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Abstract

The magneto-luminescence from lens-shaped self-assembled quantum dots, containing either many excitons or many
electrons is studied. The single-electron and hole energy levels are shown to form degenerate shells in the absence of a
magnetic �eld. In the case of many-exciton dots, the hidden symmetries associated with these degeneracies are responsible
for a remarkable dependence of the absorption=emission spectrum on the number of excitons. In the case of many-electron
dots, the degeneracies lead to the Hund-like oscillation of the total spin as a function of the number of electrons, which can
be probed by photoluminescence. The symmetry-breaking e�ect of a magnetic �eld is also demonstrated. ? 1998 Elsevier
Science B.V. All rights reserved.
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1. Introduction

It has been recently demonstrated [1,2] that the
self-organization processes can be used to obtain very
small, high-quality quantum dots. An epitaxial growth
of materials with a large lattice mismatch (e.g. InGaAs
on GaAs) is unstable, and at a critical coverage the
strain leads to a spontaneous formation of small hills
on a narrow wetting layer (WL). The actual shape
and size of these quasi-zero-dimensional (quasi-0D)
self-assembled dots (SAD) depends on the growth
conditions, and di�erent forms have been reported
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[1–5]. Here we concentrate on a class of lens-shaped
InGaAs dots, investigated recently by single-electron
capacitance (SECS), photoluminescence (PL), and
far-infrared (FIR) spectroscopies [1–3,6–9].

2. Model

The lens-shaped InGaAs SAD [1,2,6–8] is modeled
as a part of a sphere with �xed height h and radius at
the base s, formed on a narrow WL of width tw [10,11].
The entire structure is sandwiched between the pair
of GaAs barriers. The discontinuities of the conduc-
tion and valence band energies at the InGaAs=GaAs
interface lead to the con�nement of both conduction
electrons (e) and valence holes (h) in the quasi-2D
InGaAs layer. The carriers are further localized in the
area of the dot due to the e�ectively increased thick-
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ness of the layer, i.e. the e�ectively decreased energy
of the lowest subband con�ned in the WL.

The detailed calculation [10] showed that within
the area of a SAD (r ¡ s) the e�ective lateral poten-
tials acting on quasi-2D carriers within the WL are
well approximated by a pair of parabolas: 1
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h , where r’s are the 2D positions, m∗’s

denote the e�ective masses (in-plane mass in the case
of h) and !’s measure the con�nement strengths. In
the absence of a magnetic �eld, the e and h bound
states are these of 2D harmonic wells, labeled by
orbital quantum numbers n and m, and spin projec-
tion �: |nm; �〉 ∼ (a+)n(b+)m |0 0〉 |�〉. Due to dy-
namical symmetries of the con�ning potential the
energy levels �nm = ˜!(n+ m+ 1) form equidis-
tant degenerate shells (denoted here by s, p, d, f; : : :),
with the states within a shell labelled by orbital
angular momenta: le =me − ne and lh = nh − mh,
respectively. The electronic structure of a SAD is
thus characterized by the number of bound e and h
shells, and the intershell separations (we assume here
NSe = 5; NSh = 5; ˜!e = 30 meV, and ˜!h = 15 meV,
as appropriate for SADs reported by Raymond et al.
[5,6]). These parameters are directly connected with
the size and composition of a SAD and, to some ex-
tent, can be varied independently [10]. The important
property of reported SADs is overlapping of e and
h orbitals, a result of the cancellation of a di�erence
in the e�ective mass by a di�erence in the height of
the potential barrier at the interface. In a magnetic
�eld B the degeneracy of shells is removed, and the
e and h energy levels form the Fock–Darwin spec-
tra: �nm = ˜!+(n+ 1

2 ) + ˜!−(m+ 1
2 ) + g�BB�. The

frequencies !, degenerate without a �eld, split here
into !± = 1

2 (
√
!2

c + 4!2 ± !c), where !c = eB=m∗c
are the cyclotron frequencies. The Zeeman energies,
scaled by the e�ective g-factors, are typically small
compared to the intershell separations and will be
neglected.

Using a composite index i= [n; m] the Hamiltonian
of the interacting e–h system may be written in a
compact form:
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Operators c+
i� (ci�) and h+

i� (hi�) create (annihilate) an
electron and hole with the spin projection � on the
orbital i with the single-particle (SP) energy �i, and
〈ij|v|kl〉 are the two-body Coulomb matrix elements
[12,13].

The Hilbert space of e–h states is spanned by prod-
ucts of SP states: |ie1�e1; ie2�e2; : : : ; ih1�h1; ih2�h2; : : :〉=
(c+
ie1�e1

; c+
ie2�e2

; : : :)(h+
ih1�h1

; h+
ih2�h2

; : : :) |vac〉. Each state is
classi�ed by a pair of good quantum numbers: total
angular momentum R and total spin projection Sz.
The total spin S 2 is not resolved in this basis. The
eigenstates are obtained through the diagonalization
of the Hamiltonian (1), in the eigen-subspaces (R; Sz).

The crucial property of small SADs is the strong
quantization of SP motion compared to the strength of
interparticle Coulomb interaction. This allows for the
approximate description of correlated many-particle
states in terms of occupation of SP shells. The inter-
shell Coulomb scattering is weak, and in the ground
state (GS) e and h �ll degenerate shells according to
the Pauli exclusion principle, applied independently
to each type of carriers. The correlation e�ects appear
only within a partially �lled degenerate shell (contain-
ing a de�ned number of particles), and the underlying
completely �lled shells form a rigid core.

An important property of the electron–hole sys-
tem is the hidden symmetry [13] associated both with
degeneracies of electronic shells and with the equal
strength of e–e, e–h, and h–h interactions due to the
exact overlapping of e and h orbitals.

In the PL process, the emission of a photon by a dot
is accompanied by the annihilation of an e–h pair. The
measured PL spectrum represents an average over a
large number of photons emitted from dots contain-
ing di�erent numbers of carriers and being in di�erent
initial states. We shall assume here that an average
number of electrons and holes is bound in each dot,
controlled by intensity of illumination. Assuming fur-
ther the initial equilibrium, we can derive the approx-
imate PL intensity I(!) as a function of the photon
energy ˜! from the Fermi golden rule:

I�0 (!) =
∑

f
|〈�f |P|�0〉|2�(E0 − Ef − ˜!); (2)
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where �0 and �f are the initial and �nal states of
the system, with corresponding energies E0 and Ef.
The interband polarization operator P removing
an e–h pair from the system can be decomposed
into a pair of operators with de�nite circular polar-
izations of light: P=P+ + P−, which simplify to
P+ =

∑
i ci↓hi↑ and P− =

∑
i ci↑hi↓ due to the e–h

orbital symmetry [14]. In order to account for the
emission from excited initial states one can assume
that the initial states are populated according to the
Boltzmann distribution with an e�ective temperature
T , and express the quasi-equilibrium PL spectrum as
I (T; !)∼ ∑

i exp(−Ei=T )I�i(!), where the summa-
tions goes over all possible initial eigenstates of the
system �i [14].

3. Many-exciton SAD

Let us begin with the description of PL from a SAD
containing many (N ) excitons [13]. Thus, the upper
edge of the PL spectrum coincides with the exciton
addition=subtraction energy (exciton chemical poten-
tial), de�ned as the di�erence between the ground-
state energies (GSE) of N and N − 1 bound exci-
tons: �(N ) = GSE(N ) − GSE(N − 1). The addition
energy � (circles), shown in Fig. 1, as a function of
the number of excitons N , forms plateaus separated
by discontinuous jumps. This resembles the behavior
of a noninteracting e–h system (squares), where con-
secutive electron–hole pairs are added to the SP states
according to the Pauli exclusion principle. Due to the
degeneracy of shells, �(N ) is constant within a shell
and increases by ˜!e + ˜!h whenever a new shell be-
gins to �ll (N = 1; 3; 7; 13; : : :): A result of the plateaus
in �(N ) is a simple PL spectrum of a many-exciton
SAD (see the top-left inset for N = 13), containing
few peaks corresponding to the recombination from
(four) occupied shells. A similar, simple PL spectrum,
with a comparable spacing between the peaks, might
be recorded in a low-excitation experiment (one ex-
citon per dot, dashed line), where the recombination
from higher shells could be due to a low relaxation
rate. However, the situation where the recombination
occurs from many-exciton SADs can be identi�ed by
studying the power dependence of the PL spectrum
[6,7].

Fig. 1. Dependence of the exciton addition energy � on the number
of excitons N in a SAD. Circles – exact calculation as described
in the text; squares – SP energy of the N th added e–h pair;
dashed line – a single interacting exciton added to isolated shells.
Insets: PL spectrum for N = 13 (top-left) and the magnetic-�eld
dependence of �(N ) for N = 3–6 (bottom-right).

The reason for the regular dependence of the ex-
citon addition energy � (i.e. the PL spectrum) of a
SAD on the number of excitons N (i.e. the excitation
power) are the hidden symmetries associated with (i)
the degeneracy and large spacing of SP shells and
(ii) the e and h orbital symmetry (interaction symme-
try). As shown in Ref. [13] these symmetries lead to
the condensation of excitons within an isolated shell t
(in analogy to the condensation of magneto-excitons
in the lowest Landau level [15–17]), with the addi-
tion energy �(N ) =E t

X independent of N . For sim-
plicity we shall ignore here the e and h spin (see Ref.
[13] for the complete discussion). The correlated N -
exciton states are constructed with the polarization
creation operator P+ ∼ ∑

i c
+
i h

+
i , where the summa-

tion over orbitals i is limited to the given shell t. The
creation operator P+, the annihilation operator P−,
and the projection Pz =

∑
i (c+

i ci + h+
i hi − 1) form

the polarization algebra P, with the usual angular-
momentum-like commutation relations. The approx-
imate commutation relations between P and the to-
tal Hamiltonian (1) are the following: [H; Pz] = 0 and
[H; P+] =E t

X P
+. Thus, theN -exciton eigenstates ofPz
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and P2 = 1
2 (P+P− + P−P+) + P2

z ≡P(P + 1), con-
structed by acting N times with P+ on vacuum, are
at the same time the eigenstates of H (GSs at a given
N ), with the energy linear in N . These states corre-
spond to: P= 1

2L= const: and Pz =N − 1
2L, where L

is the shell degeneracy (N = 1; : : : ; L), and hence the
addition=subtraction of excitons to=from a shell can
be viewed as the rotation of the polarization vector P
without changing its length P. The empty (completely
�lled) shell is represented by P pointing down (up):
Pz =−(+)P.

The e�ects due to spin and intershell Coulomb scat-
tering are weak [13] and, despite strong correlations,
the consecutive excitons are added to the shell of a
SAD with the same energy. A strong e�ect, how-
ever, is the (exchange) interaction between the ex-
citons from a partially �lled shell with the excitons
�lling the underlying shells, leading to a considerable
renormalization of the chemical potential (band-gap
renormalization). Summarizing, the GSE of a corre-
lated N -exciton complex in a SAD depends on N in
such a way, as if excitons from the same shell did not
interact, while excitons from di�erent shells attracted
each other. The GSE(N ), and thus also �, can be es-
timated based on (i) the exciton binding energies for
each shell E t

X , and (ii) the exciton–exciton attraction
energy for each pair of shells E t; t′

XX .
In a magnetic �eld B the degeneracy of SP shells

is removed, and the plateaus in the exciton addition
energy �(N ) are destroyed. The splitting of �(N ) for
N = 3–6 (four excitons added to the degenerate p-shell
at B= 0) is shown in the bottom-right inset in Fig. 1.
The energy di�erences: �(4)¡�(3) and �(6)¡�(5),
for excitons added with opposite spins to the same
orbital, show the weak bi-exciton binding.

4. Many-electron SAD

We now turn to the PL from a SAD containing
many electrons and a single hole (Ne + h) [14]. To
a good approximation, in the initial GS the h occu-
pies the lowest-energy level |0 0〉, while the e’s �ll
a number of lowest shells. In the PL process the h
annihilates an e in the lowest (s) shell, i.e. creates a
vacancy in the Ne initial system, which can be viewed
as an excitation in the (N − 1)e �nal system. The
PL spectrum measures the spectral function of this

vacancy. A crucial problem is the dependence of this
spectral function on N , which determines whether PL
can monitor N in charging experiments [9].

The e’s �lling a shell maximize their total spin
S i (in order to maximize the total exchange energy)
according to the Hund rule. Since for S i 6= 0 the GS
is degenerate with respect to the projection S iz, we
assume that a weak magnetic �eld removes this de-
generacy and picks a non-degenerate GS with a spec-
i�ed S iz = S i. The �eld has, however, negligible e�ect
on the SP energy levels, and allows for the thermal
depolarization of the h spin. The polarization of total
e spin results in the polarization of the PL spectrum,
and we shall analyze the two circular components
separately.

The �− spectrum corresponds to the removal of
a spin-minority (↑) e, and thus to an increase of the
total e spin projection Sfz = S iz + 1

2 . The optically cre-
ated �nal state P− |�0〉 is the eigenstate of e spin with
Sf = Sfz . The calculated �−-PL spectra for N = 1–9
are shown in the left-hand column of Fig. 2. Two fea-
tures are visible: (i) plateaus in the dependence of the
main-peak energy on N , at N = 2–4 and N = 6–9, and
(ii) emergence of the lower-energy peak for N = 5.

The plateaus (i) can be explained in the single-
con�guration approximation (SCA), where c+

i ci≡ 0
or 1, and the initial state minimizes the SP energy
and is consistent with the Hund rule. The emission
energy ˜! can be divided into: (1) SP energy of the
recombining e–h pair, (2) interaction within the pair,
and (3) interaction of the pair with the remaining
(N − 1)e. The �rst two terms are independent of N ,
and the third one (mainly e–e exchange, since e and
h almost exactly screen each other) counts the num-
ber N↑ of remaining e spins parallel to the removed
e spin (notation: N� = 〈�f |c+

� c�|�f 〉). When N in-
creases, until a shell is half-�lled N↓ increases and
N↑ is constant – plateau in !(N ). Conversely, when
N passes the half-�lling, N↓ remains constant and N↑
increases – !(N ) changes. As shows the exact nu-
merical calculation (cf. Fig. 2), the Coulomb mixing
between di�erent con�gurations does not destroy this
e�ect, and hence the shell structure of a SAD should
be observed in the PL.

The splitting (ii) occurs when N↑¿0, i.e. the �nal-
state optical con�guration P− |�0〉 can be mixed
via the Coulomb scattering with other, degenerate
SP con�gurations. These Auger-like processes are
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Fig. 2. Dependence of the polarized photoluminescence spectra
I−(!) (left) and I+(!) (right) on the number of electrons N in
a SAD. Arrows show the splittings; the additional peak for N = 9
and polarization �+ appears at ˜!∼ 96 meV and is not shown.

responsible for the occurrence of additional PL peaks,
which take a fraction of intensity from the main
peak.

The �+ spectrum corresponds to the removal of a
spin-majority (↓) e, and thus to a decrease of the total
e spin projection Sfz = S iz − 1

2 . The optically created �-
nal state P+ |�0〉 has �nite projections on a pair of spin
subspaces: Sf = Sfz and Sf = Sfz + 1. Consequently,
the �+-PL spectrum can be decomposed into a pair
of sub-spectra I±(!) corresponding to Sf = S i ± 1

2 .
The sub-spectrum I+ repeats the �− spectrum (with a
reduced intensity), and I− is unique for the �+ po-
larization. The calculated overall �+-PL spectra for
N = 1–9 are shown in the right-hand column of Fig. 2.
The I+ spectrum has been already discussed, and the

two new features appearing in the I− spectrum are:
(i) emergence of the lower-energy peak for N = 3,
and (ii) emergence of the higher-energy peak for
N = 9.

The splitting (i) occurs whenever there is a partially
�lled shell in the initial state (N = 3–5, 7–11, : : :),
i.e. when both �nal-state spins Sf = S i± 1

2 can be
achieved by optically removing the s-shell e, with its
spin parallel to the total spin of the partially �lled
shell.

The splitting (ii) signals the �lling of a next zero-
angular-momentum SP e state: |1 1〉, i.e. the possi-
ble Coulomb mixing between the optically created
�nal con�guration P+ |�0〉 and the lower-energy con-
�guration with the e from |1 1〉 moved to |0 0〉 state
[8]. In other words, for N¿9 the Coulomb relaxation
|1 1〉 → |0 0〉 can accompany the recombination
process.

5. Conclusion

We have studied the interacting e–h complexes con-
�ned in a SAD. The e and h SP energy levels in a
SAD form degenerate shells, with the intershell spac-
ing exceeding characteristic interaction energy. In the
GS the con�ned carriers �ll the consecutive shells
so as to minimize the SP energy. In a many-exciton
SAD the hidden symmetry associated with the equal
strengths of e–e, e–h, and h–h interactions leads to
the condensation of excitons within shells, and thus
to the plateaus in the exciton addition energy � as
a function of N . As a result, the high-excitation PL
spectrum of a SAD consists of few peaks, correspond-
ing to the recombination of e–h from matching shells.
In a many-electron SAD the e–e exchange interaction
induces the spin-polarization of partially �lled shells
(Hund rule), which also leads to the plateaus in !(N ),
and to the strong dependence of the PL spectrum on
the polarization and N . In particular, the splittings in
the PL spectrum, which can be identi�ed based on the
position and polarization, signal reaching critical N ’s
(e.g. in a charging experiment monitored with PL).
Both in many-exciton and many-electron SADs the
magnetic �eld removes the degeneracy of SP shells
and destroys the plateaus in !(N ), leading to more
complicated PL spectra.
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