthh

_th dr WRh(r)th//Lh(r)] Ern— 1-,2

Pn
(A17)

1
ILR:Hﬁ[fdr Yrn(1) Hntn(r)

PrbLh
_th dr l//Lh(r)th//Lh(f)] 1 p2 (A18)
1
lRL=7—= Jdr PLn(r) Hpthrp(T)
1-pj
2 PrbrA
—ph | dr grp(r) Hpthrn(r) (=~ pEprd (AL19)
where
2 2
OR 1 MhOLh
bLh_Uh(rRh Vi _ULh_EﬁwOe 2)
o to MeWoe
I'Rh ‘Té 2 (A20)
)\Oe O-L+ O-R
2 2
UR MhWRR
th_Uh(rRh 7 —Ugn— Ethe —2)
o to MeWqe
I'Rh ‘TZR 2 (A21)
)\Oe O-L+ O-R

The overlap integrap, can be evaluated using the saddle-

point method, and reads

2 2 3
) —ﬁexp< rRh OROL ¢ (rRh OR
h= 2 |22
)\Oe R+o-,_ )\0602R+0-E
r
—fpl g J (A22)
7\0e

where the prefactog has the form

2 2 4
or | i+ of 2\5, 05+ 0f
2

3
Rh (0=} T OR

2 2 5 2 2
Noe Ot 0f 2 ogtol
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2 2 2
Rh OR I'RhOR
X| 1+ P —_— exg —
Noe \/2(0',%-%- O'E) }k F{ )\cz)e
; —1/2
L L] P L . (A23)
)\ )\Oe

The secular equation associated with the eigensystelr)

reads

ELn—En IR
IrL Ern—En

de =0, (A24)

and (assuming thak, ,>Egy) has the solutions

ELY=Eint 7, (A25)
Et?’=Ern— 7h, (A26)
where
_ Ein—Egn \/1+ 4pibinbgy
T2 (1= p?)(ELn—Ern)?
(A27)

For each of energieg;,, the coefficientc andck can be
now found, and the coefficienty andcg are obtained via
transformation(A13).

Additionally, the energy of the Coulomb interaction be-
tween an electron in the zeroth-order ground sta@ and a
hole in the state with a given pair of coefficiemisandcg,
can be written as

c= J_j drhexr{

7\0e

X|eLn(rn) + Cribra(rn) |2 (A28)

The value of this integral can be approximated using the
saddle-point method:

2

2
e Brrn BrRh
Ve=— J c2+c2 exg — +2¢,¢
C= " eng. VB Gt CR F{ PR EY et
2 \ Noe O’E+ o-é %2\ Noe O'E-f- o% '
(A29)

APPENDIX B

The Hartree potential of an electron in the presence of a
hole is defined by Eq(5). For the hole state in fornil2),

with a given pair of coefficients, andcg, the interaction
term in expressiori5) can be written as

E——fd ,|¢h(r )|2

= cLW,_(r) + cRWR(r) +2c cgW g(r). (B

The potentialsV, and Wy are the Hartree potentials in the

presence of a hole occupying the left or right single-well

state, respectively, and/, i is the off-diagonal term:
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|z,{th(r | g2 exp(— o2x'?) e2 afx2 o2x?
W, (r)=—— | dr’ = Azfd = —|lo| =], (B2
L(r) f —r'| " ENge N X [x—x']| " Eehge Vmo ex 2)\0e ol 2x2, (B2)
lmr )2 € exd — o&(X' —Xgp) =2 fr(oRx’)]
WR(r)___J | 6)\09 jd |X_X/| [} (BS)
mr )¢Rh<r ) e exy] — ot X 22— (X' —Xgp) Y2~ fr(orx’)]
Wir(r)=— Jd ' o] =T eng ALhARhJ dx’ XX , (B4
e

where we use the dimensionless coordinates/\ge, X' =r'/\ge, andXgn="rrn/Age. The functionWg can be evaluated
using the saddle-point method:

G 2 exii2 fr(orrrn/Noe)] ex — o R(x' —xgn)®— 2 fr(orx')]
WR(r)z— N 2— 2 2 ) dXI |X—X,|
€\oe 27 exqf — aAr 3\ 2]+ VAl 1+ ®(orr rn/Noe) JoRFRA N o6
e? o4 1 , ex — o&(x' —xgp)?]
S e 2.2 122 X—x'] (B5)
€ 0e T eXF{—o'RI’Rh/)\Oe]-i- \/;[1"'(I)(O'RrRh/)\OE)]U'RrRh/)\Oe
We can see that, far— o,
e? 1
WR(r)—>—E+O 2/ (B6)
Introducing the variable” =x’' —x from expression{B5), as follows:
exf — o&(X’ —Xgp)?] B 2
J' dx’ |xR—x’| Rh =exp[—02R(x2+x§h)]fo dx”exq—aﬁx”z]fo ddexd — o3(2xx" cos 0
— 2XgpX2+ X2+ 2xX" cos 6)]. (B7)
The subintegral function reaches its maximunx'at 0. Therefore, ak”/x<1, we can use the expansion
" XH 2
WX+ X"2+2xX" cos f=x| 1+ < cost+3 Y) (1—cog 6)+ (B8)
We include only first two terms, i.e., we approximate the funciigg as follows:
e, r—rgn|?] (= 229 (27 2
Wg(r)= exg —| or dx"exg — ogx"“] dexd — 20gX"(X—Xgp)COS 6]
€Noge Aoe 0 0
r—rgrn 1 r—rgp\?
)\Oe O-R\/_eXF{ (JR )\Oe ) 0 E (UR )\Oe ) , (Bg)
where
A’ 1 r—rgp? r'rh ren) 1] 2
— |1+ — .
A= > [ex;{ > (O'R oo 7TO'R)\0e 1+d O'R)\()e (B10)

The constant factoA’ was introduced in order to compensate for the rejection of multipliers ifB&). This factor ensures
the proper asymptotical behavior of the functidfy for r—o. Because expressiqB9) for r —oo takes the form
e2
Wg(r)— — EA+ o]

1
r_f) , (B11)

then the consistence with E(B6) requires the choice o0&’ such thatA= 1. This leads to the expression

W, J7 Sl P Y Bl B12
r(r)= 7\0eUR ex OR Moo 07 |9r oo . (B12)
We use further the same procedure to approximate the funétign
W e? \/_ O'E-f— O'é O'E-f- a'é rRhaé O'E-i- 0'% rRhoé B13
rN=—-——— expg — - -
R == VTN T ZTe S e e 4 A T S R e (819
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Finally, the interaction part of the electron Hartree potentiatakes the form

2 2 2 2
e 1 r 1 r 1 r—r 1 r—r
— 2 2 2 Rh Rh
= — —_— —_— — —_— + —_— _— —
wr) i €Nge [CLULeXF{ 2 (ULAOe }'o 2 UL)\Oe CRUREXF{ 2 (UR Noe ) 'o 2 (UR Noe )
toec o’f-f— O'é oxd — O'E‘f‘ o’é/ . rRho'é 2 O'E‘f' Ué IRhOR (B14)
LERPh 2 4)\?,e \ 0'E+0'2R 0 4)\%e UE‘I‘O’%
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