
THE COMPOSITE FERMION PICTUREFOR N ELECTRONS ON A HALDANE SPHERE:HUND'S RULE FOR MONOPOLE HARMONICSJ. J. Quinn and A. W�ojs�Department of Physics, University of TennesseeKnoxville, Tennessee, 37996The mean �eld composite Fermion (MFCF) picture has been qualitatively suc-cessful when applied to electrons (or holes) in the lowest Landau level. Because theenergy scales associated with Coulomb interactions and with Chern{Simons gauge�eld interactions are di�erent, there is no rigorous justi�cation of the qualitativesuccess of the MFCF picture. Here we show that the behavior of the electron pseu-dopotential for the lowest monopole harmonic shell is opposite to that of the sphericalharmonics of atomic physics. As a consequence, states with low total angular mo-mentum L usually form the low energy sector in the spectrum, in contrast to Hund'srule of atomic physics. Which state with small L is the ground state depends on thenumber of multiplets of a given L and on their fractional parentage from states ofgiven pair angular momentum. The MFCF prediction for the low energy sector canbe thought of as the equivalent of Hund's rule governing monopole harmonics of thetotally spin polarized system. It can be rigorously justi�ed for an arbitrary numberof electrons only by comparison with detailed numerical studies and experiment.



For N electrons on a Haldane sphere [1] (containing at the center a magneticmonopole of charge 2S hc=e), the single particle states fall into angular momentumshells with ln = S + n, n = 0; 1; : : : The nth shell is 2ln + 1 fold degenerate. Thecomposite Fermion (CF) [2] transformation attaches to each electron a 
ux tube ofstrength 2p0 
ux quanta oriented opposite to the original magnetic �eld. If the added
ux is treated in a mean �eld approximation, the resulting e�ective magnetic �eldseen by one CF is B� = B � 2p0 (hc=e)ns (ns is the number of electrons per unitarea). An e�ective CF �lling factor ��0 (��0�1 = ��10 �2p0) and an e�ective monopolestrength 2S� (2S� = 2S�2p0(N �1)) seen by one CF can also be de�ned. jS�j playsthe role of the angular momentum of the lowest CF shell [3]. States belonging to theJain sequence occur when ��0 is an integer. For such integral CF �llings, the groundstate is a Laughlin [4] incompressible liquid state with angular momentum L = 0.If ��0 is not an integer, a partially occupied CF shell will contain nQE quasielectrons(or nQH quasiholes). In the MFCF picture these states form a degenerate band ofangular momentum multiplets with energy nQE"QE where "QE is the energy of asingle quasielectron (or nQH"QH for quasiholes). The degeneracy results from theneglect of QP{QP interactions in the MFCF approximation [5].Hierarchy states [6] outside the Jain sequence are obtained (when ��0 is not equalto an integer) by reapplying the CF transformation to residual quasiparticles in thepartially �lled CF shell. In comparing the predictions of the CF hierarchy picturewith numerical results for states containing three or four quasiparticles, it is foundthat the MF approximation is often qualitatively incorrect. Before worrying aboutthe reapplication of the MFCF approach to residual quasiparticles in a partially �lledCF shell, it is very useful to ask why the MFCF picture applied directly to electrons(or holes) in a partially �lled shell gives qualitatively correct results. In light of thedi�erent energy scales describing Coulomb interactions and Chern{Simons gauge �eldinteractions, the justi�cation cannot lie in a cancellation between these interactions.The single particle states for an electron on a Haldane sphere are called monopoleharmonics [7] and denoted by jln;mi, where ln = S + n and �ln � m � ln. Thesingle particle energies depend only on S and n, and for the fractional quantumHall (FQH) e�ect, only the lowest shell with n = 0, which is completely spin polar-ized, need be considered. The many electron states jm1;m2; : : : ;mN i can be writ-ten as cym1cym2 : : : cymN j0i where j0i is the vacuum state. The object of numericalstudies is to diagonalize the electron-electron interaction within the subspace of the(2S + 1)![N !(2S + 1�N)!]�1 many particle states of the lowest shell. The numericalcalculations for Laughlin condensed states or states containing a small number ofLaughlin quasiparticles [4] become di�cult when the number of electrons N exceeds10. The calculations give the eigenvalues E as a function of the total angular mo-mentum L, and the numerical results always show one or more L multiplets forminga low energy sector (or low energy band).It has been demonstrated [3,8] that the CF picture correctly predicts the lowlying band of multiplets by simply noting that when the N electrons are convertedto N composite Fermions, the angular momentum of the lowest shell goes from l0 tol�0 = l0 � p(N � 1), where 2p is the number of 
ux quanta attached to each CF. Avery fundamental question which is not well understood is, \Why does the MFCFpicture do so well in describing not just the Jain sequence of incompressible states,but also the low lying band of multiplets for any value of 2S?" The problem of N



Fermions in a shell of angular momentum l is very familiar from atomic and nuclearphysics [9]. In this note we concentrate on the similarities and di�erences betweenthe problems of N electrons in the lowest angular momentum shell of a Haldanesphere and N electrons in an atomic shell of the same angular momentum l. First,because of the magnetic monopole of magnitude 2S(hc=e), where 2S is an integer,the monopole harmonics jln;mi have angular momentum S+n (n = 0; 1; 2; : : :) whichcan be integral or half-integral. The spherical harmonics have S = 0, so l must bean integer. For FQH systems (i.e. � < 1) we are interested in the lowest angularmomentum shell with l0 = S. Second, the Zeeman splitting is large compared to theCoulomb interaction, so only totally spin polarized states of FQH systems need beconsidered. In fact, even if the Zeeman splitting vanished, the exchange energy wouldresult in the maximum possible spin polarization for the lowest energy multiplet asprescribed by Hund's �rst rule. Because the total spin is always equal to 12N andonly the lowest shell is occupied, the total (spin plus orbital) angular momentum Jis never of concern. It is simply the sum of L and 12N . Third, for FQH systems,calculations with N values up to 10 and l values up to 27/2 have been performed[10]. In atomic systems, l values up to 3 (f-states) and N values up to 7 are usuallythe maximum values studied.The key rule, especially for the maximally polarized systems, is Hund's sec-ond rule. It states that the largest allowable L value consistent with the �rst rule(maximum possible spin) will be the ground state. This is certainly not the casefor FQH systems. Many Laughlin incompressible states at L = 0 are ground states,and states containing 1, 2, 3, : : : quasiparticles always have allowed L values that aremuch smaller than LMAX = 12N(2l �N + 1). What causes this di�erence?In Fig. 1 we display the Coulomb pseudopotential for a pair of electrons in singleparticle angular momentum states l = 1 through 5, as a function of the pair angularmomentum L12 = l1 + l2. For monopole harmonics (l = S, n = 0) V (L12) increaseswith increasing L12. For atomic shells (spherical harmonics) just the opposite occurs{ the repulsion decreases with increasing L12 (for the h-shell and higher, V (L12)begins to increase beyond some relatively large value of L12, but this is never ofconcern in atomic physics).An antisymmetric state containing N Fermions of angular momentum l can bewritten ��lN ; L��, and it can be expressed as [9]��lN ; L�� =XL12 XL0�0 GL�;L0�0(L12) ��l2; L12; lN�2; L0�0;L� ; (1)where GL�;L0�0(L12) is called the coe�cient of fractional grandparentage. In Eq. (1),��l2; L12; lN�2; L0�0;L� is a state of angular momentum L. It is antisymmetric underpermutation of particles 1 and 2, which have pair angular momentum L12, and underpermutation of particles 3, 4, : : : , N , which have angular momentum L0. The label �(or �0) distinguishes independent orthogonal states with the same angular momentumL (or L0).It is not di�cult to prove the operator identityL̂2 + N(N � 2) l̂2 = Xpairs L̂2ij : (2)
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(h)Figure 1. The pseudopotential for a pair of electrons of total angular momentumL12 as a function of l = S + n. Energy is measured in units of e2=R, where R isthe radius of the sphere. (a) monopole harmonics, n = 0; (b) spherical harmonics,S = 0, calculated for a radial wavefunction which localizes the electrons at radius R.Here L̂ = Pi l̂i and L̂ij = l̂i + l̂j . If we take diagonal matrix element of Eq. (2)between states ��lN ; L��, we obtain
lN ; L��� Xpairs L̂2ij ��lN ; L�� = L(L + 1) + N(N � 2) l(l + 1): (3)The left hand side is simply 12N(N � 1) times the average value of the square of thepair angular momentum in the state ��lN ; L��. Clearly, states with higher L havehigher values of this quantity. The left hand side of Eq. (3) can be expressed as
lN ; L��� Xpairs L̂2ij ��lN ; L�� = 12N(N � 1)XL12 GL�(L12) L12(L12 + 1); (4)where GL�(L12) = XL0�0 jGL�;L0�0(L12)j2 : (5)



From the orthonormality of the functions ��lN ; L��,XL12 XL0�0 G�L�;L0�0(L12) GL�;L0�0(L12) = ��� (6)and XL12 GL�(L12) = 1: (7)The energy of the state ��lN ; L�� is given byE�(L) = XL12 GL�(L12) V (L12): (8)It is noteworthy that the average value ofPpairs L̂2ij is independent of which multiplet� is being considered. In view of Eqs. (3), (4), and (8), it is not surprising that inatomic physics, where V (L12) decreases rapidly with L12, Hund's second rule holds.For states with L = LMAX only a single multiplet ever appears, and it has the highestvalue of the average pair angular momentum. Despite this strong indication that,in atomic systems, the state with the largest allowed value of L (consistent with themaximum value of the total spin) has the lowest energy, Hund's rule is considered anempirical rule, that can be rigorously justi�ed only by numerical calculations.For the case of monopole harmonics, V (L12) rises very rapidly with increas-ing L12. Therefore, low energy states must somehow be able to avoid having largegrandparentage in states with large values of L12. In a previous paper we havedemonstrated analytically that this is true for three electron systems [11]. For themonopole harmonics the general trend is to have N�1L P�E�(L), the average E(L)for all multiplets with angular momentum L, increase with increasing L. However,when the single particle angular momentum, l, increases beyond some value for anN-particle system, several multiplets of the same L begin to appear. In Tab. 1 wepresent as an example the number of independent multiplets of angular momentumL, as a function of l0 = S, for a system of six electrons. The values of S go from 0to 15/2, and L from 0 to 15 (the table uses 2S and 2L to avoid printing half-integersand only values of 2L up to 23 have been included), If the pseudopotential were givenby ~V (L12) = A + B L12(L12 + 1), all of the di�erent multiplets with the same valueof L would be degenerate because of Eqs. (3){(8), and LMIN, the smallest allowedL-multiplet, would be the ground state. The di�erence between ~V (L12) and the ac-tual pseudopotential V (L12) leads to a lifting of this degeneracy (di�erent multipletsrepel one another). The splittings caused by V (L12)� ~V (L12) can become large whenNL, the number of times the multiplet L occurs, is large. In this case, a state withL larger than LMIN can become the ground state since the actual values of E�(L)depend on how the values of GL�(L12) are distributed, not just on the average valueof L̂212 for that value of L. For example, the lowest energy multiplet with 2L = 3 and2S = 14 is lower in energy than the multiplets at 2L = 1 and 2, because it is one of12 multiplets as compared to only 6 and 4 at 2L = 1 and 3, respectively. Knowingwhich multiplet is the ground state or which multiplets form the \low energy band"without performing detailed numerical calculation is a considerably more di�culttask than it was for spherical harmonics.



Table 1Number of times the angular momentum multiplet L appears when N = 6 electronsof angular momentum l0 = S are combined in a totally antisymmetric state.2S2L 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 230 1 11 12 1 13 1 1 14 15 16 17 1 1 1 18 1 2 1 1 1 1 19 2 2 1 3 1 3 1 2 1 1 110 2 1 4 2 4 3 4 2 3 2 2 1 1 111 3 4 3 6 3 7 4 6 4 5 2 4 2 2 1 1 112 4 2 7 5 8 7 9 6 9 6 7 5 5 3 4 2 2 1 1 113 4 1 7 5 11 7 13 9 13 10 12 8 11 7 8 5 6 3 4 2 2 1 114 6 4 12 9 14 13 17 13 18 14 16 13 14 10 12 8 8 6 6 3 4 2 215 6 2 11 9 17 13 22 17 23 19 24 18 23 17 19 15 16 11 13 8 8 6 6 3In the MFCF picture, the angular momentum l0 of the lowest shell is replaced[2] by l�0 = l� (N � 1). The allowed angular momenta L� are obtained by placing Ncomposite Fermions in the lowest CF angular momentum shells. This always resultsin a smaller maximum possible angular momentumL�MAX. For example, if 2S � 3N�3, L�MAX = 12N(2S�3N�3); if 3N�3 � 2S � 52N�4, L�MAX = (2S� 52N+4)(3N�3� 2S); etc. At �llings corresponding to states in the Jain sequence L�MAX = 0. Forstates containing several quasiparticles, a number of di�erent L� values less than orequal to L�MAX can occur. From the numerical calculations (and from experiment)it has been observed that the subset of allowed L� multiplets obtained by placingN CF's into the lowest angular momentum shells form the low energy band of theoriginal electron system. This is plausible because: (i) the allowed values of L� arealways small compared to the original LMAX and therefore have a small expectation



value of Ppairs L̂2ij , and (ii) electron L values which occur a relatively large numberof times tend to form the low energy band of L�'s. For the six electron system witha given 2S, the allowed L� values are those appearing in row with 2S� = 2S � 10.The table of multiplicities depends only on j2Sj, so if 2S�10 is negative, it is simplyreplaced by its magnitude. Because of this, the � = 2=3 state occurs at 2S = 9 andthe � = 2=5 state at 2S = 11.We have evaluated the coe�cients of fractional grandparentage, GL�(L12) forvalues of N up to eight and for many di�erent values of 2S. In all cases where theMFCF approximation is applied to the electrons (or to holes in a nearly �lled level),we �nd that the grandparentage arising from large L12 is smaller for the lowest energyband multiplets than for neighboring multiplets.To some extent this is not very surprising since in order for a state to havelow energy, it is required by Eq. (8) to avoid large parentage G(L12) for large L12.Rather than introduce a second energy scale �h!�c and assume that there exists alarge cancellation between Chern{Simons and Coulomb interactions, we regard theMFCF approximation as a prescription (similar to Hund's rule in atomic physics)that selects a low angular momentum subset of the set of allowed L-multiplets ofN electrons, which has low grandparentage for the strongly repulsive part of theCoulomb interaction, and therefore low energy. Our arguments make this hypothesisplausible, but the proof (as with Hund's rule) lies in comparison with experiment (inthis case the numerical experiment of exact diagonalization).The authors would like to acknowledge the support of the Division of MaterialsSciences { Basic Energy Research Program of the U.S. Department of Energy. Wewish to thank Dr. D. C. Marinescu for a number of helpful discussions.� On leave from the Institute of Physics, Wroc law University of Technology,Poland. REFERENCES[1] F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983).[2] J. Jain, Phys. Rev. Lett. 63, 199 (1989).[3] X. M. Chen and J. J. Quinn, Solid State Commun. 92, 865 (1996).[4] R. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).[5] P. Sitko, S. N. Yi, K.-S. Yi, and J. J. Quinn, Phys. Rev. Lett. 76, 3396 (1996).[6] P. Sitko, K.-S. Yi, and J. J. Quinn, Phys. Rev. B56, 12417 (1997).[7] T. T. Wu and C. N. Yang, Nucl. Phys. B107, 365 (1976); Phys. Rev. D16,1018 (1977).[8] J. Jain, Phys. Rev. Lett. 69, 2842 (1992).[9] R. D. Cowan, The Theory of Atomic Structure and Spectra, (University of Cali-fornia Press, Berkeley, Los Angeles, and London, 1981) A. de Shalit and I. Talmi,Nuclear Shell Theory, (Academic Press, New York and London, 1963).[10] G. Fano, F. Ortolani, and E. Colombo, Phys. Rev. B34, 2670 (1986).[11] A. W�ojs and J. J. Quinn, Solid State Commun. (to appear).


