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Abstract

A Fermion-to-Boson transformation is accomplished by attaching to each Fermion a single ux quantum oriented opposite
to the applied magnetic �eld. When the mean �eld approximation is made in the Haldane spherical geometry, the Fermion
angular momentum lF is replaced by lB = lF − 1

2 (N − 1). The set of allowed total angular momentum multiplets is identical
in the two di�erent pictures. The Fermion and Boson energy spectra in the presence of many-body interactions are identical if
and only if the pseudopotential is “harmonic” in form. However, similar low-energy bands of states with Laughlin correlations
occur in the two spectra if the interaction has short range. The transformation is used to clarify the relation between Boson
and Fermion descriptions of the hierarchy of condensed fractional quantum Hall states. ? 2001 Elsevier Science B.V. All
rights reserved.

PACS: 71.10.Pm; 73.20.Dx; 73.40.Hm
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1. Introduction

The transformation of electrons into composite
Fermions (CF) by attaching to each particle a ux
tube carrying an even number of ux quanta has
led to a simple intuitive picture [1] of the fractional
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quantum Hall e�ect (FQHE) [2]. Shortly after the in-
troduction of the CF picture, Xie et al. [3] introduced
a Fermion→Boson (F→B) mapping connecting a 2D
Fermion system at �lling �F with a 2D Boson sys-
tem at �lling �B, where �−1F = �−1B + 1. These authors
stated that the sizes of the many-body Hilbert spaces
for the Boson and Fermion systems were identical,
and that their numerical calculations veri�ed that
the mapping accurately transformed the ground state
of the Fermion system into the ground state of the
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Boson system if and only if these ground states were
incompressible FQH states. In this paper we show
that the F→B transformation leads to identical en-
ergy spectra if and only if the pseudopotential V (L12)
describing the interactions among the particles is of
the “harmonic” form VH(L12) = A+ BL12(L12 + 1),
where A and B are constants, and L12 is the to-
tal angular momentum of the interacting pair [4].
Laughlin correlations [5] occur when the actual pseu-
dopotential V (L12) rises more quickly with increas-
ing L12 than VH(L12). Anharmonic e�ects (due to
�V (L12) = V (L12)− VH(L12)) cause the interacting
Fermion and interacting Boson spectra to di�er for
every value of the �lling factor �F = �B(1 + �B)−1.
However, for appropriately chosen (short-range)
model pseudopotentials, the F→Bmapping accurately
transforms the ground state of the Fermion system
to that of the Boson system both for incompressible
FQH states and for other low-lying states. The F→B
mapping is also very useful in understanding the re-
lation between the Haldane [6] hierarchy of Boson
quasiparticle (QP) condensates and the CF hierarchy
[7,8] of Fermion QP condensed states.

2. Gauge transformations in two-dimensional
systems

By attaching to each Fermion or Boson of charge
−e, a �ctitious ux tube carrying an even number 2p
of ux quanta oriented opposite to the applied �eld,
the eigenstates and particle statistics are unchanged.
The “gauge �eld” interactions between the charge on
one particle and the vector potential due to the ux
quanta on every other particle make the Hamiltonian
more complicated. Only when the mean �eld approxi-
mation is made does the problem simplify. In addition
to these (CF and CB) transformations, a F→B trans-
formation can be made by attaching to each Fermion
an odd number 2p+ 1 of ux quanta (one ux quan-
tum changes the statistics; other 2p ux quanta de-
scribe an additional CF or CB transformation). If the
particles are con�ned to the surface of a sphere con-
taining at its center a magnetic monopole of strength
2SF (for Fermions) or 2SB (for Bosons) ux quanta,
then the lowest shell of mean �eld composite particles
has angular momentum l∗F = |lF − p(N − 1)| where
lF = SF or l∗B = |lB − p(N − 1)|where lB = SB. In the

F→B transformation (with p= 0), lF is replaced by
lB = |lF − 1

2 (N − 1)|.

3. Some useful theorems

When a shell of angular momentum l contains N
identical particles (Fermions or Bosons), the result-
ing N particle states can be classi�ed by eigenvectors
|L;M; �〉, where L is the total angular momentum, M
its z-component, and � a label which distinguishes in-
dependent multiplets with the same total angular mo-
mentum L. In the mean �eld CF (CB) transformation
lF (lB) is transformed to l∗F (l

∗
B). In trying to under-

stand why the mean �eld CF picture correctly pre-
dicted the low-lying band of states in the interacting
electron spectrum, the following theorem was impor-
tant [9,10].

Theorem 1. The set of allowed total angular mo-
mentum multiplets of N Fermions each with angular
momentum l∗F is a subset of the set of allowed
multiplets of N Fermions each with angular momen-
tum lF = l∗F + (N − 1).

Thus, if we de�ne gNl(L) as the number of indepen-
dent multiplets of total angular momentum L formed
by addition of the angular momenta of N Fermions,
each with angular momentum l, then gNl∗(L)6gNl(L)
for every value of L. A few examples for small sys-
tems suggest that the theorem is correct, but a gen-
eral mathematical proof is non-trivial. A proof using
the methods of combinatorics and the KOH [11,12]
theorem has been given recently [13]. 1 The same
method allows the proof of a second theorem.

Theorem 2. The set of allowed total angular momen-
tum multiplets of N Bosons each with angular mo-
mentum lB is identical to the set of multiplets for
N Fermions each with angular momentum lF = lB +
1
2 (N − 1) [13] (see Footnote 1).

From Theorem 2, it follows immediately that Theo-
rem 1 also applies to Bosons. Theorem 2 is a stronger

1 The second theorem has been arrived at independently by
B. Wybourne, private communication.
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statement than a simple equality of the sizes of the
many body Hilbert spaces [3].

4. Interaction e�ects

In studying why the mean �eld CF picture correctly
predicts the low-lying states of a 2D electron system in
a magnetic �eld [4,9], the “harmonic pseudopotential”

VH(L12) = A+ B L̂
2
12 (1)

was introduced. Here A and B are constants and L̂12
is the total angular momentum operator of the pair of
particles. It was shown that for the harmonic pseu-
dopotential the energy of any multiplet of angular mo-
mentum L was given by

EL� = A · 12 N (N − 1)
+B · N (N − 2) l(l+ 1) + B · L(L+ 1): (2)

The energy is independent of �, so that every multi-
plet with the same value of L has the same energy.
Eq. (2) holds both for Fermions and for Bosons. If
BF = BB = B, then the spectrum of N Bosons each
with angular momentum lB is identical (up to a
constant) to that of N Fermions each with angular
momentum lF = lB + 1

2 (N − 1). This is a rather sur-
prising result because Fermions and Bosons sample
di�erent sets of values of the pair angular momentum.
For example, for N = 9 and lF = 12 (correspond-
ing to �F = 1

3) the allowed values of the Fermion
pair angular momentum consist of all odd integers
between 1 and 23; for the corresponding Boson sys-
tem with lB = 8 (�B = 1

2), the allowed values of L12
are all even integers between 0 and 16. Despite the
totally di�erent set of pseudopotential coe�cients
sampled, up to a constant, the spectra of the Boson
and Fermion systems interacting through a harmonic
pseudopotential are the same.
In earlier work [9], it was emphasized that the har-

monic pseudopotential led to an “anti-Hund’s rule”
with the lowest energy state having the lowest al-
lowed value of L. It is the positive anharmonicity
�V (L12)¿ 0 that causes Laughlin correlations. It is
useful to introduce the “relative” angular momen-
tum R= 2l− L12. For Bosons RB = 0; 2; 4; : : : while
for Fermions RF = 1; 3; 5; : : : ; in both cases, R62l.
We can write the pseudopotential and its harmonic
and anharmonic parts in terms of R, and call them

V (R); VH(R), and �V (R), respectively. It is more
reasonable to make simple models for �V (R) (e.g.
assume that it vanishes for all R greater than some
value) than for V (R) itself. From Eq. (2) and the
equation for the total energy,

EL� =
1
2
N (N − 1)∑

R

GL�(R)V (R); (3)

where GL�(R) is the coe�cient of fractional grand-
parentage (CFGP) [4,9,14], it is readily ascertained
that the interacting Boson and interacting Fermion sys-
tems cannot have identical spectra when �V (R) is
non-zero.
Xie et al. [3] determined the Boson and Fermion

eigenfunctions by exact numerical diagonalization for
six particle systems connected through the F→B trans-
formation. They then transformed the Boson eigen-
functions into Fermion eigenfunctions by multiplying
them by

∏
i¡j (zi − zj), as required by the B→F trans-

formation. The overlap of these transformed Boson
eigenfunctions with the exact Fermion eigenfunctions
was then evaluated. The overlap was quite close to
unity for incompressible quantum uid states when
the full Coulomb interaction was used. A similar re-
sult was obtained for a model short-range interaction
H1 for which V (R) vanished forR¿ 1 and was equal
to the Coulomb values at R= 0 (for Bosons) or at
R= 1 (for Fermions). However, when the interaction
was approximated byH3 for which V (R) vanished for
R¿ 3 and was equal to the Coulomb values at R= 0
and 2 (for Bosons) or at R= 1 and 3 (for Fermions),
the overlap was considerably smaller. The reason ap-
pears to be that for FermionsH3 is subharmonic atR=
3, while for Bosons it is (marginally) superharmonic in
the entire range ofR, and that for a subharmonic pseu-
dopotential Laughlin correlations are not expected to
occur [14]. By a subharmonic (superharmonic) behav-
ior of V (R) at a certain valueR0 we mean that V (R0)
is larger (smaller) than a value VH(R0) for which
V (R) would be harmonic (i.e., linear in L12(L12 +
1)) in the range R0 − 26R6R0 + 2. We will later
use an anharmonicity parameter x de�ned as x(R0) =
V (R0)=VH(R0); for theH3 interaction, x(3) = 1:3 (for
Fermions) and x(2) = 0:8 (for Bosons).
We have evaluated numerically the eigenstates of

an eight electron system at 2SF = 19–23 (these states
correspond to Laughlin �F = 1

3 states with zero, one,
or two QPs) for a number of di�erent pseudopoten-
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Fig. 1. The energy spectra (energy E versus angular momentum L) of the corresponding eight Fermion (left) and eight Boson (right)
systems at the monopole strengths 2SF = 21 and 2SB = 14 (�lling factors �F = 1

3 and �B =
1
2 ) for the Coulomb pseudopotential in the

lowest Landau level (a− a′), and for the model pseudopotentials H1 (b− b′), and H3 (c − c′). � is the magnetic length.

tials. We have used the full Coulomb pseudopotential,
H1, H3, H5, and a model pseudopotential Vx in which
Vx(1) = 1, Vx(R¿5) = 0, and Vx(3) = x · VH(3) is an
arbitrary fraction x of the “harmonic” value. We per-
form the same calculations for eight Boson systems
at 2SB = 12–16 (here, Vx(0) = 1, Vx(R¿4) = 0, and
Vx(2) = x · VH(2)).
In Fig. 1, we contrast the energy spectra for the

Fermion and Boson systems at �F = 1
3 (�B =

1
2) for the

Coulomb pseudopotential appropriate for the lowest
Landau level (a–a′), and for the model pseudopoten-
tials H1 (b− b′) and H3 (c − c′). In Fig. 2, we do the

same for the state containing two Laughlin quasielec-
trons (QE). The lowest states in (a− a′) and (b− b′)
are quite similar consisting of a Laughlin L= 0 ground
state in Fig. 1 and two-QE states with lQE = 1

2 (N −
1) = 7

2 giving L= N − 2, N − 4, : : := 0; 2; 4, and 6
in Fig. 2. The magnetoroton band (at 26L68) is
apparent in Fig. 1 although the gaps and band widths
are di�erent for di�erent pseudopotentials. The pseu-
dopotential used in (c − c′) gives very di�erent results
both in Figs. 1 and 2. As mentioned before, this re-
sults because V (3) used in Fermion pseudopotential
H3 is too large to lead to Laughlin correlations.
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Fig. 2. The energy spectra (energy E versus angular momentum L) of the corresponding eight Fermion (left) and eight Boson (right)
systems at the monopole strengths 2SF = 19 and 2SB = 12 (two Laughlin quasielectrons in the �F = 1

3 and �B =
1
2 state) for the Coulomb

pseudopotential in the lowest Landau level (a− a′), and the model pseudopotentials H1 (b− b′), and H3 (c − c′). � is the magnetic length.

To illustrate this point, we have calculated the en-
ergy spectra using pseudopotential Vx with di�erent
values of x. In Fig. 3, we show the spectra at �F =
1
3 (�B =

1
2) for x =

1
2 ; 1, and

3
2 . For x¡ 1, Vx(R) is

superharmonic at R= 3 (for Fermions; x ≡ x(3)) or
at R= 2 (for Bosons; x ≡ x(2)), and Laughlin cor-
relations with an L= 0 ground state occur. For x¿1
there is little resemblance between the numerical spec-
tra and that associated with the full Coulomb interac-
tion. Furthermore, the Fermion and Boson spectra are
quite di�erent from one another.

From the eigenfunctions, we can determine CFGP’s
GL�(R) for each state |L; �〉. In Fig. 4, we plot the
x-dependence of the CFGP’s GL�(R) from pair states
at three smallest values of R calculated for the low-
est energy L= 0 state of eight Fermions at 2SF = 21
(�F = 1

3) and eight Bosons at 2SB = 14 (�B =
1
2). In

both systems, a Laughlin incompressible state with
vanishing G(1) (for Fermions) or G(0) (for Bosons)
occurs at small x, and a rather abrupt transition occurs
at x≈1, implying a change of the nature of the corre-
lations when the pseudopotential Vx(R) changes from
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Fig. 3. The energy spectra (energy E versus angular momentum L) of the corresponding eight Fermion (left) and eight Boson (right)
systems at the monopole strengths 2SF = 21 and 2SB = 14 (�lling factors �F = 1

3 and �B =
1
2 ) for model interaction pseudopotentials Vx(R)

with x = 1
2 (a− a′), x = 1 (b− b′), and x = 3

2 (c − c′).

super- to subharmonic. At x¿1, the correlations in the
two systems are quite di�erent and, for example, an-
other abrupt transition occurs in the Boson system at
x≈4 (not shown in the �gure), which is absent in the
Fermion system.

5. Quasiparticles

The F→ B transformation allows us to better un-
derstand the Boson [6] versus Fermion [7,8] descrip-
tion of QPs in incompressible FQH states. Laughlin

condensed states having �F = (2p+ 1)−1 (where p
is a positive integer) occur at 2SF = (2p+ 1)(N − 1)
in the Haldane spherical geometry. The CF transfor-
mation [1] gives an e�ective angular momentum l∗F =
S∗F = S − p(N − 1) = 1

2 (N − 1) when 2p ux quanta
are attached to each electron and oriented opposite to
the applied magnetic �eld. Thus the N CFs �ll the
2l∗ + 1 states of the lowest CF shell giving an L= 0
incompressible ground state.
The F→ B transformation gives 2SB = 2SF −

(N − 1) = 2p(N − 1) and a Boson �lling factor of
�B = (2p)−1. Making a CB transformation gives



J.J. Quinn et al. / Physica E 9 (2001) 701–708 707

Fig. 4. The coe�cients of fractional grandparentage G(R) from the pair states at three smallest values of R calculated for the lowest
energy L = 0 state of the corresponding eight Fermion (a) and eight Boson (a′) systems at the monopole strengths 2SF = 21 (�F = 1

3 )
and 2SB = 14 (�B = 1

2 ) for the model interaction Vx , as a function of x.

l∗B = S
∗
B = SB − p(N − 1) = 0. This also gives an

L= 0 incompressible ground state because each CB
has l∗B = 0. Thus the CF description of a Laughlin
state has one �lled CF shell of angular momentum
l∗F =

1
2 (N − 1), while the CB description has N CBs

each with angular momentum l∗B = 0.
For 2SB = 2n(N − 1)± nQP, where the + and −

occur for quasiholes (QH) and QE, respectively, we
de�ne 2l∗B = |2S∗B|= nQP. This gives exactly the same
set of angular momentum multiplets as obtained in the
CF picture with 2SF = (2n+ 1)(N − 1) + nQH. How-
ever, it gives a larger set of multiplets than are allowed
by 2SF = (2n+ 1)(N − 1)− nQE. For example, for
nQE = 2, l∗B = 1 and the allowed values of the pair an-
gular momentum of the two QPs are N; N − 2; N −
4; : : : . For a Fermion system with l∗F =

1
2 (N − 1)− 2,

the allowed values of the QP pair angular momentum
are N − 2; N − 4; : : : . The two sets can be made iden-
tical only if a hard core repulsion forbids the Boson
QP pair from having the largest allowed pair angu-
lar momentum LMAX12 = N [15]. This behavior is ob-
served in Fig. 2, where the Boson treatment of two
QEs (i.e., the CB transformation) would predict states
at L= 0; 2; 4; 6, and 8, but the L= 8 state does not
occur in the low-energy band.
Since the description of CBs (with hard core QE

interaction) and CFs give identical sets of QP states,
�lled QP levels (implying daughter states) occur at
identical values of the applied magnetic �eld. In ear-

lier work [7,8], we have emphasized that both the
Haldane hierarchy and CF hierarchy schemes assume
the validity of the mean �eld approximation, and we
have shown that this approximation is expected to fail
when the QP–QP interaction is subharmonic. Numer-
ical results show when the mean �eld approximation
is valid and when it fails.

6. Summary

We have shown that the F→ B transformation re-
places the single Fermion angular momentum lF by
lB = lF − 1

2 (N − 1), and that this transformation leads
to an identical set of total angular momentum multi-
plets. The Fermion and Boson systems have identical
spectra in the presence of many-body interactions
only when the pseudopotential is harmonic, i.e. lin-
ear in squared pair angular momentum, L12(L12 + 1).
However, similar low-energy bands of states with
Laughlin correlations occur in the two spectra if
the interaction pseudopotential is superharmonic,
i.e. has short range. We have studied numerically
eight particle systems for di�erent model interac-
tions and shown the relation between the spec-
tra and coe�cients of fractional grandparentage
for the Fermion and Boson systems. Finally, we
have used the F→ B transformation to clarify
the relation between the Haldane Boson picture
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and the CF picture of the hierarchy of condensed
states.
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