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a b s t r a c t

The correlations that give rise to incompressible quantum liquid (IQL) states in fractional
quantum Hall systems are determined by the pseudopotential V (R) describing the
interaction of a pair of Fermions in a degenerate Landau level (LL) as a function of relative
pair angular momentum R. V (R) is known for a number of different Fermion systems,
e.g. electrons in the lowest Landau level (LL0) or the first excited Landau level (LL1), and
for quasiparticles of Laughlin–Jain IQL states. Laughlin correlations, the avoidance of pair
stateswith the smallest values ofR, occur onlywhen V (R) satisfies certain conditions.We
show that Jain’s composite Fermion (CF) picture is valid only if the conditions necessary for
Laughlin correlations are satisfied, and we present a rigorous justification of the CF picture
without the need of introducing an ‘‘irrelevant’’ mean-field energy scale. Electrons in LL1
and quasielectrons in IQL states (e.g. QEs in CF LL1) do not necessarily support Laughlin
correlations. Numerical diagonalization studies for small systems of Fermions (electrons
in LL0 or in LL1, and QEs in CF LL1), with the use of appropriate pseudopotentials V (R),
show clear evidence for different types of correlations. The relation between LL degeneracy
g = 2`+ 1 and number of Fermions N at which IQL states are found is known for a limited
range of N values. However, no simple intuitive models that we have tried satisfactorily
describe all of the systems we have studied. Successes and shortcomings of some simple
models are discussed, and suggestions for further investigation are made.
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1. Introduction

Solid state theory has developed from the realization (Sommerfeld, 1928) that simplemetals could be described in terms
of free electrons that obeyed the Pauli exclusion principle (Pauli, 1925). Very earlywork on the effect of the periodic potential
of the solid on the single-electron eigenstates (Bloch, 1928) led to the concept of energy bands and bandgaps (Wigner and
Seitz, 1933), and to an understanding of why some solids were metals while others were insulators, semiconductors or
semimetals (Wilson, 1931). The early decades of solid state physics were dominated by this ‘‘single-particle’’ description of
electronic states.
In the middle of the last century scientists began to worry about why this single-particle picture worked so well, since

the interaction between particles was not so small. Landau (1956, 1957) proposed the Fermi liquid theory to describe the
effect of short range many-body interaction in liquid He3. The concept of quasiparticles (QPs), elementary excitations that
satisfied Fermi–Dirac statistics and included a ‘‘self-energy’’ (due to interactionwith the ground state) and aweak interaction
with one another, became a critical new concept in solid state theory. Silin (1957) made use of Landau’s idea to study the
properties of a ‘‘metallic’’ electron liquid with long range Coulomb interactions. In microscopic studies of the electron liquid
many-electron interactions were treated via diagrammatic perturbation theory. The starting point, however, was still the
single-electron eigenstates and the Fermi distribution function.
The BCS theory of superconductivity (Bardeen et al., 1957) demonstrates that perturbation theory was not always

adequate, even when interactions were weak. However, even in BCS theory the noninteracting electron states served as
the starting point for introduction of novel correlation effects via a generalized mean-field approximation.
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During the past two decades novel systems have been discovered in which many-body interactions appear to dominate
over single-particle energies. Transition metal oxides displaying a metal–insulator transition, magnetic phase transitions
and high temperature superconductivity are one technologically important class of such ‘‘strongly interacting systems’’.
When interactions dominate, the standard technique of treating them as a perturbation on the single-particle spectrum is
usually not adequate.
The paradigm for such systems is the fractional quantum Hall (FQH) system. At very high values of the applied magnetic

field the massively degenerate single-particle Landau levels (LLs) disappear from the problem. The low energy spectrum is
determined by a single energy scale e2/λ, where λ = (h̄c/eB)1/2 is the magnetic length. The incompressible quantum liquid
(IQL) states discovered by Tsui et al. (1982) result from the interaction alone.
In this paper we present a review of the families of FQH states observed experimentally and of how we understand

them. Although a lot of theoretical methods have been developed, we would limit ourselves to those that are critical to
our explanations, leaving out for example some work rooted in field theories (Balatsky and Fradkin, 1991; Fradkin and
Schaposnik, 1991; Lopez and Fradkin, 1991, 1992, 1993, 1995) and the Hamiltonian method (Murthy and Shankar, 1999,
2002, 2003; Shankar andMurthy, 1997). Laughlin’s remarkable insight (Laughlin, 1983) into the nature of correlations giving
rise to an IQL state and the fractionally charged excitations, quasielectrons (QEs) and quasiholes (QHs), are discussed. We
consider Haldane’s idea (Haldane, 1983) that a hierarchy of IQL daughter states can be attributed to the fact that putting
fractionally charged QPs into a QP Landau level is essentially the same problem as that of putting the original electrons in
an electron Landau level. We review Jain’s remarkable composite Fermion (CF) picture (Jain, 1989). It predicts not only the
filling factor ν at which the most prominent IQL states are observed, but the structure of the lowest band of energy states
for any value of the applied magnetic field B. We emphasize the conditions under which the CF picture is valid and discuss
why it’s valid. We give examples in which the CF picture is not valid. We suggest that a useful approach to many-Fermion
systems dominated by the interaction between pairs is to study the antisymmetric eigenstates of a single pair and to use
them to construct an appropriate product over all pairs. For the simplest case, this is exactly the Laughlin wavefunction, a
better starting point for a many-Fermion system than a Slater determinant of single-particle wavefunctions. We propose
novel correlations, different from Laughlin’s, when the pair interactions are different from the Coulomb interaction in the
lowest Landau level (LL0).
Our objective is to give a deeper intuitive understanding of all FQH states in the hope that it may suggest novel ways to

treat correlations in other strongly interacting systems.

2. Integral quantum Hall effect

The integral quantum Hall (IQH) effect was discovered by von Klitzing et al. (1980) who investigated the magnetotrans-
port properties of a quasi-two-dimensional (2D) electron gas in a silicon surface inversion layer.
The Hamiltonian describing the motion of a single electron confined to the x–y plane in the presence of a dc magnetic

field EB = Bẑ is simply H = (2µ)−1[Ep + (e/c)EA(Er)]2. The vector potential EA(Er) in the symmetric gauge is given by EA(Er) =
(1/2)B(−yx̂+ xŷ). We use x̂, ŷ, and ẑ as unit vectors along the Cartesian axes. The Schrödinger equation (H − E)Ψ (Er) = 0
(Landau and Lifshitz, 1977) has eigenstates:

Ψnm(r, φ) = eimφunm(r) (1)

Enm =
1
2
h̄ωc(2n+ 1+m+ |m|). (2)

The radial wavefunction unm(r) can be written as

unm(r) = x|m| exp
[
−
x2

2

]
L|m|n (x

2), (3)

where x2 = 1/2(r/λ)2, and L|m|n is an associated Laguerre polynomial. L|m|0 is independent of x, and L|m|1 is proportional
to (|m| + 1 − x2). From Eq. (2) it is apparent that the spectrum of single-particle energies consists of highly degenerate
levels; the lowest LL has n = 0 and m = 0,−1,−2, . . ., and its wavefunction can be written Ψ0m = z|m| exp[−|z|2/4/λ2],
where z stands for re−iφ . For a finite-size sample of areaA, the number of single-particle states in the lowest LL is given by
Nφ = BA/φ0, where φ0 = hc/e is the quantum of flux. The filling factor ν is defined as N/Nφ , so that ν−1 is simply equal to
the number of flux quanta of the magnetic field per electron.
When ν is equal to an integer, there is an energy gap (equal to h̄ωc) between the filled states and the empty states.

This makes the noninteracting electron system incompressible, because an infinitesimal decrease in the area A can be
accomplished only at the expense of promoting an electron across the energy gap and into the first unoccupied LL. This
incompressibility is responsible for the integral quantum Hall effect (von Klitzing, 1986).
In Fig. 1 we display typical results for VX , the voltage along the channel, and VH , the Hall voltage. The former contains

zeros at the integral values of the filling factor ν caused by the energy gap between the filled and empty LLs. Both localized
and extended states occur in the LLs. When the chemical potential ζ resides in the localized states σxx vanishes (at T = 0),
and since localized statesmake no contribution, the Hall conductivity σxy remains constant as ζ moves through the localized
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Fig. 1. VH and Vx vs. B for a GaAs–AlGaAs heterostructure cooled to 1.2 K. The source–drain current 25.5 µA and n = 5.6 × 1011 electrons/cm2 (Cage,
1987; Cage et al., 1985).

states. The integral value of σxy in units of e2/h is expected when ν is precisely equal to an integer. The Hall plateaus depend
on the spectrum of the localized states which is related to the mobility of the sample.

3. Fractional quantum Hall effect

The observation of an incompressible quantumHall liquid state in a fractionally filled 2D Landau level by Tsui et al. (1982)
was quite unexpected. The behavior of ρxx and ρxy as a function of filling factor ν is displayed for a typical earlymeasurement
in Fig. 2. There are clear zeroes of ρxx at ν = 1/3 and 2/3 and corresponding plateaus in ρxy. At other fractions there are
observable minima in ρxx and changes in slope in ρxy. The trace looks like a continuation of Fig. 1 to higher magnetic field
or lower filling factor. Later, with significant improvement of the quality of the sample, other filling fractions have been
observed in both lowest Landau level (Pan et al., 2003), and higher LL (Choi et al., 2008; Pan et al., 1999; Xia et al., 2004;
Willett et al., 1987). Unlike the IQH effect, the FQH effect cannot be understood in terms of the single-particle spectrum.
Coulomb correlations among electrons in the partially filled LL of degenerate single-particle states must be responsible for
the incompressibility (and the energy gap associated with it). Clearly, this is a novel many-body state.
Laughlin (1983) correctly surmised that the FQH states observed at filling factors ν = m−1, with m being an odd in-

teger, resulted when the electrons were able to avoid pair states with relative angular momentum smaller than m. These
avoided pair states have the smallest pair separation and the largest Coulomb repulsion. Laughlin proposed a many-body
wavefunction for the IQL state at filling factor ν = m−1 given by

Ψm(1, 2, . . . ,N) =
∏
i<j

zmij exp

−
∑
k
|zk|2

4λ2

 . (4)

Here zi = rie−iφi is a complex coordinate for the position of the ith electron, λ is themagnetic length and zij = zi−zj. Clearly,
in going from the filled ν = 1 state to the ν = 1/3 state, the Laughlin wavefunction has introduced two additional zeroes as
a function of pair separation |zij|. The relative pair angular momentum is simplym, the z-component of the relative angular
momentum of particles i and j. Laughlin also showed that the elementary excitations of the IQL state could be described as
fractionally charged QEs and QHs. Both localized and extended states of the quasiparticles were required to understand the
observed behavior of ρxx and ρxy.
The first explanation of FQH states at values of ν = n(1 + 2p)−1 with n > 1 was given by Haldane (1983). He assumed

that the dominant interaction between quasiparticles was the short range repulsive part of the pair interaction. Based
on this assumption Haldane suggested that the problem of filling the degenerate states of the QP LL with NQP Laughlin
quasiparticles was similar to that of filling the original Nφ states of the electron LL with N electrons. Because the number
of QP states could not exceed N , Haldane suggested the N took place of Nφ and NQP the place of N in Laughlin’s condition
Nφ = (2p + 1)N for an IQL state. He proposed N = 2pNQP as the condition for new IQL states of the QPs. The even integer
2p was chosen because, according to Haldane, the QPs were Bosons. This ‘‘Haldane hierarchy’’ of IQL states contained all
odd denominator fractions. Slightly different versions of Haldane’s hierarchy were independently suggested by Laughlin
(1984) and by Halperin (1984, 1983). The different versions differ in the definition of the relative angular momentum of
QPs, resulting in different assignment of QP statistics. All of the versions depended on the residual interactions between QPs
(which were not well-known) being sufficiently similar to the Coulomb interactions between electrons in LL0.
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Fig. 2. ρxx and ρxy at 90 mK, for a sample which shows the fractional quantum Hall effect at ν = 1/3, 2/3, 2/5, 3/5, 3/7, 4/7, 4/9, and 5/9 (Chang et al.,
1984).

4. Numerical diagonalization

Confirmation of Laughlin’s explanation of the correlations giving rise to FQH states at ν = 1/3, 1/5, . . . can be found
through numerical diagonalization of the Coulomb interaction within the subspace of the lowest LL. Higher LLs play almost
no role in the lowenergy spectrum if the cyclotron energy h̄ωc ismuch larger than the Coulomb energy e2/λ. Exact numerical
diagonalization is limited to small systems, but it must give qualitatively correct results as long as the correlation length is
much smaller than the radius of the system. Restricting the area of the sample can be done in different ways, but probably
the most useful is to make the 2D surface on which the electrons reside a sphere of radius R (Haldane, 1983; Haldane and
Rezayi, 1985b). In this geometry a magnetic monopole of strength 2Qφ0 (where 2Q is an integer) at the center of a sphere
gives a radial magnetic field B = 2Qφ0/4πR2. Boundary conditions are avoided and the rotational invariance replaces the
translational invariance of an infinite plane.
The single-particle eigenstates (calledmonopole harmonics (Wu and Yang, 1976, 1977)) are denoted by |Q , `,m〉, where

the angular momentum l and its z-component m must satisfy |m| ≤ l. The single-particle eigenvalues are given by
El = (h̄ωc/2Q )[`(` + 1) − Q 2]. Since El cannot be negative, the minimum allowed value of ` must be Q . We can write
` = Q + n, with n = 0, 1, . . . playing the role of LL index. For ν < 1 only the lowest LL (with ` = Q ) is relevant at high
magnetic fields. We can write N electron basis states as: |m1,m2, . . . ,mN〉 = c

Ď
mN . . . c

Ď
m2c

Ď
m1 |vac〉, where |vac〉 is the vac-

uum state and cĎm creates an electron in state |Q , `,m〉with ` = Q . Of course the allowed values ofmmust satisfy |m| ≤ `.
Although the two-body matrix elements of the Coulomb interaction 〈m1,m2|V |m3,m4〉 have a simple form in the lowest
Landau level (Fano et al., 1986), the number of N-electron states [Nφ !/N!(Nφ − N)!] grows rapidly with the system size. In
the lowest LL where ` = Q the N-electron states can be written |L, Lz, α〉 with L and Lz being the total angular momen-
tum and its z component, and α is an index that distinguishes different multiplets with the same value of L. Because the
Coulomb interaction Hamiltonian H =

∑
i<j V (|Eri − Erj|) is spherically symmetric, the Wigner–Eckart theorem tells us that

〈L′, L′z, α
′
|H|L, Lz, α〉 = δ(L′, L)δ(L′z, Lz)Vαα′(L), and the reduced matrix element Vαα′ is independent of Lz . This fact can be

used to reduce the size of matrices to be diagonalized (Quinn et al., 2004b; Wójs and Quinn, 1998a).
It is probably worth noting that on a plane (Wójs and Quinn, 1998a) the allowed values of m, the z-component of the

single-particle angularmomentum, are 0, 1, . . . ,Nφ−1.M =
∑
imi is the total z-component of the angularmomentum (the

sum is over occupied states). It can be divided intoMCM+MR, the center of mass and relative contributions. The connection
between the planar and spherical geometries is M = N` + Lz , MR = N` − L, and MCM = L + Lz . The interactions depend
only on MR so |MR,MCM〉 acts just like |L, Lz〉. The absence of boundary conditions and the complete rotational symmetry
make the spherical geometry attractive to theorists. Many experimentalists prefer using the |MR,MCM〉 states of the planar
geometry.
Some exact diagonalization results (E vs. L) for the ten electron system are shown in Fig. 3. The Laughlin L = 0 incom-

pressible ground state occurs at 2Q = 3(N − 1) for the ν = 1/3 state. States with larger values of Q contain one or two
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Fig. 3. The spectra of 10 electrons in the lowest Landau level calculated on a Haldane sphere with 2Q between 25 and 29. The open circles and solid lines
mark the lowest energy bands with the fewest composite Fermion quasiparticles (Quinn and Wójs, 2000a).

QHs (2Q = 28, 29), and states with smaller values of Q contain QEs in the ground states (Quinn and Quinn, 2006; Quinn
and Wójs, 2000a; Quinn et al., 2004b).
The energy of the multiplet |Lα〉 can be expressed as

Eα(L) =
(
N
2

)∑
L′
PLα(L′)V (L′), (5)

where PLα(L′) is the probability that |Lα〉 contains pairswith pair angularmomentum L′, andV (L′) is the energy of interaction
of a pair with angular momentum L′ = 2`−R. Here R = 1, 3, 5, . . . is referred to as the relative pair angular momentum.
We will sometimes use the notation V (R), understanding this to mean V (2`−R) i.e. the function V (L′)with L′ expressed
as 2`−R.
It is straightforward to evaluate the pseudopotential V (R) describing the interaction of a pair of electrons in a shell

of angular momentum l in the Haldane spherical geometry (Fano et al., 1986). It depends on the radius of the sphere
R = (Q )1/2λ and on the Landau level index n = `− Q = 0, 1, 2, . . .. Simple results for V (n)(R) are given in Fig. 4.

5. Chern–Simons gauge field and Jain’s composite Fermion picture

Jain (1989) made the remarkable observation that the most prominent IQL states observed experimentally could
be understood in terms of a simple composite Fermion (CF) picture. This picture made use of a Chern–Simons (CS)
transformation (Wilczek, 1982a,b) and a CS gauge field familiar to field theorists. The CS transformation can be described as
attaching to the jth electron (1 ≤ j ≤ N) a flux tube carrying a magnetic field Eb = αφ0δ(Er − Erj)ẑ. Here φ0 = (hc)/e is the
quantum of flux, α is a constant, and ẑ a unit vector normal to the 2D layer. It is well-known that when this CS flux is added
via a gauge transformation, no change in the classical equations ofmotion results. Only the phase of the quantummechanical
wavefunction is changed. However, the CS transformation results in amuchmore complicatedmany-bodyHamiltonian that
includes a CS vector potential Ea(Er) given by

Ea(Er) = αφ0

∫
d2r1

ẑ × (Er − Er1)
(Er − Er1)2

ψĎ(Er1)ψ(Er1), (6)

in addition to the vector potential EA(Er) of the dc magnetic field. Simplification results only when the mean-field (MF)
approximation is made. This is accomplished by replacing the density operator ψĎ(Er)ψ(Er) in the CS vector potential and in
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Table 1
The effective CF monopole strength 2Q ∗ , the number of CF quasiparticles (quasiholes — nQH and quasielectrons nQE), the quasiparticle angular momenta
and `QH , `QE and the angular momenta L of the lowest lying band of multiplets for a ten electron system at 2Q between 25 and 29.

2Q 29 28 27 26 25
2Q ∗ 11 10 9 8 7
nQH 2 1 0 0 0
nQE 0 0 0 1 2
`QH 5.5 5 4.5 4 3.5
`QE 6.5 6 5.5 5 4.5
L 10, 8, 6, 4, 2, 0 5 0 5 8, 6, 4, 2, 0

the Coulomb interaction by its MF value ns, the uniform electron density. The resulting Hamiltonian is the sum of single-
particle Hamiltonians in which an ‘‘effective’’ magnetic field B∗ = B− 2pφ0ns appears.
Jain introduced the idea of a CF to represent an electronwith an attached flux tubewhich carried an evennumberα(= 2p)

of flux quanta (Jain, 1990). In the MF approximation the CF filling factor ν∗ is given by ν∗−1 = ν−1 − α, i.e. the number of
flux quanta per electron of the dc field less the CS flux per electron. When ν∗ is equal to an integer n = ±1,±2, . . ., then
ν = n(1+ αn)−1 generates (for α=2) quantum Hall states at ν = 1/3, 2/5, 3/7, . . ., and ν = 1, 2/3, 3/5, . . .. These are the
most pronounced FQH states observed.
In the spherical geometry one can introduce an effective monopole strength seen by one CF (Chen and Quinn, 1994a). It

is given by 2Q ∗ = 2Q − α(N − 1) since the α flux quanta attached to every other CF must be subtracted from the original
monopole strength 2Q . Then |Q ∗| = `∗0 plays the role of the angular momentum of the lowest CF shell just as Q = `0 is the
angular momentum of the lowest electron shell. When 2Q is equal to an odd integer (1 + α) times (N − 1), the CF shell
`∗0 is completely filled, and an L = 0 incompressible Laughlin state at filling factor ν = (1+ α)

−1 results. When 2|Q ∗| + 1
is smaller (larger) than N , QEs (QHs) appear in the shell `QE = `∗0 + 1 (`QH = `∗0). The low energy sector of the energy
spectrum consists of the states with the minimum number of QP excitations required by the value of 2Q ∗ and N . The first
excited band of states will contain one additional QE–QH pair. The total angular momentum of these states in the lowest
energy sector can be predicted by addition of the angular momenta (`QH or `QE) of the nQH or nQE quasiparticles treated as
identical Fermions. In Table 1 we demonstrated how these allowed L values are found for a ten electron system with 2Q in
the range 29 ≥ 2Q ≥ 25. By comparing with numerical results presented in Fig. 3, we readily observe that the total angular
momentum multiplets appearing in the lowest energy sector are always correctly predicted by this simple MF CS picture
(Quinn and Quinn, 2006; Quinn and Wójs, 2000a; Quinn et al., 2004b).
For example, the Laughlin L = 0 ground state at ν = 1/3 occurs when 2`∗0 = N − 1, so that the N composite Fermions

fill the lowest shell (with angular momentum `∗0). The CFQE and CFQH states occur at 2`
∗

0 = N − 1 ∓ 1 and have one too
many (for QE) or one too few (for QH) particles to give integral filling. The single QPs have angular momentum N/2. The
2QE and 2QH states occur at 2`∗0 = N − 1∓ 2. They have `QE = (N − 1)/2 and `QH = (N + 1)/2. We expect, for example,
`QE = 4.5 and `QH = 5.5 for a ten electron system, leading to low energy bands with L = 0⊕ 2⊕ 4⊕ 6⊕ 8 for 2 QEs and to
L = 0⊕ 2⊕ 4⊕ 6⊕ 8⊕ 10 for 2 QHs. In the MF picture, which neglects QP–QP interactions, these bands are degenerate. Of
course, numerical results in Fig. 3 show that two QP states with different L have different energy. From this numerical data
we obtain, up to an overall constant, VQP the residual interaction of a QP pair as a function of the pair angular momentum
L′ (Quinn and Quinn, 2006; Quinn and Wójs, 2000a; Quinn et al., 2004b; Wójs and Quinn, 2000d).
In addition to the lowest energy band of multiplets, first excited bands which contain one additional QE–QH pair can be

observed in Fig. 3. The ‘‘magnetoroton’’ band lying between the L = 0 Laughlin IQL ground state and a continuum of higher
energy states can be observed in Fig. 3(a). This band contains one QH with `QH = 9/2 and one QE with `QE = 11/2. By
adding the angular momenta of these distinguishable particles, a band with 1 = `QE − `QH ≤ L ≤ `QE + `QH = 10 would
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Fig. 5. Comparison of spectrum of N noninteracting electrons (a) with that of N noninteracting CFs (b), the electron Landau levels are separated by h̄ωC ;
the CF levels h̄ω?C = νh̄ωC . For h̄ωC � e

2/λ, the Coulomb energy scale, the degenerate single-electron levels are split by the Coulomb energy. This splitting
is much smaller than h̄ωC (or h̄ω?C ). The higher electron LLs are not involved in determining the interacting spectrum, so h̄ωC and h̄ω

∗

C , both proportional
to B, are irrelevant.

be predicted. The state with L = 1 does not appear in Fig. 3(a) suggesting that QE–QH pairs with L = 1 are forbidden (or
at least pushed into the higher energy continuum by interactions). Furthermore, the states in the band are not degenerate
indicating residual interactions that depend on the angular momentum of the pair. Other bands that are not quite so clearly
defined can be observed in other frames. For example, in frame (b) between the single QE state at L = 5 and the higher
energy continuum, there is a 2QE–1QH band. The allowed L values can be estimated by taking `QE = 5 and `QH = 4 and
adding angular momenta (treating the QEs as identical Fermions). Interactions cause the predictedmultiplets to overlap the
bottom of the continuum for 3 ≤ L ≤ 6 but outside this range they are separate from it (Quinn and Quinn, 2006; Quinn
et al., 2004b; Quinn and Wójs, 2000a).

6. Beyond mean field

Despite the satisfactory description of the allowed angular momentum multiplets, the magnitude of the MFCF energies
is completely wrong. The magnetoroton energy does not occur at the effective cyclotron frequency h̄ω∗C = eB

?/mc. This MF
energy is irrelevant at large values of B (if we keepmCF = me), so it is a puzzle why the CF picture does so well at predicting
the structure of the energy spectrum. It is interesting to compare the energy spectrum of N noninteracting electrons with
that of N noninteracting CFs as done in Fig. 5.
For large values of B theMF energy h̄ω∗C is much larger than the Coulomb scale e

2/λ. Therefore the low lyingmultiplets of
interacting electrons will be contained in a band of width e2/λ about the lowest electron LL. The noninteracting CF spectrum
contains a number of bands separated by h̄ω∗C . Interactions (Coulomb and CS gauge interactions) among fluctuations beyond
the MF essentially have to restore the original noninteracting electron spectrum when B → ∞. Halperin et al. (1993)
and Lopez and Fradkin (1991, 1992, 1993) have used conventional many-body perturbation theory to treat fluctuations.
However, there is no small parameter to guarantee convergence or to justify simple approximations like the random phase
approximation (RPA). The standard many-body perturbation theory gives reasonable results probably because it can be
thought of as a Silin–Landau theory (Landau, 1956; Silin, 1957) of an electron liquid. Long range correlations are handled by
RPA; short range correlations by adding Landau Fermi liquid interactions (Simon and Halperin, 1993). What is clear is that
the success of the CF picture does not result from a cancellation between CS gauge interactions and Coulomb interactions
beyond MF.
Jain proposed a trial wavefunction which included a Jastrow factor

∏
i<j z

2
ij , and he projected it onto the lowest Landau

level. He then diagonalized the Coulomb interaction using the projected trial function (Jain, 1990). Though the technique
seems to give reasonably good results, it is not obvious why it works.

7. Adiabatic addition of CS flux

The CS magnetic field Eb(Er) = αφ0
∑
j δ(Er − Erj)ẑ is usually introduced via a gauge transformation. Then, it is a Bohm–

Aharonov (Aharonov and Bohm, 1959) type field, having no effect on the classical equation of motion. The Lorentz force on
the ith electron is given by (−e/c)Evi × Eb(Er) with Er = Eri. No electron senses its own CS flux, and since Eri and Erj cannot have
the same value for a pair of Fermions, there is no effect from Eb(Er) on the classical motion of the electrons. However, the CS
flux does introduce a phase factor into the quantum mechanical wavefunction.
Let’s define ψm(Er) = exp(imφ)um(r) as the wavefunction for the relative coordinate Er = Eri − Erj of pair electrons in

the lowest LL. For Fermions m, the z-component of the relative angular momentum, must be odd so that under exchange
(φ→ φ+π) the phase factor changes sign. If a CS flux φ = αφ0 is introduced on each electron via a gauge transformation,
then ψm → exp[i(m − α)φ]um(r). The phase factor is changed by exp(−iαπ) under exchange. If α is not an even integer
this leads to the famous transmutation of statistics, since ψm → exp(−iαπ)ψm under exchange (Leinaas and Myrheim,
1977; Wilczek, 1990).
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A gauge transformation is not the onlyway bywhich CS flux can be introduced.We can start with some initial state of the
relative coordinates of pair, e.g. onewith α = 0, and adiabatically increase the CS flux attached to each particle up to its final
value. In this case ψm evolves adiabatically into exp(imφ)um+α(r). There is no change in phase (and therefore no change in
statistics for any value of α). However, in the semiclassical orbit (described by a maximum in the density ρ(r) = |ψm|2)
um(r) is replaced by um+α(r). The orbit size changes in such a way that the total flux (due to both the applied field B and the
CS flux) is conserved. The change in orbit size results from the Faraday emf acting on the relative motion in the presence of
a perpendicular magnetic field B. If the pair was initially in the smallest allowed pair orbit (with m = −1) and two CS flux
quanta opposite to EB were added (α = −2), then the resulting new orbit will have m = −3. This is exactly what we mean
by Laughlin correlations. The adiabatic addition of CS flux has altered the orbit to avoid the most repulsive pair state with
m = −1. However, in the absence of Coulomb interactions all negative values of m belong to the lowest LL. No change in
energy occurs without Coulomb repulsion. No MF approximation or MF energy scale is needed (Quinn and Quinn, 2003).
If we write the pair wavefunction as a product of center of mass (CM) and relative motion we find ψ(Eri, Erj) = exp

(imφij)um(rij)u0(Rij) can be written as z
|m|
ij exp[−(r

2
i + r

2
j )/(4λ

2)]. Here zi = ri exp(−iφi) is the complex coordinate of the
ith particle, and λ2 = h̄c/eB = 2λ2CM = λ2r /2. For an N electron system the straightforward generalization of this pair
function is the Laughlin wavefunctionΦm(1, 2, . . . ,N) =

∏
i<j z

|m|
ij exp[−

∑
k r
2
k /(4λ

2)]where |m| is an odd integer. Small
values of |m| correspond to small pair orbits, with |m| = 1 having the largest Coulomb repulsion. Adiabatic addition of CS
flux to every electron forces each pair to be Laughlin correlated by avoiding pair orbits with |m| = 1. This is accomplished
without the necessity of a MF approximation or the introduction of an MF energy scale.
From our previous discussion we know that we can form total angular momentum multiplets |`N; Lα〉 by addition of

the angular momenta ˆ̀ i = ˆ̀ (i = 1, 2, . . . ,N) of N Fermions. In the absence of Coulomb repulsion, Eα(L) is the same for
every value of L formed from N electrons, each with angular momentum ` in the lowest LL (with ` = Q , the monopole
strength in the Haldane spherical geometry). Let’s define GN`(L) as the number of multiplets of total angular momentum L.
If we adiabatically add two CS flux quanta to each electron, the N particle multiplets that can be formed belong to a subset
GN`(L)with ` replaced by `∗ = `− (N − 1). The multiplets belonging to GN`∗(L) all avoid, to the maximum extent possibly,
pair states with R = 1. This result is obviously true for a pair of Laughlin correlated electrons. The smallest allowed pair
angular momentumwould be L′ = 2`∗−1 = 2`−3, completely avoidingR = 1. In addition our numerical results, (Fig. 3),
show that the allowed values of `QE and `QH [frames (b) and (c)] are `QE = `∗ + 1 = 5 and `QH = `∗ = 5. This was easily
understood in terms of ‘‘effectivemonopole strength’’, but the result does not depend on theMF approximation. From frame
(e) it is clear that L2QH = 2`∗ − j where j is an odd integer [and from (d) that L2QE = 2(`∗ + 1) − j]. Thus, the adiabatic
addition of CS flux introduces Laughlin correlations (avoidingR = 1) and selects (Benjamin et al., 2001; Quinn et al., 2001a)
from GN`(L) the subset GN`∗(L) that avoids the smallest (and most repulsive) pair orbit withR = 1. The proof that GN`∗(L)
is a subset of GN`(L) has been given in Benjamin et al. (2001).
When N > 2`∗ + 1, there are more particles than can be accommodated in the lowest CF LL. An integral number of

filled CF levels occurs when N = n(2`∗ + n), where n = 1, 2, . . .. Then, the only state belonging to GN`∗(L) is the L = 0
incompressible Jain state with filling factor ν = n(2n±1)−1. This completely explains the Jain sequences 1/3, 2/5, 3/7, . . .
and 1, 2/3, 3/5, . . . (though for simplicity we have considered p = 1 instead of addition of 2p CS flux quanta). The gap
between the lowest band of states (containing the minimum number of QPs required by the values of 2Q and N) and the
first excited band is proportional toV (R), the pseudopotential describing the interaction of a pair as a function of the relative
pair angular momentum R, for the value of R avoided in the Laughlin correlated state. Note that the only energy scale is
the Coulomb scale, and even though no extraneous MF energy has been introduced, the occurrence of Jain states, the form
of the low energy spectrum, and the size of gaps has been determined qualitatively.
Fig. 6 is a simple illustration of this for a system of four electrons. If we start at 2` = 23 [frame (d)] we find four bands.

The highest band contains pairs with the largest values of L′ (i.e. the largest pair repulsion). When we consider 2`∗ = 2`−
2(N−1) = 17 [frame (c)] we eliminate the largest L′ and there are only three bands. Ultimately at 2`∗ = 2`−6(N−1) = 5
[frame (a)] there is only a single band (with low L values and low pair repulsion). If we had chosen 2` = 21 instead of 23, we
would have had a Laughlin L = 0 IQL state for frame (a) since 2`∗ = 21− 6× 3 = 3 and the level is filled by four electrons.

8. The composite Fermion hierarchy

Haldane (1983) introduced the idea of a hierarchy of condensed states in which Laughlin QPs of a condensed electron
state could form daughter states. The new daughter states have their excitations (a second generation of QPs) which, in
turn, could form new IQL daughter states with their own QPs, ad infinitum. Haldane assumed the problem of partial filling
of a Landau level of QPs (or a QP angular momentum shell) was essentially the same as the original problem of putting N
electrons into NΦ single-particle states of the lowest LL. Because the maximum allowed value of the number of QP states,
was equal to N , the number of electrons in the Laughlin condensed state, he replaced the electron LL degeneracy NΦ by
N , and replaced the number of electrons by NQP in the Laughlin condition NΦ = (2p + 1)N for an IQL state. Because he
treated the excitations as Bosons, Haldane’s condition for a daughter state was taken as N = 2pNQP, with the even integer
2p replacing Laughlin’s odd integer 2p+ 1 appropriate to Fermions. This hierarchy picture implicitly assumed that residual
interactions between QPs would give rise to Laughlin correlations among them.
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Fig. 6. The energy spectra of 4 electrons in the lowest Landau level at different monopole strength (a) 2Q = 5, (b) 2Q = 11, (c) 2Q = 17, (d) 2Q = 23.
All those 2Q values are equivalent in mean-field CF picture (CS transformation with p = 0, 1, 2 and 3, respectively). (Solid diamonds: states withR ≥ 7,
that is P(1) ≈ P(3) ≈ P(5) ≈ 0 and P(7) > 0; open circles: states withR ≥ 5, that is P(1) ≈ P(3) ≈ 0 and P(5) > 0; solid circles: states withR ≥ 3,
that is P(1) ≈ 0 and P(3) > 0; open squares: states withR ≥ 1, that is P(1) > 0) (Quinn and Wójs, 2000a).

Slightly different versions of the hierarchywere later independently proposed by Halperin (1984) and by Laughlin (1984,
1988). They differed primarily in the statistics (anyon, Fermion, Boson) satisfied by the QPs. These hierarchy schemes
suggested that all odd denominator filling fractions should be IQL states.
Sitko et al. (1997, 1996) introduced a very simple CF hierarchy picture in an attempt to understand the connection

between Haldane’s hierarchy of Laughlin correlated QP daughter states and Jain’s sequence of IQL states with integrally
filled CF Landau levels. Jain’s CF picture neglected interactions between QPs. The gaps causing incompressibility were
energy separations between the single-particle CFLLs. Not all odd denominator fractions occurred in Jain’s sequence ν =
n(2pn±1)−1 where n and p are integers. Themissing IQL states, which occurred for partially filled QP shells (or CFQP Landau
levels), had to depend on ‘‘residual interactions’’ between QPs, neglected in Jain’s mean-field CF picture.
In the CF hierarchy picture (Sitko et al., 1997, 1996;Wójs and Quinn, 2000d; Yi and Quinn, 1997; Yi et al., 1996) an initial

electron filling factor ν0 was related to an effective CF filling factor ν∗0 by the relation

ν∗0
−1
= ν−10 − 2p0. (7)

This says that the total number of flux quanta (of both the dc magnetic filed and CS gauge field) seen by one CF was equal
to the dc flux per electron minus the CS flux per electron subtracted in the CF transformation. If ν∗0 were an integer n, then
the IQL state of the CFs would occur at ν0 = n(2p0n± 1)−1. This is the Jain sequence of integrally filled CF LLs.
What happens if ν∗0 is not equal to an integer? Sitko et al. (1997, 1996) suggested that one writes ν

∗

0 as ν
∗

0 = n1 + ν1,
where n1 was an integer and ν1 represented the filling factor of the partially filled CFQP level. If, as Haldane (1983)
suggested, the residual interactions between QPs were sufficiently similar to the Coulomb interaction between electrons
in the lowest LL, one could assume Laughlin correlations among QPs. By reapplying the CF transformation to them and
writing ν∗1

−1
= ν−11 − 2p1, ν

∗

1 could be an integer n2 resulting in ν1 = n2(2p1n2 ± 1)
−1 and an IQL daughter state at

1
ν0
= 2p1 +

[
n1 + n2(2p1n2 + 1)−1

]−1
. (8)

This is a new odd denominator fraction not belonging to the Jain sequence. If ν∗1 is not an integer, simply set ν
∗

1 = n2 + ν2
and reapply the CF transformation to the new QPs in the shell of filling factor ν2. In general one finds

1
νl
= 2pl +

1
nl+1 + νl+1

(9)

at the lth level of the hierarchy. When νl+1 = 0, there is a filled shell of CFs at the lth level of the hierarchy. The procedure
generates Haldane’s continued fraction leading to IQL states at all odd denominator fractions. It gives the Jain sequence as
a special case in which integral CF filling ν∗0 = n of the CFQP shell is found at the first level of the CF hierarchy. No residual
interactions are needed to obtain the Laughlin–Jain sequence of IQL states; it arises from the gap between the last filled CF



J.J. Quinn et al. / Physics Reports 481 (2009) 29–81 39

0 2 4

L

6 8 10
7.00

E
 (

e2
/λ

)

7.05

7.10

7.15

7.20

N = 8

2Q = 18

Fig. 7. Low energy spectrum of 8 electrons at 2` = 18. The lowest band contains 3 QEs each with `QE = 3. Reapplying the CS mean-field approximation
to these QEs would predict an L = 0 daughter state corresponding to ν = 4/11. The data makes it clear that this is not valid.

level and the empty ones. Haldane’s result assumes QP interactions are responsible for the incompressibility gap, and that
the interactions cause Laughlin correlations among the QPs.
It is not difficult to showby numerical diagonalization that the hierarchy picture can’t be correct in general. The reason, as

suggested by Sitko et al. (1996), has to do with the residual QP interactions. Consider, for example, the electron systemwith
(N, 2`) given by (8, 18). Applying the CF transformation with 2p0 = 2 gives 2`∗1 = 18− 2(8− 1) = 4. Thus, the lowest CF
shell has `∗1 = 2; it can accommodate five CFs. The remaining three CFs must go into the first excited CF shell with `QE = 3.
The five CFs in the lowest shell would give an IQL state if three CFQEs were not present. Only the CFs in the partially filled CF
shell are considered to be QPs. Three Fermions eachwith `QE = 3 give themultiplets L = 0⊕2⊕3⊕4⊕6. If the CF hierarchy
were correct, applying a secondCF transformationwith 2p1 = 2 to the three CFQEswould give 2`∗QE = 2`QE−2(NQE−1) = 2.
The new level of second generation CFswould exactly accommodate threeQEs and give an L = 0 IQL ground state. Numerical
diagonalization of the (N, 2`) = (8, 18) system gives the spectrum shown in Fig. 7.
The low lying multiplets are exactly as predicted at the first CF level, giving three QEs each with `QE = 3. However, the

L = 0 multiplet is clearly not the ground state as predicted by reapplying the CF transformation. It should be emphasized
that the numerical results are obtained for a spin polarized system (with total spin S = N/2 = 4). The reason for this failure
[the ‘‘subharmonic’’ behavior of the CFQE pseudopotential (Wójs and Quinn, 2000d)] will be explained later (see Sections 9
and 15).

9. Residual interactions

The QEs and QHs have residual interactions that are more complicated than simple Coulomb interactions. They are
difficult to calculate analytically, but if we look at an N electron system at a value of 2` = 3(N − 1) ± 2, we know that
the lowest band of states in the spectrumwill correspond to 2 QEs or 2 QHs for the minus and plus signs respectively. Fig. 3
gives the spectrum for N = 10 electrons at 2` = 25 (2 QE case) and 2` = 29 (2 QH case). It is clear that the low energy
bands are not degenerate, but that the energy E depends on L, which (aswe have seen) can be understood as the total angular
momentum of the QP pair. For QEs, E(L) has a maximum at L = 2`QE − 3 and a minima at L = 2`QE − 1 and 2`QE − 5. For
QHs, E(L) has a maximum at L = 2`QH − 1 and L = 2`QH − 5, and a minimum at L = 2`QH − 3. This is quite different
from the pseudopotentials for electrons (i.e. the energy of interaction as a function of total pair angular momentum), and it
is undoubtedly the reason why the CF picture fails when it is reapplied to QEs.
More careful estimates of VQE(R) and VQH(R) (where R = 2` − L′ and L′ is the pair angular momentum) are shown

for QPs of the Laughlin ν = 1/3 and ν = 1/5 IQL states in Fig. 8. The values of VQP(R) are determined (up to an overall
constant) by diagonalization of N electron systems with 6 ≤ N ≤ 11.
In Fig. 9 we display the pseudopotentials for electrons in LL0 and LL1 with that for QEs of the Laughlin ν = 1/3 IQL

state in CF LL1. The electron pseudopotentials are the same ones presented in Fig. 4 but are presented here as a function of
R = 2`− L′, the relative angular momentum of a pair, for large systems.
We define a pseudopotential to be harmonic if it increaseswith L′ as VH(L′) = A+BL′(L′+1), where A and B are constants.

The superharmonic behavior of V (0)(R) (i.e. it increases faster than VH(L′) everywhere) is clear from the increasing slope
with decreasing R. For V (1)(R), only at R = 1 is the pseudopotential harmonic (the slope for 1 < R < 3 is the same as
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Fig. 9. Pair interaction pseudopotentials as a function of relative angular momentum R for electrons in LL0 (a), LL1 (b) and for the QEs of the Laughlin
ν = 1/3 state calculated by Lee et al. (2001, 2002) (squares) and by Wójs et al. (2006b) (triangles).

that for 3 < R < 5). The QE pseudopotentials in frame (c) were taken from the calculations of Lee et al. (2001, 2002) and
from the diagonalization of small electron systems done by Wójs et al. (2007, 2006b), and are known up to a constant. The
magnitude of interaction of CFQEs is much smaller, and has a sharp maximum atR = 3 and minima atR = 1 and 5.
These pseudopotentials have been obtained for 2D electron layers of zero width. It is well-known (He et al., 1990;

Peterson and Das Sarma, 2008; Wójs and Quinn, 2007) that the finite extent of the subband wavefunction in the direction
perpendicular to the layer introduces a correction to the electron pseudopotentials. The QP pseudopotentials are also
sensitive to the layer width since they are obtained from the energy of the two QP band obtained by exact diagonalization
of the appropriate electron system and the specific form of the (lowest) subband wavefunction.

10. Pair angular momentum theorem and coefficients of fractional parentage

We can define the total angular momentum operator L =
∑
i
ˆ̀ i for an N electron system in a shell of angular momentum

`, and L̂ij = ˆ̀ i + ˆ̀ j, the angular momentum operator for the pair 〈i, j〉. The operator identity

L̂2 + N(N − 1) ˆ̀2 −
∑
〈i,j〉

L̂2ij = 0, (10)

where the summation is over all pairs 〈i, j〉, can be obtained simply (Wójs and Quinn, 1999) by writing out L̂2 and
∑
〈i,j〉 L

2
ij,

and eliminating ˆ̀ i · ˆ̀ j. We consider the N electron multiplet |`N; Lα〉 of total angular momentum L. The index α is used to
distinguish independent multiplets with the same total angular momentum L. Taking the expectation value of Eq. (10) for
the state |`N; Lα〉we obtain

L(L+ 1)+ N(N − 2)`(`+ 1) =

〈∑
〈i,j〉

L̂2ij

〉
. (11)
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This relates the expectation value of the sum over all pairs of the squared pair angular momenta to L and `.
The antisymmetric angular momentum multiplet |`N; Lα〉 can be written

|`N; Lα〉 =
∑
L12

∑
L′α′
GLαL′α′ |`2, L12; `N−2, L′α′; L〉. (12)

Here |`2, L12; `N−2, L′α′; L〉 is an N electronmultiplet of total angular momentum L formed from an N−2 electronmultiplet
|`N−2; L′α′〉 and a pair wavefunction |`2; L12〉. It is antisymmetric with respect to the exchange of indices i, j when both i
and j belong to the set (1, 2) or when both belong to the set (3, 4, . . .N). It is not antisymmetric if i belongs to one set and j
to the other. However, the coefficient GLαL′α′ , called the coefficient of fractional parentage, can be chosen so that |`N; Lα〉 is
totally antisymmetric. Fractional parentage has been widely used in atomic and nuclear physics (de Shalit and Talmi, 1963),
but all that we need to know is that∑

L′α′
|GLα,L′α′(L12)|2 = PLα(L12). (13)

This says that the probability PLα(L12) that the multiplet |`N , Lα〉 has pairs with pair angular momentum L12 is equal to the
sum over all N − 2 particle multiplets |`N−2; L′α′〉 of the square of the magnitude of GLα,L′α′(L12). Since |`N; Lα〉 is totally
antisymmetric, we can select a single pair 〈i, j〉 = 〈1, 2〉 and multiply by the number of pairs. The right hand side of Eq. (12)
is a linear combination of L̂212 whose coefficients are GLα,L′α′(L12). The net result is that〈∑

〈i,j〉

L̂2ij

〉
=
N(N − 1)
2

∑
L12

L12(L12 + 1)PLα(L12). (14)

The summation on the right hand side is over all the allowed values of the pair angular momentum L12, and PLα(L12)was
given in Eq. (13). This leads to two useful sum rules:∑

L12

PLα(L12) = 1, (15)

1
2
N(N − 1)

∑
L12

L12(L12 + 1)PLα(L12) = L(L+ 1)+ N(N − 2)`(`+ 1). (16)

It is interesting to note that the expectation value of
∑
〈i,j〉 L̂

2
ij in the multiplet |L, α〉 is independent of α since the right

hand side of Eq. (16) is independent of α.

11. Harmonic pseudopotential and absence of correlations

The two sum rules allow us to make use of the concept of a harmonic pseudopotential. In Fig. 4 we plotted the
pseudopotential for the Coulomb interaction of electrons in the LL0 and LL1 as a function of the eigenvalues of the square
of the pair angular momentum L′. For LL0 V (0)(L′) increases with increasing L′ faster than L′(L′ + 1); for LL1 this is true only
for L′ < 2` − 5. Between L′ = 2` − 5 and L′ = 2` − 1, V (1)(L′) increases approximately as a linear function of L′(L′ + 1).
Let’s define

VH(L′) = A+ BL′(L′ + 1), (17)

as a harmonic pseudopotential, with A and B being constants. From Eqs. (5) and (16), we can write, for a harmonic pseu-
dopotential, the energy of the multiplet |`N;Nα〉 as

Eα(L) = N
[
1
2
(N − 1)A+ B(N − 2)`(`+ 1)

]
+ BL(L+ 1). (18)

We note that for a harmonic pseudopotential Eα(L) is totally independent of the multiplet index α. Every multiplet with
the same angular momentum L has the same energy. As long as the constant B is positive, the energy increases with L
as BL(L + 1), but the degeneracy of the myriad multiplets of a given value of L is not removed, implying the absence of
correlations for the harmonic potential.

12. The simplest anharmonicity and Laughlin correlations

We define1V (L′) = V (L′)− VH(L′) as the anharmonic part of the pseudopotential.1V (L′) is responsible for lifting the
degeneracy of different multiplets having the same value of the total angular momentum L. We suggest that the simplest
anharmonic contribution to the pseudopotential be taken as

1V (L′) = kδ(L′, 2`− 1). (19)



42 J.J. Quinn et al. / Physics Reports 481 (2009) 29–81

If k > 0, it is apparent that the lowest energy multiplet for each value of L will be the one with the smallest value of
PLα(L′ = 2`−1) [or PLα(R = 1)]. This is exactly what is meant by Laughlin correlations. Complete avoidance ofR = 1 pairs
(or m = 1 pairs in the planar geometry) cannot occur unless 2` ≥ 3(N − 1). In the limit of large systems this corresponds
to a filling factor ν ≥ 1/3.
If k < 0 in Eq. (19), then the lowest energy state for each L will have the largest value of PLα(R = 1). This suggests a

tendency to formR = 1 pairs rather than Laughlin correlations.
It is important to emphasize that Laughlin correlations (e.g. maximum avoidance of pairs with R = 2` − L′ equal to

unity) occur only when V (R) is ‘‘superharmonic’’ at R = 1. From Fig. 9, we can see that electrons in LL0 (a) satisfy this
condition, while QEs of the Laughlin ν = 1/3 state (c) do not. This means that at νQE = 1/3, the quasielectrons in CF LL1
will not be Laughlin correlated. This is in agreement with the numerical results of Sitko et al. (1996). Now, however, we
understand why the CF hierarchy picture fails for a spin polarized system. The QE pseudopotential is subharmonic atR = 1
and does not support Laughlin correlations. There have been a number of papers suggesting that the IQL states observed by
Pan et al. (2003), like the ν = 4/11 IQL, can be understood as a second generation of CFs (Goerbig et al., 2006, 2004; López
and Fradkin, 2004; Smet, 2003). This suggestion cannot be correct. As previously shown in Section 8, the idea is not new
(Sitko et al., 1997, 1996), and it had already been shown numerically to fail. The theorem on pair angular momentum and
the harmonic potential make it clear (Quinn and Quinn, 2006; Quinn et al., 2001a, 2004a,b; Quinn and Wójs, 2000b; Wójs
and Quinn, 2000d; Wójs et al., 2004) why the second generation of CFs can’t be correct for fully spin polarized states like
ν = 4/11: VQE(R)will not support Laughlin correlations at νQE = 1/3.
If QEs of a spin polarized electron system can’t be Laughlin correlated at νQE = 1/3, how will these QEs be correlated?

Before considering this problem in detail, it is worthwhile looking at the problem of electrons in LL1. For electrons confined
to a 2D surface, Fig. 9(b) shows that the pseudopotential is very close to harmonic for R < 3. In such a case, Laughlin
correlations (avoidance ofR = 1) will not produce the lowest energy state. There is no reason to avoidR = 1 in favor of
R = 3 in the lowest band of energy states. Let’s study the problem by numerical diagonalization and attempt to understand
the results in terms of simple intuitive pictures.

13. Incompressible quantum liquids in the first excited Landau level

13.1. The ν = 5/2 incompressible quantum liquid

It has been known for some time (Eisenstein et al., 2002; Pan et al., 1999; Willett et al., 1987) that at filling factor
ν = 2 + ν1 = 5/2 (half-filling of one spin state of the LL1), an IQL state with a robust energy gap occurs. This is in stark
contrast to the compressible state found at ν = 1/2 (half filling of the lower spin state of LL0). The compressible state at
ν = 1/2 can be described in terms of CFs which experience a ‘‘mean magnetic field ’’ B∗ equal to B− 2pnφ0, where n is the
electron concentration, and φ0 = hc/e is the quantum of flux (Halperin et al., 1993). B∗ vanishes at ν = 1/2. Shubnikov–de
Haas oscillations in the magnetoconductivity are observed as a function of B∗ for small deviations away from filling factor
ν = 1/2 (Du et al., 1993; Mancoff et al., 1996). For h̄ωC � e2/λ, the difference between the behavior of electrons in LL0 and
LL1 must be related to their pseudopotentials. In LL0 Laughlin correlations occur because V0(L′) is ‘‘superharmonic’’. Jain’s
CF picture can be applied resulting in the Laughlin–Jain sequence of ‘‘filled CF’’ shells in the mean-field approximation. The
Halperin, Lee, and Read (HLR) picture (Halperin et al., 1993) treats the interactions between the CFs beyond the mean-field
approximation (both Coulomb and Chern–Simons gauge interactions) by standard many-body perturbation theory. HLR
gives surprisingly good agreement with the qualitative features of the ν = 1/2 state that are observed experimentally.
For the electrons in LL1 the pseudopotential V1(R) is not superharmonic atR = 2`− L2 = 1. Therefore, electrons in LL1

will not support Laughlin correlations and cannot be described in terms of weakly interacting CFs. Finite well width changes
V1(R) through form factors associated with the subbandwavefunction of the quantumwell. It is possible that the effect can
lead to a change in the ratio of V1(R = 1) to V1(R = 3) that will support Laughlin correlations within a certain range of
well widths (Rezayi and Haldane, 2000). Only then can the ν = 5/2 state be thought of as a CF state at B∗ = 0, which might
undergo a ‘‘Cooper pairing’’ instability and form the gapped IQL state observed in some experiments.
For themoment, let’s concentrate on the case of zerowell widthwhere V1(R) is given by Fig. 9(b). By standard numerical

diagonalization within LL1 (i.e. neglecting Landau level mixing) we can obtain the energy spectra for N electrons in a shell
of angular momentum ` interacting via the pseudopotential V1(R). We have carried out such diagonalizations for N ≤ 16
and for different values of 2` (Simion and Quinn, 2008; Wójs, 2001a; Wójs and Quinn, 2005, 2006). Incompressible L = 0
ground states are found to fall into families. The most prominent ones occur at 2` = 2N − 3 for even values of N , and at
2` = 3N−7 (and by electron–hole symmetry at their e–h conjugate states 2` = 2N+1 and 2` = 3N/2+2). The conjugate
states are obtained with the replacement of N by 2` + 1 − N . The energy gap for the ν1 = 1/2 state is less than 1/3 of the
gap for the ν = 1/3 state in LL0. The behavior of the gap with increasing particle number N suggests that this IQL state at
ν1 = 1/2 will persist for macroscopic systems.
There has been a considerable amount of theoreticalwork on the ν = 5/2 state (thehalf filled LL1 lower spin state).Moore

and Read (1991) proposed a Pfaffian wavefunction for this state based on ideas from conformal field theory. Greiter et al.
(1991, 1992) showed that the Pfaffian state is an exact solution to a special Hamiltonian which is large and repulsive when
three electrons form a single droplet (with the total three-particle angular momentum L3 = 3`− 3 orR3 = 3`− L3 = 3)
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Fig. 10. Simple picture of the ν1 = 1/2 paired state. The vertical lines represent single-particle states of different `z , going from−` to `. Occupied states
aremarked by an X on the vertical line. The ‘‘unit cell’’ is shown by the dashed rectangles. Occupancy is chosen so that Lz = 0. The number of single-particle
states satisfies the relation 2`+ 1 = 4(N/2− 1)+ 2, or 2` = 2N − 3, corresponding to ν1 = 1/2 state (of LL1). Its conjugate state at 2` = 2N + 1 should,
by e–h symmetry, also be an IQL state.

and zero otherwise. For the Pfaffian state at ν1 = 1/2 in LL1, 2` is given by 2N − 3 (or its conjugate 2N + 1) in agreement
with numerical diagonalization.
It should be noted that Laughlin correlated states at ν = 1/m in LL0 occur at 2` = mN − m, where m is an odd integer.

States in the Jain sequence (Jain, 1990) ν = n(2pn± 1)−1, where n and p are positive integers, occur at 2` = ν−1N ± n− 2p
(and their e–h conjugate values). No even denominator fractional fillings are IQL states in the Laughlin–Jain sequence. How
then can we understand the IQL state observed experimentally at ν1 = ν − 2 = 1/2 in LL1 and found in numerical
diagonalization of small systems at 2` = 2N − 3?

13.2. Heuristic picture of the ν = 5/2 state

Aswe have already noted, the pseudopotential V1(R) is not superharmonic atR = 1, and the probability P(R) of finding
pairs withR = 1 in the ground state will not be a minimum as it is for the Laughlin correlated case in LL0. Let’s make the
assumption that R = 1 pairs form. Of course, a state consisting of only N/2 pairs, each with pair angular momentum
L2 = 2`−1 (or relative angular momentumR = 1) is not an eigenstate of the interacting system. The electrons can scatter,
breaking up the pairs, as long as both the total angular momentum of the system L and its z-component are conserved.
However,we can think of this state as a ‘‘parent state’’ whichwill generate the exact ground statewhenCoulomb interactions
admix different configurations with the same L and Lz .
A simple heuristic picture of the parent statewith L = 0, containingN/2 pairs eachwithR = 1 in an angularmomentum

` = (2N − 3)/2 is shown in Fig. 10. It corresponds to the maximum number of electrons in a ν1 = 1/2 filled state which
has Lz , the z-component of the total angular momentum equal to zero. TheR = 1 pairs have total pair angular momentum
`P = 2` − 1. The pairs of electrons might normally be thought of as Bosons. However, in 2D, they can be treated as either
Fermions of angularmomentum `F, or as Bosonswith `B = `F− 12 (N−1), whereN is the number of particles (Benjamin et al.,
2001; Quinn et al., 2001a; Xie et al., 1991). Let’s assume thatN is even and thatwe formN/2 pairs. The pairs cannot approach
one another too closely without violating the Pauli exclusion principle with respect to exchange of identical constituent
Fermions belonging to different pairs. We can account for this effect by introducing an effective Fermion pair (FP) angular
momentum defined by

2`FP = 2(2`− 1)− γF (NP − 1). (20)

For a single pair `FP = 2`− 1. As NP increases, the allowed values of the total angular momentum of two pairs is restricted
to the values less than or equal to 2`FP. The value of γF is determined by requiring that the FP filling factor νFP be equal to
unity when the single Fermion filling factor has the electron filling factor corresponding to the appropriate FP filling. For
the pair having `P = 2` − 1, this corresponds to ν = 1. (Wójs and Quinn, 2000d; Wójs et al., 2004). Remembering that
ν−1FP = (2`FP + 1)/NP and that ν

−1
= (2`+ 1)/N , then we find in the large N limit that γF = 3 and

ν−1FP = 4ν
−1
− 3. (21)

If we treated pairs as Bosons, γF would be replaced by γB = γF + 1. The factor of 4 in Eq. (21) results from having half as
many pairs (NP = N/2) filling twice as many states of the pair LL (since the pairs have charge−2e giving the degeneracy of
the pair Landau level gP = 2g). The pairs form not because there is an attractive interaction between electrons, but because
the anharmonic contribution to the pseudopotential, which determines the correlations, is attractive atR = 1. By forming
N/2 pairs that can be more widely separated than N electrons, the slightly stronger anharmonic part of the e–e repulsion
at R = 3 can be avoided. In fact, the pairs can become Laughlin correlated. For electrons in LL1 at filling factor ν = 1/2,
Eq. (21) gives νFP = 1/5. Fermions in a Laughlin correlated νFP = 1/5 state must have 2`FP = 5(NP− 1). This, together with
Eq. (20) in which γF is set equal to 3, gives 2` = 2N − 3, the relation between 2` and N appropriate for the ν1 = 1/2 filling
of LL1 (i.e. for the total filling factor ν = 2+ 1/2 = 5/2).
It is worth noting that the heuristic picture of Fig. 10 has been used before for Laughlin–Jain states in LL0 (Giuliani and

Quinn, 1985). For example, at ν = 3/7, the unit cell contains seven single-particle states, the first three of which are filled.
The number of unit cells is (N/3) − 1, three electrons being reserved to fill three states after the last unit cell to give an
Lz = 0 state. This picture suggests that the ‘‘parent state’’ produces IQL states for 2` = (7/3)N − 5. The minus five is
the appropriate finite size correction for the Laughlin correlated ν = 3/7 state. The finite size corrections obtained in the
families of IQL states found in numerical studies appear to contain important information about correlations in the IQL state.
It should be noted that our pair state is different from the Moore–Read Pfaffian state since the square of the overlap of the
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Fig. 11. Spectra of fourteen electrons in the first excited LL of a zero width quantum well. The values of 2` are 24 (a), 25 (b) and 26 (c). Frame (b) has an
L = 0 IQL ground state. Frames (a) and (c) contain at least two elementary excitations [two FP quasiparticles in (a) and two FP quasiholes in (b)] (Simion
and Quinn, 2008).

two wavefunctions is not so close to unity for a 14-electron system. As a consequence, the wavefunctions describing the
ground state and excited states are different from those predicted by Greiter et al. (1992), Töke and Jain (2006) and Töke
et al. (2007). The work of Töke and Jain (2006) describes the IQL state at ν = 5/2 as a result of residual CF interaction,
showing that a realistic Coulomb interaction would produce a wavefunction which is somehow different from the Pfaffian
one. A numerical study, made by Töke and Jain (2006) and Töke et al. (2007) shows that excited states of the ν = 5/2 state
in the presence of the Coulomb potential differ from those expected when a Pfaffian wavefunction is used. The absence of a
degenerate band of quasiparticle states might suppress the expected non-Abelian behavior.

13.3. Excitations of ν = 5/2 state

In Fig. 11 we display the spectra for 14 electrons in LL1 at values of 2` equal to 24 (a), 25 (b), and 26 (c). In each case,
the lowest band of states can be interpreted using a simple picture which assumes that the 14 electrons give rise to a
‘‘parent’’ state with seven pairs, each pair having pair angular momentum `P = 2` − 1. We treat the pairs as Fermions
with 2`FP = 2`P − 3(NP − 1). For case (b) `P = 25, giving 2`FP = 30. Then, by assuming that the seven pairs are Laughlin
correlated with 2`∗FP = 2`FP − 2p(NP − 1) and p = 2, we obtain 2`

∗

FP = 6. The shell of Laughlin correlated pairs (LCPs) can
accommodate 2`∗FP + 1 = 7 pairs giving an L = 0 IQL ground state. For case (a) `P = 23 giving 2`FP = 28 and 2`

∗

FP = 4.
The lowest shell of FPs can accommodate only five pairs; the remaining two become FP quasiparticles with `QP = 3. The
allowed values of the total angular momentum L of two FP quasiparticles each with `QP = 3 is L = 2`QP − j, where j is an
odd integer. This gives the band 1⊕ 3⊕ 5 as seen in frame (a). For 2` = 26, 2`∗FP = 8, and we find two FP quasiholes each
with `QH = 4 giving the band 1⊕ 3⊕ 5⊕ 7 as suggested in frame (c). The simple picture of NP(=N/2) pairs for even values
of N correctly predicts the lowest band of excitations for all even N that we have tested at 2` = 2N − 3 or 2` = 2N − 3± 1.
In Fig. 12 we show P(R), the probability of electron pairs with relative angular momentumR for the L = 0 ground state in
(b). Because P(R) is a maximum for R = 1 and a minimum for R = 3, this IQL ground state is not a Laughlin correlated
state of electrons.
In LL0, excitations of the ν = m−1 Laughlin IQL states obtained by changing 2` = m(N − 1) by one unit consist of single

QPs of angular momentum `QP = N/2. For LL1, changing 2` from the ν1 = 1/2 value (of 2N−3) by unity must produce two
QPs and a low lying band of excitations with angular momentum L = 2`QP− j, where j is an odd integer. This is a very strong
indication that the IQL state consists of pairs with pair angular momentum `P = 2`− 1. The angular momentum of the pair
changes by two units when the electron angular momentum ` changes by one. The variation with total angular momentum
L of the energy in these bands can be interpreted as a pseudopotential VQP(L2) describing the interaction of two Fermion pair
QPs. Unfortunately, the dispersion of these bands is rather sensitive to the electron pseudopotential V1(R). Small changes
like δV1(R) = xV1(R)δ(R, 1) have noticeable effect on VQP(L2) even for x . 0.1. In addition, the bands (especially the QH
bands) are not well separated from the quasicontinuum of higher excitations.

13.4. Other incompressible quantum liquid states in the first excited Landau level

In Fig. 13(a) we display the spectrum of an N = 11 electron system at 2` = 3N − 7 = 26 in LL1. The L = 0 ground state
is separated from higher states by a clearly observable energy gap. In frame (b) we show P(R) versus R for this ground
state. Again P(R) is neither a minimum atR = 1 nor a maximum atR = 3, indicating that it is not a Laughlin correlated
electron state. Unfortunately, the energy gap of the ν1 = 1/3 state for 6 ≤ N ≤ 12 electron system is not a smooth function
ofN−1. Therefore we cannot extrapolate to themacroscopic limit with any certainty. In addition, no simple heuristic picture
seems to describe the correlations at ν1 = 1/3 for all values ofN . Mixed clusters (single electrons, pairs, triplets, etc.) treated
by the generalized CF picture (Wójs et al., 1999b) may be necessary for an intuitive understanding of the correlations and
elementary excitations at ν1 = 1/3.
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Fig. 13. (a) Spectrum of eleven electrons at 2` = 26 in LL1. The ground state is an L = 0 IQL state. (b) P(R) vs.R for the IQL ground state. It is clearly not
a Laughlin correlated electron state (Simion and Quinn, 2008).

Because V1(R) is not superharmonic atR = 1, but it is atR = 3, we do not expect Laughlin correlated electron (LCE)
states for 1/2 ≥ ν1 ≥ 1/3 where LCEs in LL0 can form Laughlin–Jain states with ν = n(1 + 2n)−1 and n an integer.
However, we do expect LCE states for 1/3 > ν1 ≥ 1/5 where electrons will avoid pair states with R = 1 and R = 3,
forming Laughlin–Jain states with ν1 = n(1+ 4n)−1. In Fig. 14 we show spectra obtained using the pseudopotential V1(R)
appropriate for a quantumwell of zerowidth. The IQL states at ν1 = 1/5 and ν1 = 2/7 are LCE states that can be understood
using Jain’s CF4 picture. P(R) is a minimum forR = 1 and amaximum atR = 5 for each of these states. For ν1 = 2/5 there
is an extremely small gap between the L = 0 ground state and the lowest excited state. For this state P(R) is a minimum at
R = 3 and a maximum atR = 1 andR = 5, implying ‘pairing’ rather than Laughlin correlation between electrons.
We have studied the ν1 = 2/5 state (in the case N = 8 and 2` = 16) for the situation in which the pseudopotential

V1(R) for a well of zero width is changed by an amount δV1(R) = xV1(R)δ(R, 1) (Simion and Quinn, 2008). As shown
in Fig. 15(a), a very small gap 1 between L = 0 ground state and the lowest excited state is found for x < −0.35. The
gap increases slightly with increasing x, but begins to decrease for x > −0.1. It disappears at x ' +0.01, but reappears
at x & +0.08 and then increases roughly linearly with x. A plot of P(R) versus R is shown in Fig. 15(b) for x = −0.3
(red) and x = +0.15 (green). Clearly the latter case is an LCE state, while the former must containR = 1 pairs. For x = 0,
corresponding to the Coulombpseudopotential in LL1, atmost a very small gap (associatedwith Laughlin correlations among
R = 1 pairs) can occur.
Our simple picture suggests that when the pseudopotential is superharmonic at the value of relative pair angular

momentum R to be avoided in a Laughlin correlated electron state, Laughlin correlations occur and give rise to robust
IQL ground states at special values of ν. When the pseudopotential is not superharmonic, LCE states do not occur. Other
kinds of correlations (like formation of electron pairs or electron triplets) can occur, but they result in weaker IQL states
than LCE states. It is well-known that Laughlin–Jain states at ν = n(1± 2pn)−1 are the most robust FQH states in LL0, when
V0(R) is superharmonic for R = 1, 3, 5 . . .. For LL1, V1(R) is not superharmonic at R = 1. FQH states at ν = 1/3, 1/2,
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and 2/3 can’t be LCE states. They must involve formation of clusters (pairs, triplets, etc.) despite the repulsive nature of the
Coulomb interaction. Gaps are smaller than for the LCE states. FQH states at ν1 = 1/5 and 2/7 (and their e–h conjugates at
4/5 and 5/7) are LCE states quite similar to states of the same filling in LL0. The ν = 2/5 state cannot be an LCE state. At most
a very small gap, associated with correlations between pairs of electrons, can occur. This picture is in excellent qualitative
agreement with the size of the energy gap determined from thermally activated conductivity of the IQL states in LL0 and
LL1 (Choi et al., 2008).

13.5. Other elementary excitations of IQLs of ν = 5/2 IQL

It is clear that the correlations and the elementary excitations are better understood for LL0 than for LL1 and higher
Landau levels. In LL0 the CF picture allows us to introduce `∗ = |` − p(N − 1)|, where p is an integer. Integral filling
ν∗ = n (n = 1, 2, 3 . . .) of the CF angular momentum shells gives L = 0 ground states at ν = n(2pn ± 1)−1. The lowest
band of states will contain the minimum number of QP excitations required by the values of N and 2` (Chen and Quinn,
1993). The QHs reside in the angular momentum shell `QH = `∗ + n; the QEs are in the shell `QE = `QH + 1. The CF
picture describes the lowest band of states for any value of the applied magnetic field. The band containing two QEs (or two
QHs) can be used to determine (up to an overall constant) the pseudopotential VQP(L′) describing the pairwise interaction
between QPs of the Laughlin–Jain IQL states at ν = n(2pn±1)−1. Higher bands of excitations contain one ormore additional
QE–QH pairs. They are not as well defined as the lowest band, overlapping at intermediate values of the allowed angular
momentum. However, most of the states predicted by the simple CF picture are found via numerical diagonalization.
For LL1, we do understand the correlations for ν1 = 1/2. They can be described in terms of the formation of NP = N/2

pairs when N is even. The pair Landau level has a degeneracy gP twice that of the original electron LL. This increase in
degeneracy and decrease in particle number can lead to Laughlin correlations among the pair giving rise to an IQL state of
LCPs at 2` = 2N − 3. This was illustrated in Fig. 11(a) and (c) where the lowest bands of states contain two QP excitations
in a Fermion pair excited LL of angular momentum `FPQP = 3 in frame (a) and two quasihole excitations in an FP Landau
level with `FPQH = 4 in frame (c). Some of these states were discussed by Greiter et al. (1991, 1992) but not in terms of a
generalized CF picture capable of predicting the allowed values of L in the lowest band of energy levels.
Not all the elementary excitations are QP pairs (occupying an excited state FP LL) or QH pairs in the IQL state of Laughlin

correlated FPs. We have attempted to interpret spectra which contain other kinds of excitations (e.g. unpaired electrons). In
Fig. 16 we show the energy spectrum of a system containing ten electrons in a shell of angular momentum ` = 17/2, inter-
acting through the Coulomb pseudopotential appropriate for LL1 in an ideal quantumwell. In addition to L = 0 ground state
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corresponding to the IQLwith ν = 5/2, there appear to be two low lying bandswith L = 0⊕2⊕4⊕6 and L = 1⊕2⊕3⊕4⊕5
respectively. We suggest that these excitations can be identified using a slight generalization of the composite Fermion pic-
ture applied to an intuitive guess at the nature of excitations.

13.6. Generalized CF picture

As we discussed earlier, the ground state in Fig. 16 should contain NP = N/2 pairs. In the absence of correlations
the pairs have a charge of −2e. If we treat the pairs as Fermions, then the FP angular momentum is given by `FP =
(2` − 1) − 3(NP − 1)/2. In low lying excited states it is possible that one of the ground state pairs breaks up into two
unpaired electrons, each with charge −e and angular momentum `. We propose that the FPs and the unpaired electrons
have correlations among themselves and with one another. We introduce the correlations in the standard CF way, by at-
taching CS flux quanta (opposite to the dc magnetic field) to each particle (both CF pairs and unpaired electrons).
We propose a generalized CF approximation to describe the correlations using the following equations:

2`∗FP = 2`FP − 2pP(NP − 1)− 2γNe. (22)

2`∗e = 2`e − 2pe(Ne − 1)− γNP. (23)

It is straightforward to understand these correlations using the following simple picture.

1. The effective CS charge on the composite Fermion pairs is thought of as ‘‘red’’ in color and that on the unpaired electrons
as ‘‘blue’’.

2. In Eq. (22) 2pP ‘‘red’’ and 2γ ‘‘blue’’ CS flux quanta are attached to each CF pair.
3. In Eq. (23) 2pe ‘‘blue’’ and γ ‘‘red’’ CS flux quanta are attached to each unpaired electron.
4. The CS charges sense only the CS flux quanta of the same color, and no particle senses the flux attached to itself.

Thus Eq. (22) tells us that the effective angular momentum of one FP is decreased from `FP by pP times the number of other
FPs and by γ times the number of unpaired electrons. Eq. (23) tells us that the effective angular momentum of one unpaired
electron is decreased by pe times the number of other unpaired electrons and by γ /2 times the number of CF pairs.
We know that this generalization of Jain’s mean-field CF picture results in exactly the same correlations as the adiabatic

addition of the CS flux, but that the latter approach needs no mean-field approximation. Note that 2pFP and 2pe are even,
and that γ can be odd or even. Adding 2γ ‘‘blue’’ fluxes to the CF pair causes the unpaired electron of the ‘‘blue’’ charge
to have exactly the same e–CF pair correlations as adding γ ‘‘red’’ fluxes sensed by the CF pair of ‘‘red’’ charge −2e to the
unpaired electron. The CS charge times the CS flux must be the same in steps (2) and (3) to obtain the same correlations.
Eqs. (22) and (23) define the generalized CF picture in which different types of Fermions, distinguishable from one another,
experience correlations which leave them as Fermions (since 2p is even) and give the same correlations between members
of two different species since the product of CS charge and CS flux added are the same (i.e.−e · 2γ = −2e · γ ).
If we apply the generalized composite Fermion (GCF) picture to Fig. 16 we know that the ground state has NP = 5 and

Ne = 0. Using the GCF equation with 2pe = 4 gives 2`∗FP = 4, so that the NP = 5 FPs fill the `
∗

FP = 2 shell giving L = 0
IQL ground state. We can think of two kinds of elementary excitations. First, one FP might be promoted from `∗FP = 2 shell
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(leaving an FP quasihole in this shell) into the `∗FP+1 shell (i.e. we can excite QEFP–QHFPwith `QEFP = 3 and `QHFP = 2). This
would produce a band of states with 1 ≤ L ≤ 5. Second, we could have an excited state with NFP = 4 and Ne = 2 (i.e. one
broken FP). This gives 2`FP = 23, 2`∗FP = 3 and 2`QE = 7 (when pP = γ = 2 and pe = 1). The four FPs fill the shell `

∗

FP = 3/2
giving LFP = 0. The two QEs each with `QE = 7/2 produce the band L = 0⊕ 2⊕ 4⊕ 6. This band is marked by a triangle in
Fig. 16, while the FPQE–FPQH band is marked by open squares going from L = 1 to L = 5. This interpretation is suggestive,
but not completely certain because we know neither the QEFP–QHFP interaction nor the pseudopotential VQE(L′) describing
the interaction of a QE pair embedded in an IQL state of four FPs. However the assignment of L values fits the numerical
results for the low energy excited states with L ≤ 6.
It isworth noting that for the generalized CF picture (Wójs et al., 1999b) the correlations between a pair of particles can be

thought of as resulting from adiabatic addition of fictitious CS flux quanta to one particle that is sensed by a fictitious charge
on the other. The correlations among the particles cause pairs to avoid the smallest pair orbits by introducing an effective
FP angular momentum `∗FP and an effective electron angular momentum `

∗
e given by Eqs. (22) and (23). The allowed values

of the total angular momentum are obtained by addition of the angular momenta of NP identical correlated FPs, each with
angular momentum `∗FP to obtain LFP, the total FP angular momentum, and of Ne identical correlated electrons, each with
angularmomentum `∗e to obtain the total electron angularmomentum Le. Then LFP and Le are added as the angularmomenta
of distinguishable systems to obtain the allowed total angular momentum values L of the system.
Our interpretation is an attempt to understand some of the low lying excitations of the ν1 = 1/2 state in a simple CF

type picture. We present the ideas here, even though they are not firmly established, to motivate additional work on this
important topic. We suggest investigating other values of N and 2`, hoping that the generalized CF type picture might fit
numerical data and give us better insight. The spectrum is more sensitive to small changes in the pseudopotential V1(R)
than the spectrum in LL0 is to small changes in V0(R). Not understanding the correlations at ν1 = 1/3 gives us, at the
moment, no hope of understanding the low energy excitations. We are still a long way from knowing anything about the
interactions between the elementary excitations in that case.

14. Model pseudopotentials and clusters of j particles

14.1. Energy of clusters of j particles

Thus far we have used the actual Coulomb pseudopotential describing the interaction energy of a pair of electrons in the
LL0 and LL1. The pseudopotentials depend on the total pair angularmomentum L2 (or onR2 = 2`−L2, where ` is the angular
momentum of the shell in which the electrons reside). They also depend on Landau level index since the antisymmetric
wavefunction describing the relative motion of the pair is different for different Landau levels. We have already noted that
the energy of the multiplet |`N; Lα〉 is given by

Eα(L) =
(
N
2

)∑
L2

V (L2)PLα(L2) (24)

where V (L2) is the pair pseudopotential as a function of pair angular momentum L2, and PLα(L2) is the probability that
|`N; Lα〉 contains pairs with pair angular momentum L2. The sum in Eq. (24) is over all allowed values of L2 = 2` − R2,
whereR = 1, 3, 5 · · ·.
For a cluster of j particles, we can define V (Lj, βj) as the interaction energy of themultiplet |`j; Ljβj〉. It is given by Eq. (24)

with (N, L, α) replaced by (j, Lj, βj). Clearly one can write for the energy of |`N; Lα〉

Eα(L) = aj

(
N
j

)∑
Ljβj

PLα(Lj, βj)V (Lj, βj). (25)

Here V (Lj, βj) is the interaction energy of the electrons in the multiplet |`j; Ljβj〉 and PLα(Ljβj) is the probability that the
multiplet |`j; Ljβj〉 appears in the eigenfunction |`N; Lα〉 (Simon et al., 2007; Wójs and Quinn, 2005). The coefficient aj is
introduced to avoid overcountimgof the number of pairs.We canuse Eq. (24) forV (Ej, βj)with |N, L, α〉 replaced by |j, Lj, βj〉.
Making use of identity PLα(L2) =

∑
Ljβj
PLjβj(L2)PLα(Ljβj), and requiring Eq. (25) to reduce to the results given by (24) gives

us the value of aj; aj = (N − j)!(j− 2)!/(N − 2)!. Thus we find:

Eα(L) =
N(N − 1)
j(j− 1)

∑
Ljβj

PLα(Ljβj)V (Lj, βj). (26)

This result gives us the energy of |`N; Lα〉 in terms of the energies V (Ljβj) of j particle multiplets |`j; Ljβj〉.
It is worth recalling that when the pair pseudopotential V (L2) is ‘‘harmonic’’ (i.e. V (L2) = A+ BL2(L2+ 1), where A and B

are constants) the energies of the states |`j; Ljβj〉 are independent of the multiplet index βj. Every state with the same value
of the j particle angular momentum Lj has the same energy. In addition, the energy increases with Lj as BLj(Lj + 1). This
means that a harmonic VH(L2) leads to a harmonic VH(Lj) given by:

VH(Lj) = Aj + BLj(Lj + 1). (27)
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The coefficient B is independent of j, and the constant Aj gives an unimportant overall shift in the energy spectrum. Just
as VH(L2), the harmonic pair pseudopotential causes no correlations, VH(Lj), the harmonic pseudopotential of a j-particle
cluster also causes no correlations.

14.2. Model pseudopotentials

Many authors (Greiter et al., 1991, 1992; Rezayi and Haldane, 2000;Wójs, 2001a;Wójs and Quinn, 2005) have noted that
the most important pseudopotential coefficients are those with small values ofR (R = 1, 3, 5, . . .) corresponding to small
pair separations. For example, if the ‘‘superharmonic’’ pseudopotential for LL0 is approximated by V0(R2) = kδ(R2, 1)
where k > 0, the energy spectra obtained in numerical diagonalization for 1/2 > ν ≥ 1/3 filling factors are in excellent
qualitative agreement with those obtained using the full Coulomb pseudopotential (Quinn et al., 2004b; Wójs, 2001a). By
this wemean that IQL states with gaps proportional to k occur at the values of 2` predicted by Jain’s CF picture, in agreement
with the numerical results for both Coulomb and model pseudopotentials.
This fact and the behavior of the leading pseudopotential coefficients for electrons in LL0 and LL1, and for CFQEs in CFLL1

have led to the introduction of a model two-particle pseudopotential (Wójs, 2001a; Wójs and Quinn, 2005)

Vα(R) = (1− α)δ(R, 1)+
α

2
δ(R, 3). (28)

This model pseudopotential mimics the short range behavior of the Coulomb pseudopotential in LL0 if α = 0, and in LL1 if
α is approximately equal to 1/2. It also mimics the QE–QE pseudopotential of QEs of the Laughlin ν = 1/3 state (i.e. CFLL1
where these QEs reside) if α is approximately equal to unity. Of course, any harmonic contribution to the model potential
can be added to the Eq. (28) without any effect on the correlations.
Greiter et al. (1991, 1992) introduced a model three-particle pseudopotential that is equivalent to

V (R3) = δ(R3, 3). (29)

Here L3, the total angular momentum of a three-particle cluster, is given by L3 = 3` − R3. R3 is called the three-particle
relative angular momentum. GWW showed that their three-particle pseudopotential, which forbids occurrence of compact
three-particle droplets withR3 = 3, had the Moore and Read (1991) Pfaffian state as an exact solution. MR proposed the
Pfaffain wavefunctions based on correlation functions used in conformal field theory in order to look for an explanation
for the IQL state observed at filling factor ν = 5/2. The proposed Moore–Read Pfaffian wavefunction is to the GWW
model pseudopotential exactly what the Laughlin ν = 1/3 wavefunction is to the short range two-particle pseudopotential
obtained by taking α = 0 in Eq. (28). The L = 0 IQL ground state of the Moore–Read wavefunction occurs at 2` = 2N − 3
(and its e–h conjugate 2` = 2N + 1). If the value of 2` is increased, QHs of zero excitation energy appear in the IQL state.
When a number of degenerate QH states occur at the same value of total angular momentum L (e.g. ifNQH = 4 and 2`QH = 5
therewill be 3 degenerate zero energy states at L = 4⊕2⊕0), any normalized linear combination of degenerate states ofNQH
quasiholes is a perfectly good eigenstate. According to Read and Rezayi (1999) this can lead to new linear combinations of
states under permutation of quasiholes that can give rise to non-Abelian statistics. Non-Abelian quasiparticles are of great
current interest. Their existence appears to depend on the very special form of the GWW three-particle potential (or on
similar pseudopotentials that vanish for relative angular momentum larger than some value). Neither the actual Coulomb
pair pseudopotential nor the model pseudopotential given by (28) with α approximately equal to one half give rise to sets
of zero energy eigenstates with the same total angular momentum. Although the idea of non-Abelian quasiparticles is very
intriguing and of potential value in quantum computing, it isn’t yet clear that such quasiparticles occur in systems with
realistic pseudopotentials.

14.3. Model three-body pseudopotential

We know that Eq. (28) mimics the behavior of the short range part of the two-particle pseudopotentials for the lowest
Landau level when α = 0, for the first excited Landau level when α ' 1/2, and for the quasielectron of a Laughlin ν = 1/3
state when α ' 1. The energy spectra obtained using these short range pseudopotentials give reasonably good agreement
with those obtained using the full pseudopotentials when filling factor ν is between 1/3 and 1/2.
According to Section 14.1

V (Lj, βj) =
j(j− 1)
2

∑
L12

V (L12)PLjβj(L12) (30)

gives the energy of a j-particle cluster in the multiplet |`j; Ljβj〉 in terms of the pair pseudopotential and the probability that
|`j; Ljβj〉 has pairs with pair angular momentum L12. If short range interactions dominate in determining the correlations,
then we can hope that the small values ofR3 = 2`− L3 in V (L3, β3) are the important ones in determining the correlations.
We have used Eq. (28), the model short range pair pseudopotential, to determine the V (L3, β3) that it produces through
Eq. (30). For R ≤ 8, there is only a single allowed multiplet for each value of Ł3 = 3` − R3. For R3 ≤ 8, we can think
of V (R3) as a short range three-particle pseudopotential produced by the pair potential given by Eq. (28). If short range
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Fig. 17. The three-particle pseudopotentials V (R3) (a’, b’, c’) produced from the model pair pseudopotentials V (R) (a, b, c).

interactions are the important ones for determining correlations, we can simply set V (L3) = 0 forR3 > 8, expecting this
portion of the interaction to have little effect on the correlations.
Fig. 17 shows the short rangemodel pair potential forα = 0, 1/2, and 1 (frames a, b, c respectively). Frames a′, b′, c′ show

the short range pseudopotential resulting from Eq. (30) with j = 3. It is worth noting that in the case b′, V (R3) is slightly
superharmonic atR3 = 3 and has no strong maxima except atR = 3 and no minima forR3 < 9. In contrast, in c′ V (R3)
has maxima at R3 = 3 and 6, and a deep minima at R3 = 5. These two three-body pseudopotentials are quite different,
from one another and from frame a′. It seems unlikely that the electrons in LL1 and QEs of the Laughlin ν = 1/3 state have
the same correlations. The fact that frame b′ has weak superharmonic behavior atR3 = 3 might support the idea of using
the GWW pseduopotential as the simplest (one parameter V (R3 = 3) 6= 0) three-particle pseudopotential for LL1.
One can easily generalize the very special GWW three-particle pseudopotential to larger clusters. For j Fermions in a

shell of angular momentum `, the maximum allowed value of the total j particle angular momentum is LMAXj = j(`− j−1
2 ).

This means that the minimum allowed value of Rj = j` − Lj, the relative angular momentum of a j particle cluster is,
Rj = j`−LMAXj = j(j−1)/2. Amodel jparticle pseudopotential given byV (Rj) = kδ(Rj,RMIN

j ) eliminates compact jparticle
clusters, just as the three-particle GWWpseudopotential eliminated three-particle compact droplets. The eigenstates of this
model j particle pseudopotential are referred to as ‘paraFermion’ states (Read and Rezayi, 1999). It is not clear whether these
simple paraFermion states give a reasonable approximation to those obtained with a realistic pseudopotential.

15. Spin polarized quasiparticles in a partially filled composite Fermion shell

15.1. Heuristic picture

In Section 12 we demonstrated that the simplest repulsive anharmonic pseudopotential V (R2) = VH(R2)+ kδ(R2, 1)
caused the lowest energy state for each value of the total angularmomentum L to be Laughlin correlated. For a spin polarized
LL0 with 1/3 ≤ ν ≤ 2/3 such a potential (superharmonic atR = 1) gives rise to the Laughlin–Jain sequence of integrally
filled CF levels with ν± = n(2n± 1)−1, where n is an integer. No interaction between the CFs is required. The gaps causing
the IQL state are associated with the energy needed to create a QE–QH pair in the CF angular momentum shells. Haldane
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Fig. 18. VQE(R) and VQH(R) for (a) QEs of ν = 1/3 state, (b) QHs of ν = 1/3 state, and (c) QHs of ν = 2/5 state.

Table 2
Values of νFP = m−1 form = 3, 5, 7, and 9 and the resulting values of νQE , νQH and the electron filling factor that they generate.

ν−1FP 3 5 7 9
νQE 2/3 1/2 2/5 1/3
ν 5/13 3/8 7/19 4/11
νQH(CF LL1) 2/3 1/2 2/5 1/3
ν 4/11 3/8 8/21 5/13

(1983) suggested that if the highest occupied CF level is only partially filled, a gap could result from the residual interactions
between the QPs, in the sameway that the original gap resulted from the electron interactions. However, this would require
VQP(R) to be ‘‘superharmonic’’ at R = 1 to give rise to Laughlin correlations. In Section 9 we showed that in a Laughlin
ν = 1/3 or 1/5 state VQE(R) was not superharmonic at R = 1 and R = 5, and that VQH was not at R = 3. This means
that many of the novel IQL states observed by Pan et al. (2003) have to result from correlations among the electrons that are
quite different from the Laughlin correlations.
Just as electrons in LL1 tend to form clusters (pairs with pair angular momentum `P = 2` − 1 or larger clusters), we

expect QPs in CF LL1 to tend to form pairs or larger clusters. The major differences between electrons in LL1 and QPs in
CF LL1 are: (i) the pseudopotential V1(L′) for electrons in LL1 (shown in Fig. 9) is an increasing function of L′, but it is not
superharmonic at R = 1, while VQE(L′) is strongly subharmonic having a maximum at R = 2` − L′ = 3 and minima
at R = 1 and 5 and (ii) the e–h symmetry of LL1 is not applicable to QEs and QHs in CF LL1 (Wójs, 2001b). The QEs are
quasiparticles of the Laughlin ν = 1/3 IQL state, while QHs in CF LL1 are actually quasiholes of the Jain ν = 2/5 state. The
QE and QH pseudopotentials in frames (a) and (c) are similar, but not identical as shown in Fig. 18. The QEs of ν = 1/3 state
and QHs of the ν = 2/5 state reside in CF LL1. The QHs of the ν = 1/3 state reside in CF LL0.
The experimental results of Pan et al. (2003) suggest that the novel ν = 4/11 IQL ground state is fully spin polarized.

In numerical studies testing their CF hierarchy picture, Sitko et al. (1996, 1997) found that this spin polarized IQL state
did not occur at νQE = 1/3. They suggested that the reason for this was related to the difference between VQE(L′), the
QE pseudopotential describing the residual interactions between the CFQEs, and V0(L′), the pseudopotential describing the
interactions between electrons in LL0. It was later shown that because VQE(L′) is not superharmonic atR′ ≡ 2` − L′ = 1,
the CF picture could not be reapplied to interacting QEs in the partially filled CF shell (Wójs and Quinn, 2000d). This led
to the suggestion (Park and Jain, 2000) that the QEs forming the daughter state had to be spin reversed and reside in CF
LL0 as quasielectrons with reverse spin (QERs). Szlufarska et al. (2001) evaluated VQER(L′), the pseudopotential of QERs.
They showed that VQER(L′) was superharmonic at R = 1, so that unlike majority spin QEs, they could support Laughlin
correlations atR = 1.
This leaves at least two possible explanations of the ν = 4/11 IQL state. It could be a Laughlin correlated daughter state

of spin reversed QEs (i.e. QERs), or it could be a spin polarized state in which the QEs form pairs or larger clusters. In a later
section we compare the energies of these two states. The total energies involve the QE (or QER) energies, the interaction
energies of the QEs (or QERs), and the Zeeman energy. For the moment let’s look at the completely polarized case.
The simplest idea is exactly that used for electrons in LL1. There, the ν1 = 1/2 state could be attributed to the formation

of pairs with `P = 2` − 1, where ` is the angular momentum of the shell occupied by electrons. If we assume that the
QEs form pairs and treat them as Fermions, then Eqs. (22) and (23) give us the relation between the ‘‘effective FP angular
momentum’’ `FP, and the QE angular momentum `, and the relation between the ‘‘effective FP filling factor νFP, and the QE
filling factor ν. If we take νFP equal to m−1, where m is an odd integer, we can obtain the value of νQE corresponding to the
Laughlin correlated state of FPs (pairs of quasielectrons with `P = 2` − 1). Exactly the same procedure can be applied to
QHs in CF LL1 since VQE(R) and VQH(R) are qualitatively similar at small values of R. Here we are assuming that VQE(R)
and VQH(R) are dominated by their short range behavior R ≤ 5. The QH pseudopotential is not as well determined for
R > 5 because it requires larger N electron systems than we can treat numerically. The electron filling factor is given by
ν−1 = 2+ (1+ νQE)−1 or by ν−1 = 2+ (2− νQH)−1. This results in the values of ν shown in Table 2 for 2/3 ≥ νQP ≥ 1/3.
The states generated at the values of νQE and νQH equal to 2/5 have not been observed. Clear IQL states were observed by

Pan et al. at ν = 3/8 and ν = 4/11. A somehow weaker IQL state at ν = 5/13 is also observed.
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Table 3
Values of νQH satisfying 1/3 > νQH ≥ 1/5 and the resulting electron filling factors ν for LC QP2s with ν

−1
FP = 7, 9, 11, 13.

ν−1FP 7 9 11 13
νQH 2/7 1/4 2/9 1/5
ν 5/17 3/10 7/23 4/13
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Fig. 19. Energy spectra for N = 12 electrons in the lowest LL with 2` = 29 and for N = 4 QEs in the CF LL1 with 2l = 9. The energy scales are the same,
but the QE spectrum obtained using VQE(R) is determined only up to an arbitrary constant.

The daughter states generated by QPs in CF LL1 (QEs of the parent ν = 1/3 Laughlin state or QHs of the parent ν = 2/5
Jain state) give rise to filling factors for the electron system with ν > 1/3. QHs of the ν = 1/3 Laughlin state (residing
in CF LL0) can also form daughter states, and they result in an electron filling factor ν in the range 1/3 > ν ≥ 1/5. The
pseudopotential for these QHs is superharmonic atR = 1 and has a strongminimum atR = 3. Because of this, if they form
pairs, the pairs must have angular momentum `P = 2`− 3 (instead of `P = 2`− 1 for QE pairs). Eqs. (22) and (23) must be
modified. We then replace 2`− 1 in Eq. (22) by 2`− 3, and γF by γ̃F. The value of γ̃F is determined by requiring that νFP = 1
when νQH = 1/2. This condition results from the fact that the pairs are formed by two QHs separated by two filled CF states.
The resulting value of γ̃F is 7, so Eq. (21) is replaced by:

ν−1FP = 4ν
−1
QH − 7. (31)

The QH daughter states resulting from Laughlin correlated QH2 (pairs of QHs of the ν = 1/3 state) and the electron filling
factor satisfying ν−1 = 2+ (1− νQH)−1 are given in Table 3.

15.2. Numerical studies of spin polarized QP states

Standard numerical calculations for Ne electrons are not useful for studying such new states as ν = 4/11, because
convincing results require large values of Ne. Therefore we take advantage of the knowledge (Lee et al., 2001, 2002; Sitko
et al., 1996; Wójs and Quinn, 2000d) of the dominant features of the pseudopotential VQE(R) of the QE–QE interaction (i.e.,
the QE–QE interaction energy VQE as a function of relative pair angular momentumR), and diagonalize the (much smaller)
interaction Hamiltonian of NQE systems. This procedure was earlier (Sitko et al., 1996) shown to reproduce accurately the
low energy Ne-electron spectra at filling factors ν between 1/3 and 2/5. It was also used in a similar, many-QE calculation
by Lee et al. (2001, 2002) (who, however, have not found support for QE clustering).
One might question whether using the pair pseudopotential for QPs obtained by diagonalization of a finite system of N

electrons (containing two QEs or two QHs) gives a reasonable accurate description of systems containing more than a few
QPs. We have attempted to account for finite size effects (Szlufarska et al., 2001; Wójs, 2001b; Wójs and Quinn, 2000d;
Wójs et al., 2006b) by plotting the values of VQP(R) for each value of R as a function of N−1, where N is the number of
electrons in the system that produced the two CFQPs (Xie et al., 1993). We extrapolate VQP(R) to the macroscopic limit.
In addition, the low energy spectra of an N electron system (obtained by diagonalization of V0(R)) that contains NQP
quasiparticles is compared with the spectrum of NQP quasiparticles [obtained by diagonalization of VQP(R)]. The results
for (N, 2`) = (12, 29) and (NQE, 2`QE) = (4, 9) are shown in Fig. 19.
A CF transformation on the (N, 2`) = (12, 29) electron system gives an effective CF angular momentum `∗ satisfying

2`∗ = 2` − 2(N − 1) = 7. Eight of the 12 CFs fill the shell `∗ = 7/2, leaving the four CFQEs in the shell of `∗ = 9/2.
Although the four QE spectrum is not identical to the low energy band of the 12 electron spectrum, it is clearly a rather
good approximation. Both spectra have an L = 0 ground state, but the gaps are somewhat different in size. The fact that
(2`QE,NQE) system has an L = 0 ground state at 2`QE = 3NQE − 3 led a number of researchers (Chang and Jain, 2004;
Goerbig et al., 2006, 2004; López and Fradkin, 2004) to suggest that it represented a second generation of CFs giving rise to
a daughter state and resulting ν = 4/11 spin polarized IQL state observed by Pan et al. (2003). This idea can’t be correct
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Fig. 20. Pair probability functions P(R) for the two ground states shown in Fig. 19.

because VQE(L′) is not superharmonic atR = 1 and cannot cause a Laughlin correlated CF daughter state of spin polarized
QEs. In Fig. 20, we show the pair probability P(R) versus R for the (N, 2`) = (12, 29) electron ground state and for the
(NQE, 2`QE) = (4, 9) QE daughter state. Because the latter has P(R) with maxima atR = 1 and 5, and minima atR = 3
and 7 it is certainly not a Laughlin correlated state of QEs. In fact it is a νQE = 1/2 state at 2`QE = 2NQE + 1 (the conjugate
of 2`QE = 2NQE − 3).
The fact that the magnitude of VQE(R) is only about one fifth as large as the energy necessary to create an additional

QE–QH pair in a Laughlin correlated state permits diagonalization in the subspace of the partially filled QE Landau level with
reasonably accurate results (see e.g., Fig. 19). For situations in which the width of the band of two QP states is closer to the
energy needed to create a QE–QH pair, higher bands (or higher QP LL) cannot be neglected. In such cases the pseudopotential
V (Ljβj), describing the interaction energy of a multiplet |`j; Ljβj〉 containing j particles in a state of total angular momentum
Lj, may be useful in accounting for the large Hilbert space needed for a more accurate diagonalization (and more accurate
description of correlations) of a many-particle system.
The value of 2` at which the IQL state at filling factor ν occurs in the spherical geometry is given by 2` = ν−1N + γ (ν),

where N is the number of particles and γ (ν) is a finite size effect shift (Haldane, 1983). For Laughlin correlated electrons
in LL0 at filling factor ν equal to the inverse of an odd integer, γ (ν) = −ν−1, so that the ν = 1/3 IQL states occur at
2` = 3N − 3. For quasielectrons of Laughlin ν = 1/3 state, an IQL state occurs at (N, 2`) = (4, 9).
As mentioned earlier, we believe that because QEs will not support Laughlin correlations at ν = 1/3, it is an ‘‘aliased’’

state (Morf, 1998; Morf et al., 2002) at 2` = 2N + 1 (conjugate to 2` = 2N − 3) that supports pairing correlations. By
‘‘aliased’’ stateswemean two stateswith the same values ofN and 2` that belong to different sequences 2` = ν(−1)N+γ (ν).
Different values of γ (ν) for IQL states of electrons in LL0 and QEs in CFLL1 suggest that the QE correlations are different from
the Laughlin correlations for electrons in LL0. It also gives emphasis to how important it is to carry out numerical calculations
for many different values of 2` for each value of the particle number N , instead of assuming the value of γ (ν) at which the
IQL state is expected.
The essential information about the interaction of particles confined to some Hilbert space can be obtained by defining

the value of interaction energy for all allowedpair states. For charged particles confined to an LL in the presence of amagnetic
field, the relative motion is strongly quantized. The orbital pair eigenstates can be labeled with a single discrete quantum
number, relative angular momentumR. This number is a non-negative integer; it must be odd (even) for a pair of identical
Fermions (Bosons), and it increases with increasing average distance

√
〈r2〉 between the two particles.

The pair interaction energy of two QPs, the QP pseudopotential VQP(R), determines the correlations between QPs. On
a spherical surface, R ≤ 2`, where ` is the angular momentum of the QP shell. Thus the number of pseudopotential
parameters is finite. However, even in an infinite (planar) system, only those few leading parameters at the values of
R corresponding to the average distance not exceeding the correlation length ξ are of significance (provided that the
correlations are indeed characterized by finite ξ ∼ λ).

15.3. Numerical spectra

We begin with numerical results for the spectrum Eα(L) and the ground state pair probability P(R) of a system of N
quasielectrons in a shell of angular momentum ` = 17/2.R is the relative angular momentum of a pairR = 2`− L′, where
L′ is the total angular momentum of the pair. We observe in Fig. 21(a) that there is an L = 0 ground state separated by a gap
from the lowest excited states.
The spectrum is obtained by exact diagonalization (within the subspace of CF LL1) of the N quasielectron system

interacting through the pseudopotential coefficients VQE(R) represented in Fig. 9(c) by triangles. The solid circles in Fig. 21
show P(R) the probability that a QE pair has relative angular momentumR in the L = 0 ground state. The solid circles in
Fig. 21 (b) show P(R), the probability that a QE pair has relative angular momentumR in the L = 0 ground state. The open
circles in Fig. 21(b) show, for contrast, P(R) for ten electrons in LL0 interacting via the Coulomb interaction. The maxima in
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Fig. 21. (a) Energy spectrum as a function of total angular momentum L of 10 QEs at 2` = 2N − 3 = 17 corresponding to νQE = 1/2 and ν = 3/8. It is
obtained in exact diagonalization in terms of individual QEs interacting through the pseudopotential shown in Fig. 9(c) (triangles) (b) Coefficient of P(R),
the probability associated with pair states of relative angular momentumR, for the lowest L = 0 state. The solid dots are for 10 QEs of the νQE = 1/2 state
in a shell of angular momentum ` = 17/2. The open circles are for 10 electrons in the LL0 at `0 = 17/2 (Quinn et al., 2004b).

P(R) atR = 1 and 5 and the minimum atR = 3 for the QE system are in sharp contrast to the Laughlin correlated P(R)
of the ten electron system in LL0. The QE maximum atR = 1 and minimum atR = 3 suggests formation of QE pairs with
`P = 2` − 1 and the avoidance of pairs with R = 2` − L′ = 3, the pair state with the largest repulsion. This IQL ground
state occurs at 2` = 2N − 3 and corresponds to νQE = 1/2 and ν = 3/8.
For νQP = 1/2 an IQL ground state should occur at the conjugate value of 2` given by 2` = 2N−3 and 2N+1. Thus Fig. 21

can be thought of as NQP = 10 or NQP = 8, the former corresponding to 2` = 2N−3 and the latter to 2` = 2N+1.We have
already mentioned that QEs in the CFLL1 are Laughlin QEs of the ν = 1/3 IQL, while QHs in the CFLL1 are QHS of the Jain
ν = 2/5 state. It seems reasonably to diagonalize VQP(R) for QHs when CFLL1 is more than half filled and for QEs when it is
less than half filled. If only VQP(R) forR ≤ 5 is important, VQE(R) and VQH(R) are qualitatively similar (but not identical).
We should then expect the same correlations independent of which VQP(R) is used in the numerical diagonalization. This
would suggest that Fig. 21 be interpreted as containing NQH = 8 and 2` = 2NQH + 1 = 17 instead of as NQE = 10 and
2` = 2N − 3 = 17.
In Fig. 22 we display spectra for N = 10, 12, and 14 QEs in angular momentum shells with various values of `

(2` = 21, 23, 25, and 27). In frames (a) and (c) the ground states occur at total angular momentum L = 6 and L = 8
respectively. They are not IQL ground states. Frames (b) and (d) have L = 0 ground states separated from the low energy
excitations by a substantial gap. For frame (b) 2` = 3N−7, and for frame (d) 2` = 2N−3. These are the values for whichwe
find QE daughter states with νQE = 1/3 and νQE = 1/2 respectively. Using ν−1 = 2+ (1+ νQE)−1 gives the value ν = 4/11
and ν = 3/8 for these two states. It is worth mentioning that the NQE quasielectron systems used in studying the energy
spectra in Fig. 22 arise frommuch larger electron systems after a CF transformation was applied. For example it can be seen
that frame (d) results for (Ne, 2`e) = (38, 97) by noting that 2`∗ = 2`e − 2(Ne − 1) = 23. This lowest CF shell can hold
2`∗ + 1 = 24 of the CFs; the remaining 14 become CFQEs in CF LL1 with angular momentum 2`∗QE = 2(`

∗
+ 1) = 25. This

(Ne, 2`e) = (38, 97) is far too large to study numerically, but (2`QE,NQE) = (25, 14) can be handled without difficulty.
We have calculated similar (2`,N) spectra for up to 14 QEs at filling factors νQE ∼ N/(2`+1) between 1/2 and 1/3. Note

that the assignment of the filling factor to a finite system (2`,N) is not trivial, and it depends on the form of correlations.
As discussed earlier, the (2`,N) sequences that correspond in the thermodynamic limit to a filling factor ν are described by
a linear relation,

2` = ν−1N − γ (ν), (32)

where the ‘‘shift’’ γ (ν) depends on the microscopic nature of the many-body state causing incompressibility at this ν. For
example, the sequence of finite-size nondegenerate (L = 0) ground states that extrapolates to ν = 1/3 occurs at 2` = 3N−3
for the Laughlin state, at 2` = 3N − 5 for the Laughlin correlated state of Fermion pairs (Quinn et al., 2003b; Wójs, 2001b;
Wójs and Quinn, 2002a; Wójs et al., 2003) and at 2` = 3N − 7 for the incompressible QE state identified below.
In Table 4 we present the excitation gaps obtained for the QE systems with various values of N and 2`. The table should

be symmetric under the replacement of N by 2`+ 1− N which reflects the particle–hole symmetry in a partially filled QP
shell (i.e., in CF LL1). This symmetry is only approximate in real systems. The largest of the gaps1 (those shown in boldface)
occur for the following two sequences: 2` = 3N−7, 2N−3 (and its e–h conjugate 2` = 2N+1), corresponding to νQE = 1/3
and 1/2. Using Eq. (9), these values can be converted to the electron filling factors ν = 3/8, 4/11, and 5/13.
The dependence of the excitation gaps1 on the QE number N for the νQE = 1/3 series at 2` = 3N − 7 (full dots) and for

the νQE = 1/2 series at 2` = 2N − 3 (open circles) is plotted in Fig. 23. It is difficult to extrapolate accurately our finite-size
data to the thermodynamic limit to predict the magnitude of 1 in an infinite (planar) system. However, we believe that
the series of finite-size nondegenerate ground states occurring at 2` = 2N + 1 (or 2` = 2N − 3) describe the FQH state
observed experimentally at ν = 3/8. The series at 2` = 3N − 7 is less certain. It shows large oscillations over the limited
range of N values for which we can calculate, and we do not know if this series persists to the thermodynamic limit.



J.J. Quinn et al. / Physics Reports 481 (2009) 29–81 55

0 2 4 6 8
L

10 12 14 0 2 4 6 8
L

10 12 14

0.53

0.54

E
 (

e2
/λ

)
E

 (
e2

/λ
)

0.59

N = 12, 2l = 21 N = 10, 2l = 23

N = 12, 2l = 27 N = 14, 2l = 25

0.60

ν = 4/11 

ν = 3/8
0.7

0.7

0.3

0.3

0.3a b

c d

Fig. 22. Energy spectra of up to N = 14 QEs in LL shells with various degeneracies 2`+ 1, calculated using the pseudopotentials shown in Fig. 9(c) (Wójs
et al., 2004).

Table 4
Excitation gaps 1 in units of 10−3e2/λ, above the nondegenerate (L = 0) ground state of N QEs each with angular momentum `, interacting through
pseudopotential in Fig. 9(c). Circles ◦ mark degenerate (L 6= 0) ground states. The values in boldface are the largest; they all belong to the three (N, 2`)
sequences corresponding to νQE = 1

2 ,
1
3 , and

2
3 .

N2` 17 18 19 20 21 22 23 24 25 26 27 28 29

8 4.71 ◦ ◦ ◦ 0.01
9 ◦ ◦ ◦ 5.47 ◦ ◦ ◦ 1.18
10 4.71 ◦ ◦ ◦ ◦ ◦ 6.29 ◦ 0.81 ◦ ◦

11 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 6.07 ◦ ◦ ◦

12 ◦ ◦ 5.47 ◦ ◦ 0.37 ◦ 4.02 ◦ ◦ ◦ 5.28
13 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

14 0.01 ◦ 6.29 ◦ 4.02 ◦ ◦ ◦ ◦

15 ◦ ◦ ◦ ◦ ◦ ◦ ◦

16 1.18 0.81 6.07 ◦ ◦ ◦

17 ◦ ◦ ◦ ◦

18 ◦ ◦ 5.28

In our numerical studies the νQP = 1/2 state occurs only when the number of QPs is even, suggesting that QP pairs are
formed. However, IQL states are formed only when the number of minority QPs in CFLL1 is 8 or 12, but not when it is 10 or
14. This could indicate that the CF pairs form quartets (i.e. pairs of CF pairs) in the IQL state. This is completely speculative
since we have very little knowledge of the pseudopotential describing the interaction between CF pairs. For νQE = 1/3, a
gap occurs at all values of N between 6 and 12. Even values of N can be made up of pairs; N = 8 and 12 can give states
containing quartets (pairs of pairs); N = 6, 9, and 12 could contain triplets. We have not yet attempted to explore IQL states
containing clusters of different sizes (single QEs, CF pairs, triplets, etc.) that would be needed to obtain IQLs at N = 7 and
11. The effect of different cluster sizes might be responsible for large variations in the gap for νQE = 1/3 with N .
The ‘‘shift’’ defined by Eq. (32) and describing the 2` = 3N − 7 sequence identified here (γ = 7) is different not only

from γ = 3 describing a Laughlin state, but also from γ = 5 that results for a Laughlin state of Fermion pairs. This precludes
the interpretation of these finite-size νQE = 1/3 ground states found numerically (and also of the experimentally observed
ν = 4/11 FQH state) as a state of Laughlin correlated pairs of QEs (i.e., particles in the partially filled CF LL1). However, it
is far more surprising that paired state of QEs turns out as an invalid description for these states as well. Clearly, the corre-
lations between the pairs of QEs at νQE = 1/3 must be of a different, non-Laughlin type, and we do not have an alternative
explanation for the incompressibility of this state.
While we do not completely understand the correlations between QEs at νQE = 1/3, it may be noteworthy that the value

of γ = 7 appropriate for the series of incompressible states found here can be obtained for the Laughlin state of QE triplets
(QE3s), each with the maximum allowed angular momentum, L = 3` − 3, or of quartets (made up of pairs of pairs) with
maximum allowed angular momentum of the quartet `Q = 4` − 10. The quartet state can be thought of as consisting of



56 J.J. Quinn et al. / Physics Reports 481 (2009) 29–81

6 8 10
N

12 14

ν = 4/11

ν = 398

0.00

Δ 
(e

2 /
λ)

0.01

Fig. 23. Excitation gap1 for the νQE = 1
3 series of N QE ground states at 2` = 3N − 7 (full dots) and for the νQE =

1
2 series at 2` = 2N − 3 (open circles),

plotted as a function of the QE number, N (Wójs et al., 2004).

0.0 0.2

ν = 1/2, 21 = N-3

0.4
α α

0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.6

Δ 0

0.8
n = 1/3, 21 = 3N-7

a b

Fig. 24. The excitation gap10 between the lowest and the first excited states in the L = 0 subspace of N particles on Haldane sphere with the values of
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1
3 (b), plotted as a function of the interaction of parameter α defined by Eq. (28) (Wójs et al., 2004).

four filled states (`, `− 1, `− 4, `− 5) separated by two empty states (`− 2, `− 3). Both of these heuristic pictures give
2` = 3N − 7 for the ν = 1/3 state.

15.4. Results from model interactions

In this section we present the results of similar calculations, obtained using the model pseudopotential given by Eq. (28).
It is known (Wójs, 2001b; Wójs and Quinn, 2002a) that the correlations characteristic of electrons in the partially filled LL0
and LL1 are accurately reproduced by V (R2) given by Eq. (28)withα ≈ 0 and 1/2, respectively. Similarly, by the comparison
of pair amplitudes, we have confirmed that this model pseudopotential with α ≈ 1 causes correlations characteristic of QEs
in their partially filled LL. We have repeated the diagonalization of a few finite systems with 2` = 2N − 3 (or 2N + 1)
and 3N − 7, for α varying between 0 and 1, in order to answer the following two questions. First, to what extent is the
stability of the identified ν = 3/8 and 4/11 states affected by the (quantum well width dependent) details of the QE–QE
interaction? And second, does a phase transition occur for values of α between 1/2 and 1, indicating a different origin of the
incompressibility of the ν = 3/8 and 4/11 states and their electron counterparts (in LL1) at ν = 5/2 and 7/3? The latter
question is naturally motivated by our observation that the 2` = 2N + 1 sequence of nondegenerate ground states occurs
only for N = 8 and 12, in contrast to the situation in LL1 where they occurred for any integral value of N/2.
In Fig. 24 we plot the L = 0 excitation energy gap 10 (difference between the two lowest energy levels at L = 0), as

a function of α. A minimum in 10(α) suggests a (forbidden) level crossing, i.e., a phase transition in the L = 0 subspace.
Such minima occur near α = 1/2 for all values of N and for both 2` = 2N − 3 and 3N − 7. They reveal destruction of
Laughlin correlations that occur for small α (e.g., for electrons in LL0) and formation of incompressible ν = 1/2 and 1/3
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Fig. 26. The average number of pairs with relative angular momentum R = 1 (a, b), and R = 3 (c, d) per particle, N (R)/N , calculated for the lowest
state in the L = 0 subspace of N particles on Haldane sphere with values of 2` corresponding to ν = 1/2 (a, c), and ν = 1/3 (b, d) plotted as a function of
the interaction of parameter α defined by Eq. (28) (Wójs et al., 2004).

states of a different (paired) character that occur for α ≈ 1/2 (e.g., for electrons in LL1). In Fig. 24(a), similar strong minima
occur at α ≈ 0.7 for N = 8 and 12 (marked with thick lines). This is consistent with our observation that the correlations
between the QEs and between the electrons in LL1 (both at the half filling) are different. In Fig. 24(a) and (b), additional
weaker minima between α = 1/2 and 1 appear also for other combinations of N and 2`. This confirms that the ν = 1/2 and
1/3 incompressible states of QEs are generally different from those of the electrons in LL1, despite the fact that they both
usually occur at the same values of 2` = 2N + 1 and 3N − 7 in the finite systems.
The absolute excitation gaps 1(α) of the L = 0 ground states (difference between the lowest energies at L 6= 0 and

L = 0) are shown in Fig. 25. The negative value of 1 means that the absolute ground state is degenerate (i.e., L 6= 0), and
the abrupt changes in the slope of1(α) occur whenever level crossings occur for the lowest L 6= 0 state. Clearly, except for
N = 8 and 12with 2` = 2N−3, the lowest L = 0 states remain the absolute ground states of the system in the whole range
of α between 1/2 and 1. This shows that the incompressibility of the νQE = 1/2 and 1/3 ground states will not be easily
destroyed in experimental systems by aminor deviation from themodel QE–QE pseudopotential used here in the numerical
diagonalization.
Let us finally examine the dependence of the leading pair amplitudes, P(1) and P(3), on α. In Fig. 26 we plot the number

of pairs, N (R) = 1
2N(N − 1)P(R) divided by N . A transition from Laughlin correlations at α = 0 to pairing at α = 1/2

and possibly grouping into larger clusters at α ∼ 1 is clearly visible in each curve. It is also confirmed that just as the
Laughlin ground state remains virtually insensitive to the exact form of the interaction pseudopotential Ve as long as it is
strongly superharmonic at short range, the correlations in the νQE = 1/2 and 1/3 states are quite independent of the details
of the QE–QE interaction, as long as VQE is strongly subharmonic at short range. This result supports our expectation that the
incompressible QE ground states found here numerically indeed describe the FQH ν = 3/8 and 4/11 electron states observed
in experiment. On the other hand, correlations at α ≈ 1/2 (electrons in LL1), characterized by having P(1) ≈ P(3), are quite
different from those at α ∼ 1 (QEs), characterized by having the minimum possible P(3), much smaller than P(1). Finally,
with thick lines in Fig. 26(a) we have marked the curves for N = 8 and 12 in the vicinity of α = 0.7 at which the forbidden
crossings were found in Fig. 24(a). A different behavior ofN (1)/N andN (3)/N for these two values of N is clearly visible.
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15.5. Unresolved questions

We have demonstrated by direct calculation of the pair amplitudes P(R) that, at sufficiently large filling factor (νQE ≥
1/3), the QEs form pairs or larger clusters, with a significant occupation of the minimum relative pair angular momentum,
R = 1. The QE (and analogous QH) clustering is an opposite behavior to Laughlin correlations characterizing, e.g., electrons
partially filling LL0. Therefore it invalidates the reapplication of the CF picture to the individual QEs or QHs (and thus also
the equivalent multiflavor CF model) and precludes the simple hierarchy interpretation of any incompressible states at
1/3 ≤ νQP ≤ 2/3. The series of finite-size nondegenerate ground states at QE filling factors νQE = 1/2, 1/3, and 2/3
have been identified. These values correspond to the electronic filling factors ν = 3/8, 4/11, and 5/13, at which the FQH
effect has been experimentally discovered (Pan et al., 2003). Due to a discussed similarity between the QE–QE and QH–QH
interactions, these three QE states have their QH counterparts at νQH = 1/4, 1/5, and 2/7, corresponding to ν = 3/10, 4/13,
and 5/17, all of which have also been experimentally observed (Pan et al., 2003).
The finite-size νQE = 1/2 states of QEs (CFs in LL1) are found at the same values of 2` = 2N−3 (and its conjugate) as the

ν = 5/2 (Greiter et al., 1991, 1992; Moore and Read, 1991; Morf and d’Ambrumenil, 1995; Morf, 1998; Morf et al., 2002;
Rezayi and Haldane, 2000), despite the different electron and CF pseudopotentials. This is also true for the νQE = 1/3 state at
2` = 3N−7 and the ν = 7/3 IQL in LL1. Thereforewe have studied the dependence of thewavefunctions and stability of the
novel FQH states on the exact form of interaction at short range. We found several indications that the novel QE states are
distinctly different from the electron states in LL1: (i) the νQE = 1/2 state appears incompressible only for the even values
of N/2, where N is the number of minority QPs; (ii) the pair-correlation functions P(R) are quite different; (iii) although
they remain incompressible, the ground states appear to undergo phase transitions when the QE–QE pseudopotential is
continuously transformed into that of electrons in LL1. However, further studies are needed to understand these transitions.
On the other hand, weak dependence of the wavefunctions and excitation gaps of the novel FQH states on the details of the
QE–QE interaction, as long as it remains strongly subharmonic at short range, justifies the use of a model pseudopotential
in the realistic numerical calculation.
We have also explored an idea (Halperin, 1983; Quinn et al., 2003b; Wójs et al., 2004) of the formation of Laughlin states

of QE pairs (QE2s). An appropriate composite Fermion model has been formulated and shown to predict a family of novel
FQH states at a series of fractions including all those observed in experiment. However, several observations strongly point
against this simplemodel: (i) our best estimate of the QE2–QE2 interaction pseudopotential is not superharmonic to support
Laughlin correlations of QE2 (except possibly for νQE = 1/2); (ii) the values of 2` predicted for finite N are different from
these obtained from the numerical diagonalization (except for νQE = 1/2); (iii) the numerical results do not confirm the
significance of parity of the number of QEs in finite systems (the νQE = 1/2 states occur only forN = 8 and 12 at 2` = 2N−3,
and the νQE = 1/3 states occur for both even and odd values of N).

16. Partially spin polarized systems

16.1. Introduction and model

The experiment of Pan et al. (2003) has suggested some of the novel IQL states (e.g. ν = 4/11) are fully spin polarized and
that other states could be partially spin polarized. Sitko et al. (1997, 1996) found that the ν = 4/11 state did not occur in the
CF hierarchy of spin polarized IQL sates. They suggested that the reason for this was that the pseudopotential VQE(L′) was
not sufficiently similar to V0(L′), the pseudopotential for electrons in LL0, to support the same kind of correlations. It was
shown (Quinn and Wójs, 2000a; Wójs, 2001a) that because VQE(L′) was not ‘‘superharmonic’’ atR = 2`− L′ = 1, the QEs
could not support Laughlin correlations and no second generation of CFs could occur at νQE = 1/3 producing a completely
spin polarized IQL state at ν−1 = 2+ (1+ νQE)−1 = 11/4 (although an IQL with some other, non-Laughlin, form of QE–QE
correlations was not excluded by this argument). This led to the suggestion (Park and Jain, 2000) that the QE excitations
would have to have reversed spin in order to produce a daughter state at νQE = 1/3.
Until now,wehave concentrated on fully spin polarized systemswith total spin S = N/2 (each electron having projection

sz = −1/2). In this section we describe the numerical calculations for systems with total spin S = N/2 − K , where K is
the number of electrons with reversed spin. The spin excitations of a fully spin polarized system are evaluated for both
integral (Rezayi, 1987) and fractional IQL states. Reversed spin quasielectrons (QERs), skyrmions (SK) (Sondhi et al., 1993),
and spin waves are found, and their properties are discussed. The goal of this section is to present enough information about
spin excitations to be able to compare fully spin polarized and partially spin polarized states in the FQH hierarchy.
We perform numerical diagonalization of the Coulomb interaction for a system of N electrons in a shell of angular

momentum `, specifying the total z-component of angular momentum for N − K electrons of spin ↓ and K electrons of
spin ↑. There are four conserved quantum numbers: L, the total angular momentum; S, the total spin, and their projections
Lz and Sz . The energy eigenvalues depend only on L and S, and they are therefore (2L + 1)(2S + 1)-fold degenerate. For
more realistic results, finite well width effects are accounted for by replacing e2/r (where r is in-plane separation) by
Vξ (r) = e2

∫
dzdz ′ξ 2(z)ξ 2(z ′)[r2 + (z − z ′)2]−1/2, where ξ(r) is the envelope function for the lowest subband. The basis

functions |m1σ1,m2σ2, . . . ,mNσN〉 = c
Ď
m1σ1 . . . c

Ď
mNσN |vac〉, where |vac〉 stands for the vacuum state, have Lz =

∑
imi and

Sz =
∑
i σi as good quantum numbers. The total angular momentum L and total spin S are resolved numerically in the

diagonalization of each appropriate (Lz, Sz) Hilbert subspace.
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Fig. 27. The energy spectra of 12 electrons in the LL0 calculated on Haldane sphere with 2` = 11 (a) and 12 (b) (Wójs and Quinn, 2002b).

16.2. Integral filling

In Fig. 27(a) and (b) we present the low energy spectra of the ν = 1 and 1− (a single hole in ν = 1) states, respectively. In
this and all other spectra, only the lowest state at each L and S is shown. E0 is the energy of the lowest maximally polarized
state (K = 0), and the Zeeman energy EZ is omitted. The ferromagnetic ground state of Fig. 27(a) at L = 0 and S = N/2 = 6
results from the Coulomb interaction even when EZ = 0. States with different values of S are indicated by the different
symbols shown in the inset. The lowest excited state is a spin wave (SW) (Kallin and Halperin, 1984) consisting of a hole
in the spin ↓ level and an electron in the spin ↑ level with L = K = 1. A dashed line marks the entire single SW band at
1 ≤ L ≤ 11 (resulting from EL = Èe + Èh with `e = `h = ` = 11/2). The lowest energy excitation for a given value of either
L or K occurs at L = K where K = (1/2)N − S is the number of spin flips away from the fully polarized ground state. The
(near) linearity of E(K) for this band of states (denoted byWK ) suggests that it consists of K SWs, each with L = 1; which
are (nearly) noninteracting. As shown with the dot–dash lines connecting different states of the same number K of L = 1
SWs, only the L = K state (in which the SWs have parallel angular momenta) is noninteracting, and all others (at L < K ) are
repulsive.
We have compared the linearWK energy bands calculated for different electron numbers N ≤ 14, and found that they

all have the same slope u ≈ 1.15e2/λwhen plotted as a function of the ‘‘relative’’ spin polarization ζ = K/N . The fact that
E − E0 = uζ for theWK band for every value of N has two noteworthy consequences in the N →∞ limit. (i) For any value
of EZ 6= 0, the interaction energy of eachWK state, E − E0 ∝ K/N , is negligible compared to its total Zeeman energy, KEZ .
(ii) The gap for spin excitations at ν = 1 equals EZ ; if this gap can be closed (e.g. by applying hydrostatic pressure), the ν = 1
ferromagnet becomes gapless and the density of states for theWK excitations becomes continuous.
Because of the exact particle–hole symmetry in the lowest LL, the ν = 1− state whose spectrum appears in Fig. 27(b)

can be viewed as containing either one hole or one reversed spin electron in a ν = 1 ground state. The band of states with
0 ≤ L ≤ 5 and S = L (dotted line) is the skyrmion band denoted by SK . Its energy increases monotonically with S and L. For
6 ≤ L ≤ 12, the single SW band (dashed line) and band of K SWs each with L = 1 (solid line) resemble similar bands in
Fig. 27(a), except that their angular momenta are added to that of the hole which has `h = ` = 6.
Fig. 27 completely ignores the Zeeman energy. The total Zeeman energy measured from the fully polarized state is

proportional to K . The total energy of the skyrmion band is E(K) = ES(K) + KEZ and the lowest SK state occurs when
E(K) has its minimum. If we very roughly approximate the skyrmion energy in a finite system by ES(K) ≈ ES(N/2)+ βS2,
where β ≥ 0 is a constant, this minimum occurs at K = 1/(N − EZ/β) spin flips. This vanishes when EZ = βN , defining
the critical value, ẼZ , and it reaches its maximum value K = N/2 (or complete depolarization) when EZ = 0. At such EZ the
ground state at ν = 1± is a finite size skyrmion, its gap for spin excitations (‘internal’ spin excitations introduced by Fertig
et al. (1996)) is much smaller than (and largely independent of) EZ . This is in contrast to the exact ν = 1 filling and allows
spin coupling of the electron system to the magnetic ions, nuclei, or charged excitons.
The only difference between the filling factors ν = 3, 5, . . . and 1 is that the monopole harmonics |Q ; ` = Q + n,m〉

correspond to the excited LL instead of the lowest. Matrix elements of the Coulomb interaction e2/r between these higher
monopole harmonics give a different pseudopotential Vn(R) from that for n = 0. Though one might expect skyrmions to
be the lowest energy charged excitations in this case, the change in the pseudopotential from V0(R) to Vn(R) with n ≥ 1
causes the charged spin flip excitations to have higher energy than the single hole or reversed spin electron (Wu and Jain,
1994).

16.3. Fractional filling

Since the CF picture (Jain, 1989) describes the FQH effect in terms of integral filling of effective CF levels, it is interesting to
ask (Kamilla et al., 1996) if spin excitations analogous to the SWs and SKs occur at Laughlin fractional fillings ν = (2p+1)−1
(where p = 1, 2, . . .). In Fig. 28 we display numerical results for ν ≈ 1/3.
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Fig. 28. The energy spectra of N = 6 − 8 electrons on Haldane sphere at values of 2` corresponding to ν = (1/3)− (a), ν = 1/3 (b), and ν = (1/3)+
(c) (Wójs and Quinn, 2002b).

The values of N and 2` in frames (b), (a), and (c) correspond to a Laughlin ν = 1/3 condensed state, Laughlin quasihole
(QH), and Laughlin quasielectron (QE) or reversed spin quasielectron (QER), respectively. For each of these cases, the lowest
CF LL has a degeneracy of seven. Clearly the single SW dispersion (dashed line) and the linear WK band (solid line) both
appear in Fig. 28(b). The SK bands beginning at L = 0 lie below the single QH state (a) and below the single QER state (c). The
solid and dashed lines at 3 ≤ L ≤ 6 in Fig. 28(a) and (c) are completely analogous to those in Fig. 27 (b), and correspond to
the single SW band and theWK band, except that their angular momenta are added to `QH = 3 or `QER = 3. What is clearly
different from the ν = 1 case is the smaller energy scale, and a noticeable difference between the ν = (1/3)− (QH) and
ν = (1/3)+ (QER) spectra. Since the QH–QH and QER–QER interactions are known to be different (Szlufarska et al., 2001),
this lack of QH–QER symmetry is not unexpected. It implies a lack of symmetry between the CF skyrmion (QER + K SW)
and CF antiskyrmion (QH + K SW) states in contrast to the skyrmion–antiskyrmion symmetry of ν = 1. Because the CF
skyrmion energy scale is so much smaller than EC at ν = 1, the critical EZ at which skyrmions are stable is correspondingly
smaller (Leadley et al., 1997).

16.4. Spin-reversed quasielectrons

It is well known that even in the absence of the Zeeman energy gap, EZ = 0, the ground state of the 2DEG in the lowest
LL is completely spin-polarized at the precise values of the Laughlin filling factor ν = (2p + 1)−1, with p = 0, 1, 2, . . ..
There are two types of elementary charge-neutral excitations of Laughlin ν = (2p+1)−1 ground states, carrying spin S = 0
or 1, respectively. Their dispersion curves ES(k) have been studied for all combinations of p and S. In Fig. 29 we present the
exact numerical results for ν = 1/3 obtained from our exact diagonalization of up to N = 11 electrons on Haldane sphere
(Szlufarska et al., 2001). As an example, in Fig. 29 (a), we show the entire low-energy spectrum of an N = 9 system with
all spins polarized and with one reversed spin (Hilbert subspaces of total spin S = N/2 − K = 9/2 and 7/2 for K = 0
and 1, respectively), from which the dispersion curves ES(k) are obtained. The energy E is plotted as a function of angular
momentum L, and 2Q = 3(N − 1) = 24 is the strength of the magnetic monopole inside Haldane sphere corresponding
to the LL degeneracy g = 2Q + 1 = 25 and the Laughlin filling factor ν = (N − 1)/(g − 1) = 1/3 (for the details
of Haldane spherical geometry see Refs. Fano et al. (1986), Haldane (1983), Wójs and Quinn (2007), Wu and Yang (1976,
1977) and Section 4. The energy E does not include the Zeeman term EZ , which scales differently from the plotted Coulomb
energy with the magnetic field B. The excitation energies EK = E − E0 (where E0 is the Laughlin ground state energy) have
been calculated for the states identified in the finite-size spectra as the S = 0 charge-density wave and the K = 1 spin-
density wave. These states are marked with dotted lines in Fig. 29 (a). The values of EK obtained for different N ≤ 11 have
been plotted together in Fig. 29 (b) as a function of the wave vector k = L/R = (L/

√
S)λ−1. Clearly, using the appropriate

units of λ−1 for wave vector and e2/λ for excitation energy in Fig. 29 (b) results in the quick convergence of the curves with
increasingN , and allows an accurate prediction of the dispersion curves in an infinite system, asmarkedwith thick lines. The
most significant features of these curves are (i) the finite gap10 ≈ 0.076e2/λ and the magnetoroton minimum k = 1.5λ−1
in E0(k) and (ii) the vanishing of E1(k) in the k→ 0 limit (for EZ = 0).
The similar nature of the charge and spin waves in the ν = 1/3 state to those at ν = 1 lies at the heart of the

composite Fermion picture (Halperin et al., 1993; Jain, 1989; Lopez and Fradkin, 1991) inwhich these excitations correspond
to promoting one CF from a completely filled lowest (n = 0) spin ↓ CF LL either to the first excited (n = 1) CF LL of the same
spin (↓) or to the same CF LL (n = 0) but with the reversed spin (↑). The three constituent QPs of which the charge and spin
waves are composed (a hole in the n = 0 spin↓ CFLL and particles in the n = 1 spin↓ and n = 0 spin↑ CFLLs) are analogous
to those in the electron LLs from which the charge and spin waves at ν = 1 are built. Independently of the CF picture, one
can define three types of QPs (elementary excitations) of the Laughlin ν = 1/3 fluid. They are Laughlin quasiholes and
quasielectrons and Rezayi spin-reversed quasielectrons (QER). The excitations in Fig. 29 are more complex in a sense that
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Fig. 29. (a) The energy spectrum of the system of N = 9 electrons on Haldane sphere at monopole strength 2Q = 3(N − 1) = 24. Black dots and gray
diamonds mark states with the total spin S = N
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ground state, calculated in the systems of N ≤ 11 electrons on Haldane sphere (Szlufarska et al., 2001).
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Fig. 30. (a) The energy spectrum of the system of N = 9 electrons on Haldane sphere at monopole strength 2Q = 3(N − 1) − 1 = 23. Black dots and
gray diamonds mark states with the total spin S = N
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S = 7
2 is the QER of the Laughlin ν =

1
3 state and the lowest energy state at S =

9
2 is the Laughlin QE. (b) The energies ε of all three types of quasiparticles

of Laughlin ν = 1
3 ground state (QH, QE, and QER) in the systems of N ≤ 11 electrons on Haldane sphere and plotted as a function of N

−1 . The numbers
give the results of linear extrapolation to an infinite (planar) system.

they consist of a (neutral) pair of QH and either QE (K = 0) or QER (K = 1). Each of the QPs is characterized by such
single-particle quantities as (fractional) electric charge (QQH = +e/3 andQQE = QQER = −e/3), energy εQP, or degeneracy
gQP of the single-particle Hilbert space. On Haldane sphere, the degeneracy gQP is related to the angular momentum `QP by
gQP = 2`QP+ 1, with `QH = `QER = Q ∗ and `QE = Q ∗+ 1 and 2Q ∗ = 2Q − 2(N − 1) being the effective monopole strength
in the CF model.
The energies εQP to create an isolated QP of each type in the Laughlin ground state have been previously estimated

in a number of ways. Here, we present our results of exact diagonalization for N ≤ 11 (εQE and εQH) and N ≤ 10
(εQER) (Szlufarska et al., 2001). In Fig. 30(a) we show an example of the numerical energy spectrum for the system of N = 9
electrons, in which an isolated QE or QER occurs at 2Q = 3(N − 1) − 1 = 23 in the subspace of S = N/2 = 9/2 and
S = N/2 − 1 = 7/2, respectively. Both of these states have been identified in Fig. 30(a). To estimate εQE and εQER, we use
the standard procedure (Fano et al., 1986; Haldane, 1987; Haldane and Rezayi, 1985a;Wójs and Quinn, 2000a,d) to take into
account the finite-size effects (the dependence of λ on 2Q , Qλ2 = R2), and express the energies E of Fig. 30(a) in units of
e2/λ with λ appropriate for ν = 1/3, before subtracting from them the Laughlin ground state energy of Fig. 29(a). Plotting
the results for different values of N in Fig. 30(b) as a function of N−1 allows the extrapolation to an infinite system, with the
limiting values of εQE = 0.0664e2/λ and εQER = 0.0383e2/λ (with the difference εQE − εQER = 0.0281e2/λ in remarkable
agreementwith Rezayi’s original estimate (Rezayi, 1987, 1991) based on his numerics forN ≤ 6). For completeness, we have
also plotted the QH energies, which extrapolate to εQH = 0.0185e2/λ. Note that to obtain the so-called ‘‘proper’’ QP energies
ε̃QP(N) in a finite system (Fano et al., 1986; Haldane and Rezayi, 1985a; Wójs and Quinn, 2000a), the termQ2QP/2Rmust be
added to each value in Fig. 30(b). The linear extrapolation of ε̃QP(N) toN−1 → 0 gives ε̃QE = 0.0737e2/λ, ε̃QER = 0.0457e2/λ,
and ε̃QH = 0.0258e2/λ. The energies of spatially separated QE–QH and QER–QH pairs (activation energies in transport
experiments) are hence equal to E0(∞) = ε̃QE+ ε̃QH = 0.0995e2/λ and E1(∞) = ε̃QER+ ε̃QH = 0.0715e2/λ. While the QHs
are the only types of QPs that occur in low-energy states at ν < (2p+1)−1, the QEs and QERs are two competing excitations
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Fig. 31. (a) The energy spectrum of the system of N = 8 electrons on Haldane sphere at monopole strength 2Q = 3(N − 1)− 2 = 19. Black dots and gray
diamonds mark states with the total spin S = N

2 = 4 (maximum polarization), S =
N
2 − 1 = 3 (one reversed spin), and S =

N
2 − 2 = 2 (two reversed

spins), respectively. Lines connect states containing one QE–QE (S = 4), QER−QE (S = 3), or QER−QER (S = 2) pair. (b) The pseudopotential (pair energy
V vs. relative angular momentumR) of the QER–QER interaction calculated in the systems of N ≤ 9 electrons on Haldane sphere (Szlufarska et al., 2001).

at ν > (2p + 1)−1. As pointed out by Rezayi (1987, 1991) and Chakraborty et al. (1986), whether QEs or QERs will occur
at low energy depends on the relation between their energies including the Zeeman term, εQE and εQER + EZ . Although it is
difficult to accurately estimate the value of EZ in an experimental sample because of its dependence on a number of factors
(material parameters, well widthw, density ρ, magnetic field B, etc.), it seems that both scenarios with QEs and QERs being
lowest-energy QPs are possible. For example, using the bulk value for the effective g∗ factor in GaAs (dEZ/dB = 0.03meV/T)
results in the QER–QE crossing at B = 18T , while including the dependence of g∗ on w and B as described by Wójs et al.
(2000b) makes QER more stable than QE up to B ∼ 100T.
Once it is established which of the QPs occur at low energy in a particular system (defined by ρ,w, B, ν, etc.), their

correlations can be understood by studying the appropriate pair interaction pseudopotentials (Haldane, 1987; Quinn and
Wójs, 2000a;Wójs, 2001a;Wójs andQuinn, 2000a). The pseudopotentialV (R) is defined (Haldane, 1987) as the dependence
of pair interaction energy V on relative orbital angular momentumR. On a plane,R for a pair of particles ab is the angular
momentum associated with the (complex) relative coordinate z = za − zb. On Haldane sphere, the compatible definition of
R depends on the sign ofQaQb: for a pair of opposite charges, R is the length of total pair angular momentum, L = |Èa+Èb|,
while for two charges of the same sign, R = |`a + `b − L|. In all cases, R > 0 and larger R corresponds to a larger
average ab separation (Quinn andWójs, 2000a; Wójs and Quinn, 2000a). Furthermore, only odd values ofR are allowed for
indistinguishable (a = b) Fermions.
Since the QE–QH and QER–QH pseudopotentials have been plotted in Fig. 29 (VQE–QH = E0 and VQER–QH = E1), and

the QE–QE and QH–QH pseudopotentials can be found, for example, in Wójs and Quinn (2000d), we only need to discuss
VQER–QER and VQE–QER. Two QERs occur in an N-electron system with at least two reversed spins (S < (N/2) − 1) and at
2Q = 3(N − 1) − 2 (i.e., at g = g0 − 2 where g0 corresponds to the Laughlin state). An example of the energy spectrum
is shown in Fig. 31(a) for N = 8 at 2Q = 19. The lowest-energy states in the subspaces of S = N/2 = 4,N/2 − 1 = 3,
and N/2 − 2 = 2 are connected with dashed lines and contain a QE–QE, QE–QER, and QER–QER pair, respectively. The
angular momenta L that occur in these bands result from addition of ÈQE and/or ÈQER (with `QE = Q ∗ + 1 = 7/2 and
`QER = Q ∗ = 5/2). For identical Fermions, the addition must be followed by antisymmetrization that picks out only odd
values ofR for the QE–QE and QER–QER pairs. An immediate conclusion from Fig. 31(a) is that themaximally spin-polarized
(S = N/2) system is unstable at the filling factor close but not equal to the Laughlin value of ν = 1/3 (the actual spin
polarization decreases with decreasing EZ , and S = 0 for EZ = 0). This was first pointed out by Rezayi (1987, 1991) and
interpreted in terms of an effective attraction between S = 1 spin waves; in this paper we prefer to use charged QPs as the
most elementary excitations and explain the observed ordering of different S bands by the fact that εQE 6= εQER (at EZ = 0,
εQE − εQER = 0.0281e2/λ) and the particular form of involved interaction pseudopotentials.
We have calculated the QE–QER and QER–QER pseudopotentials from the energy spectra as that in Fig. 31 (a) by

converting L into R and subtracting the Laughlin ground state energy and the energy of two appropriate QPs from the
total N-electron energy, VAB(R) = E(L)− E0− εA− εB. To minimize the finite-size effects, all subtracted energies are given
in the same units of e2/λ0, where λ0 = R/

√
Q0 corresponds to 2Q0 = 3(N − 1), i.e., to ν = 1/3. The result for VQER−QER and

N ≤ 9 is shown in Fig. 31(b). Clearly, obtained values of VQER−QER(R) still depend on N and, for example, the positive sign
characteristic of repulsion between equally charged particles is only restored in the N−1 → 0 limit with VQER−QER(1) of the
order of 0.01e2/λ (compare with discussion of the signs of VQE−QE and VQH−QH in Wójs (2001b) and Section 9). However, it
seems that themonotonic character of VQER−QER(R) is independent ofN . More importantly, VQER−QER(R) is also a superlinear
function of L(L+ 1). This implies (Quinn and Wójs, 2000a; Wójs and Quinn, 2000a; Wójs, 2001a) Laughlin correlations and
incompressibility at νQER = (2p+1)−1, in analogy to the spin-polarized Laughlin states of QEs or QHs in Haldane’s hierarchy
picture (Haldane, 1983;Wójs andQuinn, 2000d). Themost prominent of QER Laughlin states, νQER = 1/3, corresponds to the
electronic filling factor of ν = 4/11 and the 75% spin polarization (S = N/4). This state has been first suggested by Béran and
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Morf (1991). The expected critical dependence of the excitation gap at ν = 4/11 on the Zeeman gap EZ might be revealed
in tilted-field experiments. This dependence will be very different from that at some other fractions.

17. Spin polarization transition of the ν = 4/11 state

17.1. Possible incompressible quantum liquid states

In Section 15 wementioned that there were at least two candidates for the ν = 4/11 state observed by Pan et al. (2003).
The fully spin polarized state (forwhich there is some experimental support) cannot be a second generation CF state resulting
fromLaughlin correlatedQEs at filling factor νQE = 1/3. TheQEpseudopotentialsVQE(R) are strongly subharmonic atR = 1
and cannot support Laughlin correlations. A state with pairs of electrons of total angular momentum `P = 2` − 1 (where
` is the QE angular momentum), or with larger clusters can cause a totally spin polarized state at ν = 4/11. However, a
partially spin polarized state in which CF quasielectrons have reversed spin (QERs) relative to those in the IQL state above
which they reside, could give rise to an IQL state with νQER = 1/3 (Park and Jain, 2000). This is possible because VQER(R) is
superharmonic atR = 1 (Szlufarska et al., 2001) allowing the QERs to form a Laughlin state.
Which of these has a lower energy? The total energy depends on (i) the energies of the quasielectrons, εQE and εQER,

(ii) the interaction energy of these quasiparticles, which depends on their pseudopotentials VQE(R) and VQER(R), and finally
on (iii) the Zeeman energy EZ due to the total spin S in the applied magnetic field B. In real samples each of these energies
depends upon the width of the quantum well in which the electrons are confined. The QE energies and their interactions
depend on well width primarily because the interactions of the electrons in the systems that give rise to QEs involve form
factors resulting from integration over squares of the subbandwavefunctionsχ(z) for the quantumwell. The Zeeman energy
EZ = g∗µBB depends on the effective g-factor of the electrons, observed experimentally to increase from g∗ = −0.44 for
wide wells to zero for a well width of roughly 6 nm.

17.2. Quasielectron energies

As we have seen in earlier sections, in themean-field CF transformation, the liquid of correlated electrons at filling factor
νe = 4/11, is converted to the system of CFs with an effective filling factor νCF = 4/3. Approximately 3Ne/4 of the CFs fill
the lowest CF energy level CF LL0 ↑, with angular momentum `∗ = `− (Ne − 1). The remaining N ∼ Ne/4 CFs go into the
lowest (' 1/3-filled) excited CF energy level (either CF LL0 ↓ or CF LL1 ↑) depending on the relative magnitude of electron
Zeeman energy EZ and the ‘‘effective’’ CF cyclotron gap (proportional to e2/λ). Each CF in the partially filled 1 ↑ or 0 ↓ CF
LLs represent a ‘‘normal’’ QE (Laughlin, 1983) or QER (Rezayi, 1987, 1991) of the underlying incompressible Laughlin liquid,
respectively.
The Coulomb energies εQE and εQER of these two QPs can be extracted (Fano et al., 1986; Szlufarska et al., 2001) from

exact diagonalization of finite systems of Ne electrons in the lowest LL with the appropriate degeneracy g . The Laughlin
ground state occurs at g = 3Ne − 2 ≡ gL; it is nondegenerate (L = 0) and spin-polarized (S = Ne/2). A single QE or QER
appears in the Laughlin liquid in the lowest states at g = gL − 1 and either S = Ne/2 or (Ne/2) − 1, respectively. The QE
and QER energies defined relative to the underlying Laughlin liquid are obtained from the comparison of the Ne-electron
energies at g = gL and gL − 1. The numerical procedure and the result for an ideal 2D electron layer (Szlufarska et al.,
2001; Wójs, 2001b) were presented earlier in Sections 9 and 16. In Fig. 32, we compare the QE/QER energies calculated for
quasi-2D layers of finite width w. Here, w is the effective width of the electron wavefunction in the normal z direction,
approximated by χ(z) ∝ cos(zπ/w) (Wójs et al., 2007). It is slightly larger than the quantum well width W ; e.g., for
symmetric GaAs/Al0.35Ga0.65As wells,w = W + 3 nm over a wide range ofW ≥10 nm. The regular dependence on system
size in Fig. 32 (a) allows reliable extrapolation to (N−1e → 0) planar geometry. From the comparison of εQE(w) and εQER(w)
in Fig. 32 (b), it is clear that their difference is less sensitive to the width than any of the εQER(w) or εQE(w). To put the shown
width range in someperspective, let us note that a (fairly narrow)W= 12 nmwell in a (fairly low) field B = 10 T corresponds
to w/λ = 1.9 and1ε(w)/1ε(0) = 0.9, justifying the 2D approximation. On the other hand, a wideW = 40 nm well in a
high field B = 23 T givesw/λ = 8.1 and1ε(w)/1ε(0) = 0.5, i.e., a significant width effect.

17.3. Quasiparticle interactions and correlation energy

The weak effective CF–CF interactions are known with some accuracy from earlier studies (Lee et al., 2001, 2002; Sitko
et al., 1997; Szlufarska et al., 2001; Wójs and Quinn, 2000d; Wójs et al., 2006b). At least at sufficiently low CF fillings
factors ν ≤ 1/3, they can be well approximated by fixed Haldane pseudopotentials independent of the CF LL filling
or spin polarization. The short-range QE–QE, QER–QER, and QE–QER pseudopotentials can be obtained from finite-size
diagonalization for Ne electrons with up to two reversed spins S = Ne/2− 2 at g = gL − 2.
The result is a reliable account of the relative values1VRR′ = VR−VR′ at small neighboringR andR′, but the absolute

values are not estimated very accurately. Fortunately, since vertical correction of V (R) by a constant does not affect the
many-CF wavefunctions and only rigidly shifts the entire energy spectrum (Wójs and Quinn, 2000d), a few leading values of
1V completely determine the short-range CF correlations at a given ν. Therefore, the knowledge of those few approximate
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Fig. 32. (Color online) Dependence of the QE and QER energies ε on (a) the inverse electron number N−1e in a finite-size calculation and (b) the electron
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values of 1VQER and 1VQE was sufficient to establish that: (i) the QERs form a Laughlin ν = 1/3 liquid (Mandal and Jain,
2002; Park and Jain, 2000; Wójs and Quinn, 2002c) which in finite N − QER systems on a sphere occurs at g = 3N − 2, and
(ii) in contrast, the QEs form a different (probably paired) state (Wójs et al., 2005, 2006b, 2004) at the same ν = 1/3, which,
on a sphere, occurs at g = 3N − 6.
However, the relative strength of QE–QE and QER–QER pseudopotentials VQE and VQER must also be known in addition to

1V to compare the energies of many-QER and many-QE states (i.e., of the spin-polarized and unpolarized electron states at
νe = 4/11). The absolute values of VQER and VQE can be obtained bymatching (Haldane, 1987) the short-range behavior from
exact diagonalization of small systems with the long-range behavior predicted for a pair of charges q = −e/3. Specifically,
the short-range part of VQER(R), which describes a pair of CFs in the 1 ↓ CF LL, is shifted to match ηV0(R), the electron
pseudopotential in the lowest LL rescaled by η ≡ (q2λ−1q )/(e

2λ−1e ) = (q/e)5/2. Similarly, the short-range part of VQER,
related to the 1 ↑ CF LL, is shifted to match ηV1(R).
The result in Fig. 33(a) for an ideal 2D layer was reported earlier (Szlufarska et al., 2001). In Fig. 33(b), the width

dependence of the leading parameters1V has been plotted. It is noteworthy that VQE is muchmore sensitive to the electron
layer width w than VQER. This is explained by stronger oscillations in VQE(R) at w = 0, which tend to weaken in wider
wells (when the characteristic in-plane distances decrease relative to w). The curves involving VQER(1) and VQE(3) have
been drawn with dashed lines, since the QER–QER and QE–QE pair states associated with these dominant pseudopotential
parameterswill be avoided (Wójs et al., 2005, 2004) in the unpolarized and polarized ν = 1/3 CF ground states, respectively.
As mentioned above, due to the strong QER–QER repulsion at short range (R = 1), the QERs form a Laughlin ν = 1/3

state similar to the electrons in LL0 at νe = 1/3. The corresponding series of nondegenerate N − QER ground states on a
sphere occurs at the Laughlin sequence of g = 3N − 2. In Fig. 34(a), we plot the size dependence of their correlation energy
u (per particle), defined as

u =
E + Ubckg
N

ζ . (33)

Here, E is the interaction energy of the ground state of N QERs and Ubckg = −(Nq)2/2R is a correction due to interaction
with the charge-compensating background with the sphere radius R = λ

√
Q taken for 2Q + 1 = g , in analogy to the

relation for electrons in the lowest LL. Factor ζ =
√
Q (Q − 1)−1 is used to rescale the energy unit e2/λ =

√
Qe2/R from

that corresponding to gQER = 3N − 2 to that of an average g = 1/2(gQER + gQE) = 3N − 4, to allow for a later comparison
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Fig. 34. (Color online) (a) Correlation energy u in the ν = 1/3 incompressible liquid of QE or QER as a function of their inverse number N−1 for two
different widthsw of the quasi-2D electron layer; λ is the magnetic length. (b) Difference1u = uQE − uQER as a function of N−1 . (c) Phase diagram critical
layer width w vs magnetic field B for the QE–QER spin transition at ν = 1/3 i.e., at νe = 4/11, assuming the effective electron Landé g∗ factor for GaAs.
Dashed line is for the bulk value g∗ = −0.44, ignoring dependence on the layer widthw. The experimental points were taken after Pan et al. (2003).

of u calculated for QERs and QEs at different values of g and thus at different magnetic lengths corresponding to the same
area 4πR2. The correlation energies uwere calculated for N ≤ 12 and extrapolated to N−1 → 0 to eliminate the finite-size
effects.
Let us turn to the QEs. The dominant QE–QE repulsion at R = 3 causes the QEs to form pairs (Wójs et al., 2006b)

rather than a Laughlin state at ν = 1/3 although the exact wavefunction of this incompressible state is still unknown. The
corresponding series of nondegenerateN-QE ground states on a spherewas identified (Wójs et al., 2005, 2004) at g = 3N−6,
different from the Laughlin sequence. The QE correlation energy uwas calculated from the same Eq. (33) but with a different
ζ =

√
Q (Q + 1)−1 (where g = 2Q + 1) also. By using different ζQER and ζQE, we removed the discrepancy between λ/R of

finite N-QER and N-QE systems, in order to improve size convergence of1u = uQE− uQER. In an ideal 2D systemw = 0, the
extrapolated value at N−1 = 0 is uQE = −0.013e2/λ, twice as small in the absolute value than uQER of a Laughlin state. The
difference is1u = 0.013e2/λ. The accuracy of this estimate can be judged from the extrapolation plot in Fig. 34(b).
The uQER − uQE difference can be explained from the comparison (Wójs et al., 2006b) of QER and QE charge-density

profiles ρ(r). The roughly Gaussian QER is (up to normalization) very similar to ρ0 of an electron in the lowest LL, yielding
similar QER and electron pseudopotentials V (R) and correlation energies u (in the η-rescaled units). The ring-like ρQE is
more complicated and has a bigger radius, causing stronger (on average) QE–QE repulsion. The difference between uQER and
uQE appears to result primarily from the difference between QE and QER charge densities.

17.4. Spin phase diagram for ν = 4/11

Whether QEs or QERs will form a ν = 1/3 state at νe = 4/11 depends on the competition of Coulomb and Zeeman
energies. The condition for the QE↔ QER transition is:

1ε +1u = EZ . (34)

The competing phases differ in electron-spin polarization. They are both incompressible but probably have different
excitation gaps (and thus might not show equally strong FQH effect). In an ideal 2D electron layer, the excitation gap for
neutral excitations of the polarized state can be expected (Wójs et al., 2005, 2004) below 0.005e2/λ, and, for the Laughlin
state of QERs, it is estimated at 0.06ηe2/λ = 0.004e2/λ. The nature of charged excitations and the corresponding transport
gaps (especially in more realistic conditions, i.e., forw > 0, including LL mixing and disorder, etc.) are not known, and their
prediction should require a much more extensive calculation.
Let us concentrate on the question of stability of either QERs or QEs at νe = 4/11. In order to draw the phase diagram

for GaAs heterostructures in Fig. 34(c), we combined the estimated dependences of 1ε/(e2λ−1) and 1u/(e2λ−1) on w/λ
(where e2λ−1/

√
B = 4.49 meV/T1/2 and λ

√
B = 25.6 nmT1/2) with published data (Wójs, 2001a) on width dependence

of the effective Landé factor g∗, governing the Zeeman splitting EZ = g∗µBB (for W ≥ 30 nm, it is g∗ = −0.44 and
EZ/B = 0.03 meV/T; in narrower wells, g∗ increases, passing through zero atW ≈ 5.5 nm; recall thatw ≈ W + 3 nm).
The most important phase boundary drawn in Fig. 34(c) divides the polarized and unpolarized νe = 4/11 states, i.e., the

correlated QE and QER liquids at a finite ν = 1/3. In the experiment of Pan et al. (2003), the polarized νe = 4/11 state
was observed in a symmetricW = 50 nm GaAs quantum well at B = 11 T. The corresponding experimental point (w, B)
markedwith a plus lies very close to the predicted phase boundary, suggesting that the experimentally detected polarization
depended critically on the choice of a very wide well. Pan et al. (2003) report identification of an incompressible νe = 4/11
state at a very high field B = 33 T, taken as an argument for spin polarization. Indeed, the corresponding data point marked
with a crossW = 30 nm lies deep inside the predicted ‘‘QE liquid’’ phase area. However, no clear evidence for an unpolarized
νe = 4/11 has yet been reported. It is clear from Fig. 34(c) that the spin transition in narrower wells shifts quickly to higher
magnetic fields (i.e., to higher electron concentrations ρe = νe(2πλ2)−1), especially when the width dependence of g∗ is
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taken into account. This suggests that the spin transition at νe = 4/11 might be confirmed in a similar experiment, carried
out in a sample with the sameW and ρe but with the layer width w tuned by the electric gates inducing a controlled well
asymmetry. The role of QP interaction in stabilizing the QER phase is clear from the comparison of boundaries dividing
correlated QE/QER liquids and noninteracting QE/QER gases (the gas occurs at ν � 1/3, with the critical equation1ε = EZ ;
the CF gas ↔ liquid transition was recently demonstrated by inelastic light scattering (Gallais et al., 2006). Additional
boundaries (not shown here, but see Figure 13(b) in Wójs and Quinn (2002d)) appear at even smaller B, defining the areas
of stability for a gas of CF skyrmions of different sizes (Kamilla et al., 1996; Leadley et al., 1997; MacDonald and Palacios,
1998; Wójs and Quinn, 2002d). Note also that1ε is determined more accurately than1u, possibly explaining the incorrect
position of the experimental point inside the predicted QE gas and/or QER liquid area.
The spin polarization transition results from a competition between the Zeeman energy which is proportional to B and

the interaction energy which is proportional to B1/2 (or e2/λ). Large Zeeman energy favors the totally spin polarized state.
Large quantum well width decreases the interaction energy relative to the Zeeman energy, so that wide wells and large
total magnetic field (the perpendicular component of B is fixed by the electron density and the filling factor ν = 4/11)
favor a fully spin polarized state. Our phase diagram is clearly qualitatively correct, but the evaluation of the energy of
each state involves a number of approximations. The phase transition lines in thew–B (well width–applied magnetic field)
plane is only approximate. Our suggestion of using a back gate to change the quantum well size in a single sample offers
a conceptually simple way to test our simple model. It should be noted that we have considered only the two extreme
polarizations P = (n↑ − n↓)/(n↑ + n↓) equal to 1 and 1/2, omitting the possibility of intermediate P .

18. Electron system containing valence band holes

The first observations of both the integral and fractional quantum Hall effects were made in magnetotransport studies
(von Klitzing et al., 1980; Tsui et al., 1982). Deep minima in the longitudinal conductivity, σxx, and flat plateaus in
the transverse conductivity σxy, at special filling factors ν were the signatures of the IQL states. Magnetotransport has
continued to be a very important technique for studying quantum Hall systems. However, optical measurements, including
infrared spectroscopy, inelastic light scattering, and photoluminescence have been valuable probes of quantumHall systems
(Byszewski et al., 2006; Heiman et al., 1988; Kukushkin et al., 1994; Pinczuk et al., 1993). Many of the optical processes
involve valence band holes interacting with the electrons confined in a quasi-2D system. A valence band hole can bind one
or two electrons to form a neutral or a negatively charged exciton (X or X−). In this section we study the properties of a
quasi-2D system containing Ne electrons interacting with Nh valence band holes.
The electron–hole systems are of interest for several reasons. In quasi-2D systems, neutral excitons and negatively

charged excitonic complexes can form in relatively stable bound states. The negatively charged excitonic complexes are
charged Fermions with LL structure of their own. They have correlations with one another and with electrons, just as
unbound electrons have with one another. The correlations between unbound electrons and negatively charged excitonic
complexes is another example of the usefulness of the generalized CF picture. In some ways it is a simpler example because
the constituents (e, X− = e2h, X−2 = e

3h2, . . .) all have the same total charge. However, it is more complicated because
more than two different kinds of Fermion can occur.

18.1. Hidden symmetry and multiplicative states

If the electrons and the valence band holes are confined to the same 2D plane, and if themagnetic field is sufficiently large
that the Landau level separations are large compared to the Coulomb interaction energy of a pair of particles, only a single
LL for electrons and a single LL for holes need be considered. In such a case, the magnitude of the interaction between a pair
of particles (e− e, e− h, h− h) is the same. Then a ‘‘hidden symmetry’’ (Dzyubenko and Lozovik, 1983; Lerner and Lozovik,
1981; MacDonald and Rezayi, 1990; MacDonald et al., 1992; Paquet et al., 1985) results from the fact that the commutator
of the Hamiltonian Ĥ with the operator dĎ(0) = N−1/2φ

∑
Ek′ c

Ď
Ek′
dĎ
−Ek′
, which creates a neutral exciton with wavevector k = 0,

satisfies the relation:[
Ĥ, dĎ(0)

]
= EX (0)dĎ(0). (35)

Here EX (0) is the energy of the exciton; Nφ = 2Q + 1 is the LL degeneracy, and c
Ď
Ek′
(or dĎ

Ek′
) creates an electron (or hole) in

LL0 with wavenumber (in y-direction for the Landau gauge) equal to k. Because of Eq. (35), if |Φ〉 is an eigenstate of Ĥ with
energy EΦ , then dĎ(0)|Φ〉 is an eigenstate of Ĥ with energy EΦ + EX . The neutral k = 0 exciton is essentially uncoupled
from the electron system. States containing NX such neutral excitons and Ne free unbound electrons are referred to as
‘‘multiplicative states’’ (Dzyubenko and Lozovik, 1983; Lerner and Lozovik, 1981; MacDonald and Rezayi, 1990; MacDonald
et al., 1992; Paquet et al., 1985). These low energy multiplicative states are not necessarily the ground states of a system of
Nh holes and Ne (>Nh) electrons. For multiplicative states, the photoluminescence (PL) results from the recombination of
the electron–hole pair bound in the ‘‘uncoupled’’ exciton (X). Since X is not coupled to the background 2D system, this PL
spectrum contains no information about the correlations in the fluid of free electrons. To obtain information about those
correlations, it is necessary to break the ‘‘hidden symmetry’’. In real systems, this does occur as a result of: (i) finitewellwidth
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Fig. 35. The energy spectrum of two electrons and one hole at 2Q = 10. Inset: the energy spectrum of an electron–hole pair (Quinn et al., 2003a).

giving different subband wavefunction for electrons and holes and different e–e and e–h pseudopotentials, (ii) separation
of the centers of mass of the electron and hole layers due to asymmetry of the quantum well (e.g. not symmetrically
modulation doped), and (iii) admixing of higher LLs when the Coulomb interaction is not very small compared to the LL
separations. For understanding the qualitative aspects of the PL spectrum, it is sufficient to remove the ‘‘hidden symmetry’’
by introducing a separation d between the 2D planes on which the electrons and holes reside. Then Ve−h = e2(r2 + d2)−1/2
and |Ve−e| = e2/r . This breaks the hidden symmetry without the need of including subband wavefunction or admixing
higher LLs. For comparisonwith real experiments, amore careful treatment of the e–e and e–h interactions and the admixing
of higher LLs is necessary.
In the next subsection we present spectra obtained by numerical diagonalization of systems containing up to four

electrons and two valence holes. From the results we obtain binding energies and angular momenta of the neutral exciton
(X), the negatively charged exciton (X− = e+ X), and the negatively charged biexciton (X−2 = X + X

−). We also obtain the
pseudopotentials describing the interaction VAB of charged Fermion pairs where A and B can be e−, X−, X−2 , etc. Many of the
results in the reminder of this section have been summarized in Quinn et al. (2003a).

18.2. Numerical diagonalization

18.2.1. Numerical results
In Fig. 35, we show the spectrum (inmagnetic units) of a systemwith two electrons and one hole at 2Q = 10 as a function

of the total angular momentum L (Wójs et al., 1999b). The lowest energy state at L = Q is the multiplicative state with one
neutral exciton in its `X = 0 ground state and one electron of angular momentum `e = Q . Only one state of lower energy
occurs in the spectrum. It appears at L = Q−1 and corresponds to the only bound state of the negatively charged exciton X−.
The value of the X− angular momentum `X− = Q − 1, can be understood by noticing that the lowest energy single-particle
configuration of the two electrons and one hole is the ‘‘compact droplet’’, in which the two electrons have z-component of
angular momentum m = Q and m = Q − 1, and the hole has m = −Q givingM = Q − 1. As marked with lines in Fig. 35
unbound states above the multiplicative state form bands, which arise from the e–h interaction and are separated by gaps
associated with the characteristic excitation energies of an e–h pair. (The e–h pseudopotential, i.e., the energy spectrum of
an exciton, is shown in the inset). These bands are rather well approximated by the expectation values of the total (e–e and
e–h) interaction energy, calculated in the eigenstates of the e–h interaction alone without e–e interaction.
In Fig. 36, we display the energy spectrum obtained by numerical diagonalization of the Coulomb interaction of a system

of four electrons and twoholes at 2Q = 15 (Wójs et al., 1999b). The statesmarked by open and solid circles aremultiplicative
(containing one or more decoupled Xs) and non-multiplicative states, respectively. For L < 10 there are four rather well
defined low lying bands. Two of them begin at L = 0. The lower of these consists of two X− ions interacting through a
pseudopotential VX−−X−(L′). The upper band consists of states containing two decoupled Xs plus two electrons interacting
through Ve−−e−(L′). The band that begins at L = 1 consists of one X plus an X− and an electron interacting through
Ve−−X−(L′), while the band which starts at L = 2 consists of an X

−

2 interacting with a free electron.
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Table 5
Binding energies ε0, ε1, ε2, ε3 of X, X−, X−2 , and X

−

3 , respectively, in units of e
2/λ.

2Q ε0 ε1 ε2 ε3

10 1.3295043 0.0728357 0.0411069 0.0252268
15 1.3045679 0.0677108 0.0395282 0.0262927
20 1.2919313 0.0647886 0.0381324 0.0260328

Knowing that the angularmomentum of an electron is `e = Q , we can see that `X−k = Q −k, and that decoupled excitons
do not carry angular momentum (`X = 0). For a pair of identical Fermions of angular momentum ` the allowed values of
the pair angular momentum are L′ = 2` − j, where j is an odd integer. For a pair of distinguishable particles with angular
momenta `A and `B, the total angular momentum satisfies |`A−`B| ≤ L′ ≤ `A+`B. The states containing two free electrons
and two decoupled neutral excitons fit exactly the pseudopotential for a pair of electrons at 2Q = 15; the maximum pair
angular momentum is L′MAX = 14 as expected. By comparing this band of states with the band containing two X−s, we can
obtain the binding energy of the neutral exciton to the electron to form the X−. The other binding energy, that of a neutral
exciton to an X− to form an X−2 can be obtained in a similar way.

18.2.2. Binding energies
We define ε0 as the binding energy of a neutral exciton, ε1 as the binding energy of an X to an electron to form an X−,

and εk as the binding energy of an X to an X−k−1 to form an X
−

k . An estimate of these binding energies (in magnetic energy
units e2/λ, where λ is the magnetic length) as a function of 2Q are given in Table 5. We note clearly that ε0 > ε1 > ε2 > ε3.

18.2.3. Pseudopotentials VAB(L′) of charged Fermions
In Fig. 36 the band of states containing two X−s terminates at L′ = 10. Since the X−s are Fermions, one would have

expected a state at L′MAX = 2`X− − 1 = 12. This state is missing in Fig. 36. We surmise that the state with L′ = L′MAX does
not occur because of the finite size of the X−. Large pair angular momentum corresponds to the small average separation,
and two X−s in the state with L′MAX would be too close to one another for the bound X− to remain stable. We can think of
this as a ‘‘hard core’’ repulsion for L′ = L′MAX. Effectively, the corresponding pseudopotential parameter, VX−−X−(L′MAX) is
infinite. In a similar way, Ve−−X−(L′MAX) is infinite for L′ = L′MAX = 14 and Ve−−X−2 (L

′MAX) is infinite for L′ = L′MAX = 13.
Once the maximum allowed angular momenta for all four pairings AB are established, all four bands in Fig. 36 can be

roughly approximated by the pseudopotentials of a pair of point charges with angular momentum `A and `B, shifted by
the binding energies of appropriate composite particles. For example, the X−X− band is approximated by the e− − e−
pseudopotential for ` = `X− = Q − 1 plus twice the X− energy. The agreement is demonstrated in Fig. 36, where the
squares, diamonds, and two kinds of triangles approximate the four bands in the four-electron–two-hole spectrum. The fit
of the diamonds to the actual X− − X− spectrum is quite good for L′ < 10. The fit of the e− − X− squares to the open circle
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multiplicative states is reasonably good for L′ < 12, and the e−− X−2 triangles fit their solid circle non-multiplicative states
rather well for L′ < 11. At sufficiently large separation (low L′), the repulsion between ions is weaker than their binding,
and the bands for distinct charge configurations do not overlap.
There are two important differences between the pseudopotentials VAB(L′) involving composite particles and those

involving point particles. The main difference is the hard core discussed above. If we define the relative angular momentum
R = `A + `B − L′ for a pair of particles with angular momentum `A and `B then the minimum allowed relative angular
momentum (which avoids the hard core) is found to be given by

Rmin
AB = 2min(kA, kB)+ 1, (36)

where A = X−kA and B = X
−

kB
. The other difference involves polarization of the composite particle. A dipolemoment is induced

on the composite particle by the electric field of the charged particles with which it is interacting. By associating an‘‘ionic
polarizability’’ with the excitonic ion X−k , the polarization contribution to the pseudopotential can easily be estimated.When
a number of charges interact with a given composite particle, the polarization effect is reduced from that caused by a single
charge, because the total electric field at the position of the excitonic ion is the vector sum of contributions from all the
other charges, and there is usually some cancellation. We will ignore this effect in the present work and simply use the
pseudopotential VAB(L′) obtained from Fig. 36 to describe the effective interaction.

18.3. Generalized composite Fermion picture

The electron, X−, X−2 , . . . are different types of Fermions, all of which have the same charge. These Fermions belong to
different classes a, b, c . . ., distinguishable fromone another. In a systemcontainingNα Fermions of typeα (α ∈ a, b, . . .) the
energy of interaction of a Fermion pair as a function of pair angularmomentum can be expressed as Vαβ(L′). Here L̂′ ≡ ˆ̀ i+ ˆ̀ j
is the sum of the angular momentum ˆ̀ i of the ith particle of type α and ˆ̀ j of the jth particle of type β , and α, β can be in
the same class or in different classes. All of the pseudopotentials in Fig. 36 are superharmonic. Because of this, the lowest
energy states in a system containing Nα Fermions of type α (α ∈ a, b, . . .)will be Laughlin correlated. We can describe the
Laughlin correlations by introducing an ‘‘effectivemonopole strength’’ 2Q ∗α seen by Fermions of typeα using the generalized
CF picture introduced in Section 13F.
We write:

2Q ∗a = 2Q −
∑
b

(mab − δab)(Nb − δab). (37)

What we have done here is to attach to all type a Fermions (maa − 1) flux quanta that couple only to the charges on
all other type a Fermions and mab, flux quanta sensed only by charges on the type b Fermions. This is a straightforward
generalization of what we did in making in Section 13F. The coefficients mab are the powers that occur in the generalized
Laughlin wavefunction,

∏
〈i,j〉(z

(a)
i − z

(b)
j )

mab where zai is the complex coordinate of the ith Fermion of type a and the product
is over all pairs 〈i, j〉. For different multicomponent systems generalized Laughlin incompressible states are expected to
occur when (i) all the hard-core pseudopotentials are avoided and (ii) each type of CFs (i.e., CFas, CFbs, . . .) completely fills
an integral number of their angular momentum shells. In other cases, low lying multiplets are expected to contain different
kinds of CF quasiparticles (QEas,QEbs, . . ., or QHas,QHbs, . . .) of the incompressible generalized Laughlin states.
Correlations between different particles a and b result from adiabatically addingmab flux quanta (sensed by the charge qa

on particle a) to particle b. Because the charge qi is the same for each of the negatively charged Fermions (i = e, X−, X−2 , . . .),
mab = mba produces the same a − b correlations by flux attachment to particle a or to particle b. In Section 13 we discuss
Fermions of different charge (qe = qFP/2). In that case qamab = qbmba is required for the same a − b correlations. This is
why 2γNe appeared in Eq. (22) and γNP appeared in Eq. (23).

18.4. Low lying bands of Ne electron — Nh hole systems

18.4.1. Condensed states of charged excitons
Consider for a moment a system containing 12 electrons and six holes on a Haldane spherical surface at monopole

strength 2Q = 17. The charge configuration with the largest binding energy is that containing six X− charged excitons.
We will refer to it as (i); its total binding energy εi is equal to 6(ε0 + ε1). If we make a CF transformation on this system of
NX− = 6 negatively charged excitons, we obtain 2Q ∗X− = 2Q − 2(NX− − 1) = 7. The angular momentum of the X

− is given
by `X− = Q − 1 = 15/2 and that of the CF X− by `∗X− = Q

∗

X− − 1 = 5/2. This means that the six CF X
−s completely fill

the `∗X− = 5/2 shell giving a Laughlin L = 0 incompressible state at νX− = 1/3. Note that 2` = ν
−1(N − 1) holds for the

quantum liquid of X−s just as it did in the case of electrons.
One point worth noting is that the generalized CF picture of a multicomponent plasma can be thought of in terms of

fictitious CF fluxes and CF charges that have different ‘‘colors’’ as discussed in Section 13. For example, electrons could have
a red Chern–Simons charge andX−s a green charge. Thenmee−1 red andmeX− greenChern–Simons fluxeswould be attached
to each electron, while (mX−X− − 1) green andmX−e red Chern–Simons fluxes would be attached to each X−.
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Although X−s have relatively long lifetimes for radiative recombination of an electron–hole pair, it seems unlikely that
the Laughlin condensed state of negatively charged excitons can be observed by standard experimental techniques used in
the case of condensed states of an electron liquid. However, the PL spectrummight give some indication of the correlations
in the initial state. For example, if the ground state of a twelve electron–six hole system underwent e–h recombination,
the initial state would be an L = 0 IQL state of six X− excitons. Many different final states of the eleven electron–five hole
system would be possible. Evaluating their eigenvalues and eigenfunction by numerical diagonalization would allow one
to identify the energies and oscillator strength associated with different PL peaks. Selection rules would depend on sample
properties like quantum well width, ratio of e2/λ, Coulomb energy scale, to the LL separation, impurity concentration, etc.
Such PL processes have not yet been studied in detail.

18.4.2. Other charge configurations
For the 12-electron–6-hole system, other charge configurations besides the six X−s can occur as excited states. Among

these are (ii) e− + 5X− + X with total binding energy εii = 6ε0 + 5ε1, and (iii) e− + 4X− + X−2 with total energy
εiii = 6ε0 + 5ε1 + ε2. The total energy of any state depends on the interaction energy of the constituent charged particles
as well as the binding energy. The system of eighteen particles (12 electrons and 6 holes) at 2Q = 17 is too large for us to
diagonalize in terms of the electrons and holes and their interactions. However, we can obtain a reasonable approximation
to the low lying energy spectrum by considering the different charge configurations denoted by (i) through (iii) each of
which contains only six charged Fermions. We make use of our knowledge of the binding energies, angular momenta, and
pseudopotentials VAB(L′)where A and B can be e−, X− or X−2 . The results of this simpler numerical calculation are presented
in Fig. 37 (Wójs et al., 1999b). There is only one low lying state of the six X− configurations, the L = 0 Laughlin νX− = 1/3
state. There are two bands of states in each of the charge configurations (ii) and (iii). The results presented in Fig. 37 can
be understood from the generalized CF model. The CF predictions are: (i) for the system of NX− = 6, we take mX−X− = 3
and obtain the Laughlin νX− = 1/3 state as discussed earlier. Because of the hard core of the X− − X− pseudopotential,
this is the only state of this charge configuration. (ii) For the e− + 5X− + X configuration, we can take mX−X− = 3 and
meX− = 1, 2, or 3. FormeX− = 1 we obtain L = 1⊕2⊕32⊕42⊕53⊕63⊕73⊕82⊕92⊕10⊕11. FormeX− = 2 we obtain
L = 1⊕ 2⊕ 3⊕ 4⊕ 5⊕ 6 and for meX− = 3 we obtain L = 1. (iii) For the grouping e− + 4X− + X

−

2 , we set mX−X− = 3,
meX−2 = 1,mX−X−2 = 3 and meX− = 1, 2 or 3. For meX− = 1, we obtain L = 2 ⊕ 3 ⊕ 4

2
⊕ 52 ⊕ 63 ⊕ 72 ⊕ 82 ⊕ 9 ⊕ 10.

For meX− = 2, we obtain the multiplets L = 2⊕ 3⊕ 4⊕ 5⊕ 6, and for meX− = 3, we have L = 2 (Quinn et al., 2003a). In
the groupings (ii) and (iii) the sets of multiplets obtained for higher values of meX− are subsets of those obtained for lower
values of meX− . We would expect them to form lower energy bands since they avoid additional ReX− . However, note that
the (ii) and (iii) states predicted for meX− = 3 (at L = 1 and 2, respectively) do not form separate bands in Fig. 37. This is
because the VeX− increases more slowly than linearly as a function of L′(L′ + 1) in the vicinity ofReX− = 3. In such a case
the CF picture fails (Wójs and Quinn, 1998b, 1999).
The agreement of our CF predictions with the data in Fig. 37 is really quite remarkable and strongly indicates that the

multicomponent CF picture is correct. We were indeed able to confirm predicted Jastrow type correlations in the low lying
states by calculating their coefficients of fractional parentage (de Shalit and Talmi, 1963). We have also verified the CF
predictions for other systems that we were able to treat numerically. If exponents mab are chosen correctly, the CF picture
works well in all cases.

18.5. Spectra of Ne electron–single hole system

In PL experiments the absorption of light creates a small number of electron–valence hole pairs in a quantum well that
already has a concentration of conduction electrons. Because Nh � Ne, the valence holes are rather far apart, and the PL
spectrum is not influenced by h–h interactions. One can evaluate the energies andwavefunctions for a single hole interacting
with a gas of Ne electrons, investigate the allowed final states of Ne − 1 electrons, and calculate the energy and intensity of
the PL spectrum lines. For this reason, it is useful to study the eigenstates of a Ne-electron–1-valence hole system. In order
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to remove the ‘‘hidden symmetry’’ that decouples the PL spectrum from the correlations in the underlying electron gas,
we assume that the electrons and the hole reside on different 2D planes separated by a distance d between zero and four
magnetic lengths, λ = (h̄c/eB)1/2. We take the cyclotron energies to be large compared to the Coulomb energy (e2/λ) so
that only a single LL for each kind of carrier is necessary.
In Fig. 38 we present the energy spectra for a system of 9 electrons and 1 valence band hole at three different values of

separation d between the 2D layers and two different values of the monopole strength 2Q (Quinn et al., 2001b).
For d� 1 we have strong coupling between the electrons and the hole. Neutral (X) and charged excitons X− are found.

The multiplicative states at d = 0 are shown as solid dots surrounded by a small circle. Non-multiplicative states at d = 0
can have an X−t exciton interacting with the remaining N − 2 electrons. For d � 1 the valence hole interacts very weakly
with theN-electron system, and the spectra can be described in terms of the eigenstates of theN-electron systemmultiplied
by the eigenfunction of the hole with total angular momentum L̂ = L̂e + ˆ̀h. For intermediate values of d (d ' 2) the e–h
interaction is not a weak perturbation on the electronic eigenstates, but it is not always strong enough to bind a full electron
to form an exciton.
For d = 0, X and X− bound states occur. Due to the ‘‘hidden symmetry’’, the multiplicative states containing an X have

the same spectrum as the eight electron system shifted by the X binding energy. The CF model (Wójs and Quinn, 1998b,
1999; Wójs et al., 1999b) tells us the effective monopole strength seen by one CF in a system of N ′ = N − 1 = 8 electrons
near ν = 1/3 is 2Q ∗ = 2Q − 2(N ′ − 1). Q ∗ plays the role of the angular momentum of the lowest CF electron shell,
therefore Q ∗ = 7/2 and 4 for the multiplicative states in frames (a) and (b) of Fig. 38, respectively. Since the lowest CF shell
can accommodate 2Q ∗ + 1 CFs, it is exactly filled in frame (a), but there is one empty state in the `∗ = 4 CF level, or one
QH of angular momentum `QH = 4 in frame (b). Thus the lowest multiplicative states have L = 0 in frame (a) and L = 4 in
frame (b). Themagnetoroton band ofmultiplicative states in frame (a) is clearlymarked. It has 2 ≤ L ≤ 8, and it is contained
within the quasicontinuum of non-multiplicative states.
For the non-multiplicative states we have one X− and Ne = N−2 remaining electrons. The generalized CF picture (Wójs

et al., 1999b) allows us to predict the lowest energy band in the spectrum in the following way. The effective monopole
strength seen by the electrons is 2Q ∗ = 2Q − 2(Ne − 1) − 2NX− , while that seen by the X− is 2Q ∗X− = 2Q − 2Ne. Here,
we have attached to each Fermion (electron and X−) two fictitious flux quanta and used the mean-field approximation
to describe the effective monopole strength seen by each particle (note that a CF does not see its own flux). The angular
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momentum of the lowest CF electron shell is `∗0 = Q
∗
e , while that of the CF X

− shell is `X− = Q ∗X− − 1 (Quinn et al., 2001b;
Wójs et al., 1999b). For the system with Ne = 7 and NX− = 1 at 2Q = 21 and 22, the generalized CF picture leads to: one
QH with `QH = 7/2 and one X− with `∗X− = 5/2, giving a band at 1 ≤ L ≤ 6 for Fig. 38(a) and two QHs with `QH = 4 and
one X− with `∗X− = 3 giving L = 0⊕ 1⊕ 2

3
⊕ 33 ⊕ 44 ⊕ 53 ⊕ 63 ⊕ 72 ⊕ 82 ⊕ 9⊕ 10 for Fig. 38(b).

For d� 1, the electron–hole interaction is a weak perturbation on the energies obtained for the N-electron system. The
numerical results can be understood by adding the angularmomentum of a hole `h = Q , to the electron angularmomentum
obtained from the simple CF model. The predictions are: for 2Q = 21 there are three QEs each with `QE = 7/2 and the hole
has `h = 21/2; for 2Q = 22 two QEs each with `QE = 4 and `h = 11. Adding the angular momenta of the identical Fermion
QEs gives Le, the electron angular momenta of the lowest band; adding to Le the angular momentum `h gives the allowed set
of allowedmultiplets appearing in the low energy sector. For example, in Fig. 38(b’’) the allowed values of Le are 1⊕3⊕5⊕7,
and the multiplets at 7 and 3 have lower energy than at 1 and 5. Four low energy bands appear at 4 ≤ L ≤ 18, 8 ≤ L ≤ 14,
6 ≤ L ≤ 16, and 10 ≤ L ≤ 12, resulting from Le = 7, 3, 5, and 1, respectively.
For d ≈ 1, the electron–hole interaction results in formation of bound states of a hole and one or more QEs. In the two-

electron–one-hole system, the X and X− unbind for d ≈ 1, but interaction with the surrounding unbound electrons in a
larger system can lead to persistence of these excitonic states beyond d = 1. For example, the band of states at d = 0 in
Fig. 38(a) that we associated with an X− interaction with a QH persists at d = 1.5 in Fig. 38(a’). However, it appears to cross
another low energy band that extends from L = 3 to 8. This latter band can be interpreted in terms of three QEs interacting
with the hole as done in the weak-coupling limit shown in Fig. 38(a’’). The other bands of the weak coupling regime (those
beginning at L = 5, 6, 7, 8, and 9) have disappeared into the continuum of higher states as a result of the increase of Veh.
For 2Q = 22, the lowest band can be interpreted in terms of one X− interacting with two QHs of the generalized CF

picture. The X− has `∗X− = 3 and each QH has `QH = 4. The allowed values of L2QH are 7, 5, 3, and 1, and the molecular state
QH2 which has the smallest average QH–QH distance would have `QH2 = 7. This gives a band of X

−
+QH2 states going from

L = `QH2 − `
∗

X− = 4 to L = `QH2 + `
∗

X− = 10. A higher band beginning at L = 2 might be associated with a 2QH state at
L2QH = 5 interacting with an X−. The origin of the other bands is less certain.
It is worth noting that the X−QH band in Fig. 38(a) resembles the neutral exciton band shown in the inset of Fig. 35. The

latter band begins at L = 0 because `e = `h = 5 and |`e − `h| ≤ L ≤ `e + `h. For the X−QH band `X− = Q ∗ − 1 = 5/2 and
`QH = Q ∗ = 7/2 giving a band starting at L = `QE − `X− = 1 and ending at L = `QE + `QH = 6. The width of this band is
smaller than that of the neutral X by at least an order of magnitude. This reflects the fact that the magnitude of the effective
charges of the correlated X− (and of the QH) is one third of the electron charge, and of the fact that the charge is spread over
a wider region. This makes it clear that the correlated X− can be thought as a quasi-X− (QX−), and just like the Laughlin QH
it has an effective charge of magnitude 1/3. This allows us to call the QH− QX− band state a neutral quasiexciton QX0.

19. Photoluminescence

19.1. General considerations

Exact numerical diagonalization gives both the eigenvalues and the eigenfunctions. The low energy states |i〉 of the initial
N-electron–one-hole system have just been discussed. The final states |f 〉 contain N ′ = N − 1 electrons but no holes.
The recombination of an electron–hole pair is proportional to the square of the matrix element of the photoluminescence
operator L̂, where L̂ =

∫
d3rΨe(Er)Ψh(Er) andΨe(Er) (orΨh(Er)) annihilates an electron (or hole).We have evaluated |〈f |L̂|i〉|2

for all of the low-lying initial states and have found the following results (Wójs and Quinn, 2000b). (i) Conservation
of the total angular momentum L is at most weakly violated through the scattering of spectator particles (electrons
and quasiparticles) which do not participate directly in the recombination process if the filling factor ν is less than
(approximately) 1/3. (ii) In the strong coupling region, the neutral X line is the dominant feature of the PL spectrum. The
X−QH2 state has very small oscillator strength for radiative recombination. (iii) For intermediate coupling, the hQE2 and an
excited state of the hQE (which we denote by hQE∗) are the only states with large oscillator strength for photoluminescence.
At zero temperature (T = 0), all initial states must be ground states of the N-electron–one-hole system. At finite but low

temperatures, excited initial states contribute to the PL spectrum. The photoluminescence intensity is proportional to

wi→f =
2π
h̄

Z−1
∑
i,f

e−βEi
∣∣〈f |L̂|i〉∣∣2 δ(Ei − Ef − h̄ω), (38)

where β = (kT )−1 and Z =
∑
i e
−βEi .

19.2. Singlet and triplet charged excitons: photoluminescence for dilute (ν � 1) systems

Only spin polarized charged excitons (with S = 1) are bound when the ratio (h̄ωC )/(e2/λ) tends to infinity. In real
systems at finite values of this parameter, both singlet (S = 0) and triplet (S = 1) charged excitons occur. According to the
theory (Wójs and Quinn, 2000b) the singlet X−s is the ground state at low values of the magnetic field, while the triplet X

−

t
is the ground state at very high magnetic fields. Numerical calculations of the ground states of both the singlet and triplet
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Fig. 39. Energy spectra (binding energies vs. angular momentum) of the two-electron–one-hole system on a Haldane sphere with the Landau level
degeneracy 2Q + 1 = 21. Se denotes the total electron spin. The parameters are appropriate for the 11.5 nm GaAs quantum well (Wójs et al., 2000a).

charged excitons (Wójs and Quinn, 2000b) indicated a crossing at roughly B ≈ 30 T for a symmetric GaAs quantumwell, the
width of whichwas aboutw = 10 nm. Observation of PL by Hayne et al. (1999) displaying three peaks that were interpreted
as the X , X−t , and X−s , showed no crossing of the X

−

t and X−s up to the fields of 50 T. This led the experimenters to question
the validity of variational calculations.
In this section we study very small systems (either two or three electrons and one valence band hole) in narrow

(w ∼ 11.5 nm) symmetric GaAs quantum wells. We include the effects of Landau level mixing caused by the interactions,
and the effect of finite well width on the effective interaction. Only a single subband is used in the calculations, since the
quantumwell is relatively narrow. Both electrons andholes are described in the effectivemass approximation, and interband
coupling is partially accounted for by amagnetic field dependence of the cyclotronmass of the hole (taken fromexperimental
data). The Zeeman energy depends on both thewell width and themagnetic field B. Five Landau levels for both the electrons
and holes were included in the calculation in order to obtain satisfactory convergence. The energies obtained for different
values of the monopole strength 2Q were extrapolated to the large Q limit to eliminate finite-size effects.
The energy spectra of the two-electron–one-hole system calculated for 2Q = 20 are shown in Fig. 39. Open and solid

symbols mark singlet and triplet states (Se is the total electron spin), and each state with L > 0 represents a degenerate L
multiplet. Since the PL process (annihilation of an e–h pair and emission of a photon) occurs with conservation of angular
momentum, only states from the L = Q channel are radiative (Wójs et al., 2000a). Recombination of other non-radiative
states requires breaking rotational symmetry (e.g., by collisions with electrons). This result is independent of the chosen
spherical geometry and holds also for a planar quantum well, except that the definition of the conserved momentum is
different (Dzyubenko and Sivachenko, 1993, 2000; Dzyubenko et al., 1994).
The occurrence of a strict PL selection rule at finite B may seem surprising, since the hidden symmetry that forbids the

X−td recombination in the lowest LL does not hold when the mixing with higher LLs is included. (The ‘‘d’’ in X
−

td means ‘‘dark’’
and X−td is called the dark triplet because it is forbidden to decay radiatively.) However, it is both the hidden symmetry
and the above-mentioned angular momentum conservation that independently forbid the X−td recombination, and the latter
remains valid at finite B. Although the hidden symmetry and resulting NX conservation law no longer hold at finite B, the
X−td recombination remains strictly forbidden because of the independently conserved L.
We expect breaking of both symmetries for real experimental situations. The presence of impurities and defects, and

e–X−td scattering during recombination in the presence of excess electrons can relax the strict conservation of the X
− angular

momentum in the radiative decay. However, for narrow and symmetric quantumwells containing a relatively small number
of excess electrons, the symmetries may only be weakly broken and some remnant of the strict conservation laws may
survive.
Three states marked in Fig. 39 are of particular importance: X−s and X

−

tb (‘‘b’’ stands for ‘‘bright’’) are the only strongly
bound radiative states, while X−td has by far the lowest energy of all non-radiative states. The radiative triplet bound state
X−tb was identified for the first time by Wójs et al. (2000a,b). The binding energies of all three X

− states are extrapolated to
λ/R→ 0 and plotted in Fig. 40(a) as a function of B. For the X−s , the binding energy differs from the PL energy (indicated by
a thin dotted line) by the Zeeman energy needed to flip one electron’s spin, and the cusp at B ≈ 42 T is due to the change in
sign of the electron g-factor. For the triplet states, the PL and binding energies are equal. The energies of X−s and X

−

td behave
as expected: The binding of X−s weakens at higher B and eventually leads to its unbinding in the infinite field limit; the
binding energy of X−td changes as e

2/λ ∝
√
B; and the predicted transition from the X−s to the X

−

td ground state at B ≈ 30 T
is confirmed. The new X−tb state remains an excited triplet state at all values of B, and its binding energy is smaller than that
of X−s by about 1.5 meV. The oscillator strengths τ

−1 of a neutral exciton X and the two radiative X− states are plotted in
Fig. 40 (b). In the two-electron–one-hole spectrum, the strongly bound X−s and X

−

tb states share a considerable fraction of
the total oscillator strength of one X , with τ−1tb nearly twice larger than τ

−1
s .
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Fig. 40. The X− energies (a) and oscillator strength (b) in the 11.5 nm GaAs quantum well plotted as a function of the magnetic field (Wójs et al., 2000b).

The comparison of calculated magnitude and magnetic field dependence of the X− binding energies with the
experimental PL spectra, as well as high oscillator strength of the X−tb , lead to the conclusion that the three peaks observed
in PL are the X , X−s ,and X

−

tb .
To understandwhy theX−td state remains optically inactive even in the presence of collisions, the e–X

− interactionmust be
studied in greater detail. Our numerical results for a three-electron–one-hole system indicate that the lowest band of states
consists of a triplet X− and one unbound electron. Because the X−t –e pseudopotential is superharmonic, in real experimental
systems at a low electron concentration (ν ≤ 1/3) Laughlin correlations between the electron and X−t will effectively isolate
the X−t from the surrounding 2D electron system. This prevents close collisions of the X

−

t and the spectator electron during
the e–h recombination. Although the X−td is no longer forbidden to decay radiatively since the spectator electron can change
its angular momentum in the recombination process, this scattering process is weak for ν < 1/3. The oscillator strength for
radiative decay of the X−td is found to bemore than an order of magnitude smaller than those of the X

−
s and X

−

tb . These results
support the interpretation that the three peaks observed in many experiments correspond to the X , X−s , and X

−

tb . The X
−

td is
not observed because of its small oscillator strength. The X−td recombination line has been observed (Yusa et al., 2001), when
special care (very low temperatures and high quality samples) was taken to detect its weak signal. Even more convincing is
the comparison with infrared absorption at very low temperature where only the X−td state is heavily occupied. Absorption
spectra show only one strong peak in contrast to PL spectra which shows three, because the higher population of the X−td
compensates for its lower oscillator strength for photon absorbtion compared to the X−s and X

−

tb (Schüller et al., 2002, 2003).

19.3. X− in an incompressible quantum liquid of electrons: fractionally charged quasiexcitons

In Fig. 38(a) and (a’) we observed both a low energy multiplicative state (consisting of a neutral exciton effectively
decoupled from the remaining N ′e = Ne− 1 unbound electrons) at L = 0, and a band of non-multiplicative states extending
from L = 1 to L = 6. This band could be identified (using a generalized CF picture) as a QH of the Laughlin IQL state coupled
to the QX− (which has Laughlin correlations with the N ′e = Ne − 2 unbound electrons). In Section 18 we discussed how it
could be thought of as a neutral quasiexciton QX0. We will sometimes use the symbols (χ−, χ, χ+) for the three different
possible quasielectrons in place of (QX−,QX,QX+). χ is the neutral QX (a bound state of χ− and a QH), while χ+ is a
positively charged QX+ (a bound state of χ and a QH).
In this subsection we review the many-body correlations associated with negatively charged excitons (or trions)

immersed in a Laughlin IQL state, and predict a discontinuity of the PL spectrum at ν = 1/3 (Byszewski et al., 2006;
Goldberg et al., 1990;Wójs et al., 2006a) and for spin-polarized systems,we elucidate the earlier theory (Apalkov andRashba,
1992, 1993; Zang and Birman, 1995) by identifying the ‘‘dressed exciton’’ with χ , its suppressed dispersion with the χ−-QH
pseudopotential of interaction among two Laughlin fractionally charged quanta, and the ‘‘magnetoroton-assisted emission’’
with the χ− recombination.
Photoluminescence from systems containing a small number of quasiexcitons (χ−, χ , χ+) reflect the properties of these

quasiexcitons in the initial state. The χ− is formedwhen a valence band hole binds two electrons to form an X−, which then
becomes Laughlin correlated with the remaining unbound electrons (in, for example, an IQL ν = 1/3 state). If several χ−
quasielectrons are present, they repel one another. Then the radiative e–h recombination is essentially that of an isolated
χ− in the IQL state of the remaining electrons. If the magnetic field is increased to values that make ν > 1/3, Laughlin
QHs will be present. The χ− attracts the Laughlin QHs, and can form a neutral (χ0) or positively charged (χ+) quasiexciton.
The resulting PL spectrum would be expected to reflect the properties of the initial χ− or χ+ for ν > 1/3 and ν < 1/3
respectively. For ν very close to the IQL value (ν = 1/3) an initial χ0 state might also be observed. The PL from different
initial states could have different energies and different intensities, so observing a change in the PL spectrum as ν passes
through an IQL value like ν = 1/3 is not surprising (Goldberg et al., 1990; Schüller et al., 2002, 2003).
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We illustrate these concepts by use of exact numerical diagonalization for N ≤ 10 electrons and one valence hole on
a Haldane sphere (Haldane, 1983) with radius R, magnetic monopole strength 2Q = 4πR2Be/hc , and magnetic length
λ = R/

√
Q . The second-quantization Hamiltonian reads H =

∑
i Uic

Ď
i ci +

∑
ijkl Vijklc

Ď
i c

Ď
j ckcl. Here, c

Ď
i and ci are operators

creating and annihilating an electron in the conduction band or a hole in the valence band, in the state labeled by a composite
index i containing all relevant single-particle quantum numbers (band, subband, and LL indices, angular momentum, and
spin). The single-particle energies are measured from the ground states in conduction and valence bands, respectively. The
Coulomb interactionmatrix elements V were integrated in 3D by taking the actual electron and hole subbandwavefunctions
φ(z) calculated self-consistently (Tan et al., 1990) for w = 10 and 20 nm GaAs quantum wells, doped on one side to
n = 2× 1011 cm−2 (yielding ν = 1/3 at B = 25 T). The diagonalization was carried out in configuration–interaction basis,
|i1, . . . , iN; ih〉 = c

Ď
i1
· · · cĎiN c

Ď
ih
|vac〉, where indices i1 · · · iN denote the occupied electron states, and ih describes the hole.

Finite size and surface curvature errors were minimized by extrapolation to the λ/R→ 0 limit. The combination of closed
geometry, used as an alternative to periodic boundary conditions for modeling in-plane dynamics, with exact treatment
of the single-particle motion in the normal direction allowed for quantitative estimates of binding energies characterizing
extended experimental systems.
We begin with the calculation of X− Coulomb binding energies 1 using φ(z), i.e., in the mean normal electric field due

to a doping layer, but ignoring in-plane X−–IQL coupling. We included five LLs and two φ-subbands for both e and (heavy)
h. The lowest-subband e and h density profiles for w = 10, 20, and 40 nm are plotted in Fig. 41(a). The effect of charge
separation in wider wells is evident. The shifts of the density maxima as a function of n and w are shown in Fig. 41(b) and
41(c). For the cyclotron energies ωc (at B = 25 T; after the experiment of Cole et al. (1997)) and intersubband gaps Ωs
(from own calculations) we took ωce = 44.5 meV, ωch = 7.7 meV, Ωse = 29.6 meV; Ωsh = 10.0 meV for w = 20 nm,
and ωce = 44.5 meV, ωch = 8.1 meV, Ωse = 89.8 meV; Ωsh = 24.5 meV for w = 10 nm. The valence subband mixing
was neglected. The result for w = 10 nm is 1s = 2.3 meV and 1t = 1.5 meV, in qualitative agreement with earlier
work. (Riva et al., 2001; Stebe and Ainane, 1989; Whittaker and Shields, 1997; Wójs et al., 2000b), which also predicted the
X−s ground state. For w = 20 nm, neither symmetric-well nor lowest-subband approximation works well (e.g., the latter
exaggerates charge separation in X/X−whichmostly affects the X−s and predicts its breakup at B ≥ 22 T). Our best estimates
are1s = 1.5meV and1t = 1.2meV. They are rather sensitive to the parameters, making prediction of the X− ground state
in real samples difficult and somewhat pointless. However, we expect that the X−t s, additionally favored by the Zeeman
energy, could at least coexist with the X−s s at finite temperatures.
Consider a trion (either X−s or X

−

t , whichever state occurs at given w, n, and B) immersed in an IQL state. Effective
e–X− pseudopotentials are similar (Wójs et al., 2000b) to the e–e one (Haldane, 1987). In the lowest LL, this causes similar
e–e and e–X− correlations, described in a generalized two-component (Wójs et al., 1999a,b) CF picture (Jain, 1989). At
Laughlin–Jain fillings νIQL = s/(2ps + 1), electrons converted to CFes fill the lowest s LLs in an effective magnetic field
B∗ = B− 2pn(hc/e) = B/(2ps+ 1). At ν 6= νIQL, QEs in the (s+ 1)st or QHs in the sth CF LL occur, carrying effective charge
q̃ = ±e/(2ps+ 1). We find that, similarly, an X− which is Laughlin correlated with surrounding electrons can be converted
to a CFX− with chargeQ = −q̃.
This value can be obtained, e.g., by noting that when an X− recombines, it leaves behind an indistinguishable electron

which becomes a CFe that either fills a QH in the sth CFe LL or it appears as an additional QE in the (s + 1)st CFe LL. More
importantly, partial screening of the trion’s charge is independent of either the particular X− state or the filling factor, as
long as correlations are described by the CF model. The same value Q = −q̃ results for any other distinguishable charge
−e immersed in an IQL, if it induces Laughlin correlations around itself (e.g., an impurity (Haldane and Rezayi, 1985a) or a
reversed-spin electron).
A trion coupled to an IQL and carrying reduced charge is a many-body excitation. To distinguish it from an isolated 2e+h

state, we call it a charged QX and denote it by χ− ≡ χ−q̃. Being negatively charged, a χ− interacts with IQL QPs. At ν < νIQL,
the χ− binds to a QH to become a neutral χ−−QH = χ , with a binding energy called10. Depending on sample parameters
and spin of the trion, χ may bind an additional QH to form a positively charged χ−−QH2 = χ+, with binding energy
1+. At ν > νIQL, the χ+ attracts and annihilates a QE: χ+ + QE → χ ; this process releases energy 1IQL − 1+ (where
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Fig. 42. (color online) Excitation energy spectra (energy E as a function of total angular momentum L) of 9e+ h systems on a sphere, with up to two QEs
or QHs in Laughlin ν = 1/3 IQL. Oscillator strengths τ−1 are indicated by the area of the open circles (Wójs et al., 2006a).

1IQL = εQE + εQH is the IQL gap). The χ may annihilate another QE: χ + QE → χ−, with energy gain

1− = 1IQL −1
0 (39)

that can be interpreted asχ− binding energy. Theχ andχ± are different states inwhich a hole can exist in an IQL. If1± > 0,
then depending on ν, either χ− or χ+ is the most strongly bound state. If1− 6= 1+, the PL spectrumwill be discontinuous
at νIQL. For long-lived χ± (made of a dark X−t ), recombination of the χ is also possible, especially at ν ≈ νIQL (within a Hall
plateau), when QP localization impedes χ± formation. The QXs resemble normal excitons in n- or p-type systems, except
that the concentration of their constituent QPs can be varied (in the same sample) by a magnetic field. Also, their kinetics
(χ ↔ χ±) are more complicated because of the involved QE–QH annihilation.
We have tested the QX idea numerically for Laughlin ν = 1/3 IQL. First, we calculated spin-polarized Ne + h energy

spectra forw = 20 nm, in search of theQXts. The X−t has 94% squared projection onto the lowest LL, so we ignored LLmixing
in the Ne+h calculation (direct tests confirmed that it is negligible). The low-lying states in Fig. 42 are understood using the
CF picture (Jain, 1989; Wójs et al., 1999a,b) and addition rules for angular momentum. On a sphere, the CF transformation
introduces an effective monopole strength 2Q ∗ = 2Q − 2(K − 1), where K = N − 1 is the total number of free electrons
and X−s. The angular momenta of constituent QPs are `QH = Q ∗, `QE = Q ∗+ 1, and `χ− = Q ∗− 1. The χ− is a dark ground
state in (b) at L = `χ− = 2, and χ+ is found in (d) at L = `χ+ = |(2`QH−1)−`χ− | = 4. Bands of χ−−QE and χ+−QH pairs
are marked in (a) and (e). In (c) the radiative L = 0 ground state is a multiplicative state, opening a X = X−−QH band (Chen
and Quinn, 1993; Wójs and Quinn, 2000b,c), earlier called a ‘‘dressed exciton’’ and identified (Apalkov and Rashba, 1992,
1993; Zang and Birman, 1995) as responsible for the doublet structure in PL. The continuousχ dispersion shown in Fig. 43(a)
results (Apalkov and Rashba, 1992, 1993; Zang and Birman, 1995) from the in-plane dipole moment being proportional to
the wave vector k = `/R. It is suppressed (compared to X) because of the reduced charge of the χ constituents, χ−t and
QH. In the absence of an IQL the center of mass of the two charges are separated and the cyclotron motion of each charge
together with their Coulomb attraction causes them to move with a momentum proportional to their separation (d ∝ k).
In an IQL, the charge quantum is reduced to q̃. This has no consequence at k = 0, and the χ is equivalent to an X decoupled
from the remaining electrons. A moving χ has a dipole moment proportional to its wave vector but it is smaller because the
charges are±q̃ = ±e/3. The χ and X dispersions become similar in size, when χ acquires dipole moment in a different way
than X , by splitting into χ− and QH, each carrying only one small quantum ±q̃. Indeed, the χ and X dispersions become
similar when energy and length scales are rescaled on account of the q̃→ e charge reduction. Note that we also explain the
emission from χ at kλ ∼ 1.5, proposed (Apalkov and Rashba, 1992, 1993; Zang and Birman, 1995) for the lower peak in PL,
as the χ− → QE recombination assisted by QH scattering. However, a small dV/dk and a large τ−1 at kλ ∼ 1.5 needed for
this emission requires significant well widths,w > 20 nm.
By identifying the multiplicative states containing an χ with k = 0, one can estimate 1± and 10 as marked in Fig. 42

(b) and (d). More accurate values were obtained by comparing the appropriate energies identified in the spectra obtained
at different values of 2Q , in which either χ±, χ , or QP is alone in the IQL, followed by extrapolation to N → ∞. Our best
estimates, whose reasonable accuracy of under 0.05 meV is confirmed by Eq. (39), are EQH = 0.73 meV, EQE = 1.05 meV,
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Fig. 43. (color online) Dispersion of neutral quasiexciton χt in Laughlin ν = 1/3 IQL; χt splits into χ−t and QH at k > 0. (b) Schematic PL discontinuity
due to χ±t emissions (Wójs et al., 2006a).
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Fig. 44. (color online) (a) The e–h pair-distribution function (PDF) of quasiexciton χ+t and isolated X
−

t and X , normalized tomeasure the local filling factor.
(b) The e–X− PDF for different QXs; curve for χ+ resembles e–e PDF of Laughlin liquid; shoulders for χ and χ+ reflect additional charge quanta pushed
onto the hole (Wójs et al., 2006a).
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Fig. 45. (color online) Excitation spectra similar to Fig. 42, but for 7e+ h system with and without LL mixing (Wójs et al., 2006a).

10 = 1.20 meV, 1− = 0.52 meV, and 1+ = 0.27 meV. Depending on χ0/χ± kinetics, either 1+ 6= 1− or 10 6= 1±

asymmetry will make PL energy jump at ν = 1/3, as sketched in Fig. 43(b). Similar behavior has been observed (Byszewski
et al., 2006; Goldberg et al., 1990). Theχ± discontinuity is different from that due to anyon excitons (Chen andQuinn, 1994b;
Parfitt and Portnoi, 2003; Portnoi and Rashba, 1996; Rashba and Portnoi, 1993; Wójs and Quinn, 2000b,c) anticipated in
much wider wells (e.g., forw ≥ 40 nm at n = 2× 1011 cm−2). The two effects can be distinguished by different magnitude
(∼ 1IQL vs 1±) and opposite direction of the jump of emission energy when passing through ν = 1/3. In the present
case, the small ratio of χ± and X± binding energies is the signature of the fractional charge of the IQL excitations–directly
observable as splittings in PL. TheQXs are defined through a sequence of gedanken processes: (i) trion binding: 2e+h→ X−,
(ii) Laughlin correlation: X− → χ−, (iii) QH capture:χ− → χ/χ+. Hence,χ andχ± are in fact the same X−, only differently
separated from the surrounding electrons.
This is evident in the e–h pair-distribution functions g(r) shown in Fig. 44(a) and normalized so as to measure electron

concentration near the hole in units of ν. The χ+ curve calculated for N = 10 is compared with gX−(r) = exp(−r2/4)
which accurately describes an X−t . The similarity at short range proves that the χ+ is an X− well separated from the 2D
electron gas. In Fig. 44(b) we plotted δg = g − gX− which measures the e− X− correlations in different QX states. Clearly,
δgχ+ resembles the e–e pair-distribution function of a Laughlin ν = 1/3 liquid, while shoulders in δgχ and δgχ− reflect
additional charge quanta pushed onto the hole in χ and χ−. Let us add that integration of [g(r) − 1/3] directly confirms
fractional electron charge of−(4/3)e,−e, and−(2/3)e bound to the hole in the χ−, χ , and χ+ states.
The accuracy of the lowest LL approximation is demonstrated in Fig. 45, in which we compare the excitation energy

spectra similar to Fig. 42(a) and (d), but calculated for the 7e + h systems, with and without inclusion of one higher e and
h LL. Evidently, neither the χ dispersion nor the χ+ binding energy appear sensitive to the LL mixing. This is in contrast
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to the behavior of X or X−, and the difference obviously reflects weaker interactions among the fractional QX constituents
(compared to the same cyclotron energy scale).
The quasiexcitons formed by the singlet X−s have been studied numerically for a quantum well of width w = 10 nm by

considering an 8e+ h system with spin S = 3 (i.e., one spin flipped). In contrast to the results for the quasiparticles formed
by the triplet X−t , the χ±s charged singlet quasiexcitons are excited states. The X

−
s charge distribution is more compact than

that of X−t , leading to stronger dispersion of neutral χ0s and a different coupling of the X
−
s to the Laughlin quasiparticles.

The neutral χ0s is the most strongly bound state regardless of the presence of Laughlin QEs and QHs. This may result in
a continuous PL peak for χ0s , but precludes PL discontinuity in narrow wells with a strong X

−
s ground state. The χs peak

splits into a σ± doublet due to spin ↓ and ↑ recombination involving either QEs or ‘‘reversed-spin’’ QERs (Rezayi, 1987), but
temperature-activated emission at k > 0 is not expected. The QX idea can be extended to other IQLs (e.g., ν = 2/3 or 2/5).
However, different behavior of QXts and QXss at ν = 1/3 is an example that PL discontinuity is not guaranteed. Via Eq. (39),
it is governed by sample and ν-dependent1IQL and10 which must be recalculated.

20. Summary and conclusions

The fractional quantum Hall effect is a paradigm for all strongly interacting systems, containing, at high magnetic field
B, only a single energy scale, the Coulomb scale e2/λ, where λ is the magnetic length. Understanding all of the observed IQL
states may well give insight into a number of strongly interacting systems of great current interest.
In this paper we have reviewed exact numerical diagonalization of small systems within the Hilbert subspace of a single

partially occupied LL. The numerical results are thought of as ‘‘numerical experiments’’, and simple intuitive models fitting
the numerical data are sought, to better understand the underlying correlations. We describe calculations for N electrons
confined to a Haldane spherical surface, and present simple results at different values of the LL degeneracy g = 2`+ 1. We
demonstrate that Jain’s remarkable CF picture predicts not only the values of 2` atwhich IQL ground states occur for different
values of N , but also predicts the angular momenta L of the lowest band of multiplets for any value of 2` in a very simple
way. We emphasize that Jain’s CF picture is valid, not because of somemagical cancellations of Coulomb and Chern–Simons
gauge interactions beyondmean-field, but because it introduces Laughlin correlations by avoiding pair stateswith the lowest
allowed relative angular momentumR = 2`− L′. The allowed angular momentummultiplets which avoid pair states with
R = 1 form a subset of the set of multiplets GN`(L) that can be formed from N Fermions in a shell of angular momentum `.
This subset avoids the largest repulsion and has the lowest energy. Our adiabatic addition of Chern–Simons flux introduces
Laughlin correlations without the necessity of introducing an irrelevant mean-field energy scale h̄ω∗c = νh̄ωc .
Jain’s sequence of filled CF shells does not require an interaction between CF quasiparticles. The incompressibility results

from the energy required to create a QE–QH pair in the integrally filled CF state. Haldane’s hierarchy of IQL states was based
on the implicit assumption that the residual interaction between QPs was sufficiently similar to the Coulomb interaction
between electrons in LL0 that the QPs would form their own Laughlin correlated daughter states.
The experiment of Pan et al. showed that neither Jain’s CF picture nor Haldane’s hierarchy was the whole story. Residual

pair interactions between QPs had been determined (Sitko et al., 1996) up to an overall constant (unimportant for QP
correlations). This pseudopotential VQP(L′) could be used to determine the spectrum of daughter states containing NQP
quasiparticles in a partially filled QP shell. Qualitatively correct results can be expected when VQP(L′) is small compared
to the energy necessary to create a QE–QH pair in the IQL state. When the CF picture was reapplied to the QPs, the Haldane
hierarchy of all odd denominator fractions resulted (Sitko et al., 1997). Numerical calculations demonstrates that this CF
hierarchy scheme of Laughlin correlated QPs at each level didn’t always work, probably because VQP(L′)was not sufficiently
similar to V0(L′), the pseudopotential for electrons in LL0.
The energy of a multiplet |`N; Lα〉 formed from N electrons in a shell of angular momentum ` is given by Eq. (5). Wójs

and Quinn proved a simple theorem, Eq. (10) that led to the conclusion that a pseudopotential of the form VH(L̂′) = A+BL̂
′2

(referred to as a ‘‘harmonic’’ pseudopotential) failed to lift the degeneracy of the multiplets α that had the same total
angular momentum L. Correlations (removal of this degeneracy) were caused only by the anharmonic part of V (L′), i.e. by
1V (L′) = V (L′)−VH(L′). For1V (L′) = kδ(R, 1) (R = 2`− L′ is referred to as the relative pair angular momentum), where
k > 0, the lowest energy state for each value of L is the multiplet for which PLα(R = 1) is a minimum. Here PLα(R = 1) is
the probability that |`N; Lα〉 has pairs with pair angular momentum L′ = 2` − 1. This is exactly the condition for Laughlin
correlations at ν = (2R + 1)−1 = 1/3. If the anharmonic part of V (L′) is negative (i.e. k < 0), then the lowest energy for
each angular momentum L occurs for the multiplet with PLα(R = 1) equal to a maximum, indicating a tendency to form
pairs withR = 1.
Because the pseudopotentials for electrons in LL0 and LL1 are well-known, and for QEs and QHs of the Laughlin ν = 1/3

(and other IQL states) can be evaluated, we can attempt to interpret the numerical diagonalization results in terms of simple
intuitive pictures of the correlations expected from V0(R), V1(R), and VQP(R).
For LL0 Laughlin correlations among the electrons are expected and found. For LL1, pairing correlations are found for

1/2 ≥ ν1 > 1/3, and Laughlin correlation are found 1/3 > ν1 ≥ 1/5 (ν1 = ν − 2). The strongest IQL states are found at
ν1 = 1/2, 1/3, and their e–h conjugate states. Laughlin correlations with four Chern–Simons fluxes (CF4) are expected for
1/3 ≥ ν1 > 1/5. The NP = N/2 pairs are Laughlin correlated and give an IQL state at 2` = 2N + 1 and its conjugate at
2` = 2N − 3. The elementary excitations can also be interpreted in terms of a generalized CF picture described by Eqs. (22)
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and (23). The ν1 = 1/3 state is found at 2` = 3N − 7, not at 2` = 3N − 3 of the Laughlin state in LL0. We do not completely
understand correlations at ν1 = 1/3, but they could arise from triplets or from forming pairs of pairs.
We investigate the possibility of a spin phase transition in the ν = 4/11 IQL state observed by Pan et al. The two spin

states are daughter states of the Laughlin ν = 1/3 IQL state, each of which has a QE filling factor νQE = 1/3. For the fully
spin polarized state, the QEs partially fill CFLL1 and have the same spin as the filled CFLL0 ↑. For the partially spin polarized
state the quasiparticles are QERs, and they partially fill CFLL0 ↓.
By numerical diagonalization ofN electron systemswith different values of the total electronic spin, we determine the QP

energies εQP and their interactions VQP(R) (for QP=QE and QER) as a function of thewidthw of the quantumwell. The total
energy is the sumof the QP energies, their interaction energy, and the Zeeman energy.Widewells weaken electron–electron
interactions and favor partially spin polarized states. Large Zeeman energy favors fully spin polarized states. We sketch a
phase diagram in the well width vs. Zeeman energy plane and show a rough estimate of the phase boundary between the
two states.
Finally, a system containing electrons and valence band holes is studied. Neutral excitons X = (eh), and charged excitonic

complexes X− = e(eh), X−2 = e(eh)
2, etc. are found and their angular momenta, binding energies and interactions with one

another are evaluated. In dilute systems with ν � 1/3, the singlet X−s and triplet X
−

t electron spin states are the ground
states at low and high magnetic field respectively. The X−s ground state and an excited triplet state are shown to be the only
strongly radiative states. The latter state is called the bright triplet X−tb , while the triplet ground state is called the dark triplet
X−td .
For systems with filling factor ν close to an IQL value (e.g. ν ' 1/3), the X− becomes Laughlin correlated with the

electrons and has effective charge −e/3, the same as that of Laughlin QEs. This QX− can bind one or two Laughlin QHs to
form a QX0 or a QX−. The spectra of these systems and their PL intensities can be evaluated numerically, and they agree
quite well with the predictions of the CF picture.
The unified thread connecting the work included in this manuscript is the generalized CF picture. By knowing the

behavior of the appropriate electron or QP pseudopotential, one can make an educated guess at the nature of the ground
state correlations. Laughlin correlations in LL0 are the simplest type. Pairing or formation of larger clusters when V (R) is
subharmonic ismore complicated. However, the generalized CF picture (built on the ideas of Laughlin, Haldane, Halperin and
Jain) can be applied to pairs of electrons in LL1 or to pairs of QHs in CFLL0 and pairs of QEs in CFLL1. This simplemodel seems
to give qualitatively correct results not just for when an IQL ground state occurs, but often for the spectrum of low energy
excitations. We don’t totally understand the correlations in every case (e.g. at ν = 7/3 and at νQE = 1/3 for spin polarized
systems). However, we are certain that the full hierarchy of FQH states involves other types of correlations in addition to
Laughlin. The nature of the correlations at each level of the hierarchy will depend on the appropriate pseudopotential, as
will the path through the hierarchy levels that result.
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