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The mean field composite Fermion (MFCF) picture has been qualitatively suc-
cessful when applied to electrons (or holes) in the lowest Landau level. Because the
energy scales associated with Coulomb interactions and with Chern—Simons gauge
field interactions are different, there is no rigorous justification of the qualitative
success of the MFCF picture. Here we show that the behavior of the electron pseu-
dopotential for the lowest monopole harmonic shell is opposite to that of the spherical
harmonics of atomic physics. As a consequence, states with low total angular mo-
mentum L usually form the low energy sector in the spectrum, in contrast to Hund’s
rule of atomic physics. Which state with small L is the ground state depends on the
number of multiplets of a given L and on their fractional parentage from states of
given pair angular momentum. The MFCF prediction for the low energy sector can
be thought of as the equivalent of Hund’s rule governing monopole harmonics of the
totally spin polarized system. It can be rigorously justified for an arbitrary number
of electrons only by comparison with detailed numerical studies and experiment.



For N electrons on a Haldane sphere [1] (containing at the center a magnetic
monopole of charge 25 he/e), the single particle states fall into angular momentum
shells with /,, = S+ n, n = 0,1,... The nth shell is 2[,, + 1 fold degenerate. The
composite Fermion (CF) [2] transformation attaches to each electron a flux tube of
strength 2py flux quanta oriented opposite to the original magnetic field. If the added
flux is treated in a mean field approximation, the resulting effective magnetic field
seen by one CF is B* = B — 2pg (hc/e)ns (ns is the number of electrons per unit
area). An effective CF filling factor v (v5 ™' = ;' — 2py) and an effective monopole
strength 25 (25" = 25 — 2po(N — 1)) seen by one CF can also be defined. |S*| plays
the role of the angular momentum of the lowest CF shell [3]. States belonging to the
Jain sequence occur when v is an integer. For such integral CF fillings, the ground
state is a Laughlin [4] incompressible liquid state with angular momentum L = 0.
If v§ is not an integer, a partially occupied CF shell will contain nqr quasielectrons
(or nqu quasiholes). In the MEFCF picture these states form a degenerate band of
angular momentum multiplets with energy nqreqr where eqp is the energy of a
single quasielectron (or nqueqn for quasiholes). The degeneracy results from the
neglect of QP-QP interactions in the MFCF approximation [5].

Hierarchy states [6] outside the Jain sequence are obtained (when v is not equal
to an integer) by reapplying the CF transformation to residual quasiparticles in the
partially filled CF shell. In comparing the predictions of the CF hierarchy picture
with numerical results for states containing three or four quasiparticles, it is found
that the MF approximation is often qualitatively incorrect. Before worrying about
the reapplication of the MFCF approach to residual quasiparticles in a partially filled
CF shell, it is very useful to ask why the MFCF picture applied directly to electrons
(or holes) in a partially filled shell gives qualitatively correct results. In light of the
different energy scales describing Coulomb interactions and Chern—Simons gauge field
interactions, the justification cannot lie in a cancellation between these interactions.

The single particle states for an electron on a Haldane sphere are called monopole
harmonics [7] and denoted by |l,,, m), where [, = S+ n and —I, < m < [,. The
single particle energies depend only on S and n, and for the fractional quantum
Hall (FQH) effect, only the lowest shell with n = 0, which is completely spin polar-

ized, need be considered. The many electron states |my,ms,...,my) can be writ-
ten as ci, cf, ...cl, |0) where [0) is the vacuum state. The object of numerical

studies is to diagonalize the electron-electron interaction within the subspace of the
(2S +1)INI(25+1— N)!]_l many particle states of the lowest shell. The numerical
calculations for Laughlin condensed states or states containing a small number of
Laughlin quasiparticles [4] become difficult when the number of electrons N exceeds
10. The calculations give the eigenvalues E as a function of the total angular mo-
mentum L, and the numerical results always show one or more L multiplets forming
a low energy sector (or low energy band).

It has been demonstrated [3,8] that the CF picture correctly predicts the low
lying band of multiplets by simply noting that when the N electrons are converted
to N composite Fermions, the angular momentum of the lowest shell goes from [ to
Iy =1lp — p(N — 1), where 2p is the number of flux quanta attached to each CF. A
very fundamental question which is not well understood is, “Why does the MFCF
picture do so well in describing not just the Jain sequence of incompressible states,
but also the low lying band of multiplets for any value of 2577 The problem of N



Fermions in a shell of angular momentum [ is very familiar from atomic and nuclear
physics [9]. In this note we concentrate on the similarities and differences between
the problems of N electrons in the lowest angular momentum shell of a Haldane
sphere and N electrons in an atomic shell of the same angular momentum [. First,
because of the magnetic monopole of magnitude 25(he/e), where 2S5 is an integer,
the monopole harmonics |/,,, m) have angular momentum S+n (n = 0,1,2,...) which
can be integral or half-integral. The spherical harmonics have S = 0, so [ must be
an integer. For FQH systems (i.e. v < 1) we are interested in the lowest angular
momentum shell with /[ = S. Second, the Zeeman splitting is large compared to the
Coulomb interaction, so only totally spin polarized states of FQH systems need be
considered. In fact, even if the Zeeman splitting vanished, the exchange energy would
result in the maximum possible spin polarization for the lowest energy multiplet as
prescribed by Hund’s first rule. Because the total spin is always equal to %N and
only the lowest shell is occupied, the total (spin plus orbital) angular momentum .J
is never of concern. It is simply the sum of L and %N. Third, for FQH systems,
calculations with N values up to 10 and [ values up to 27/2 have been performed
[10]. In atomic systems, [ values up to 3 (f-states) and N values up to 7 are usually
the maximum values studied.

The key rule, especially for the maximally polarized systems, is Hund’s sec-
ond rule. It states that the largest allowable L value consistent with the first rule
(maximum possible spin) will be the ground state. This is certainly not the case
for FQH systems. Many Laughlin incompressible states at L = 0 are ground states,
and states containing 1, 2, 3, ... quasiparticles always have allowed L values that are
much smaller than Lyax = %N(Zl — N 4+ 1). What causes this difference?

In Fig. 1 we display the Coulomb pseudopotential for a pair of electrons in single
particle angular momentum states [ = 1 through 5, as a function of the pair angular
momentum Lis = 1; + 1z, For monopole harmonics (I = S, n = 0) V(L;2) increases
with increasing Lis. For atomic shells (spherical harmonics) just the opposite occurs
— the repulsion decreases with increasing L1z (for the h-shell and higher, V(Lis)
begins to increase beyond some relatively large value of Lis, but this is never of
concern in atomic physics).

An antisymmetric state containing N Fermions of angular momentum [ can be
written ‘ZN, La>, and it can be expressed as [9]

‘ZN,LOé> = Z Z GLa,L’a'(L12) ‘Zz,le; ZN_Z,LIO/; L> 5 (1)
Lo L'’

where G o170/ (L12) is called the coefficient of fractional grandparentage. In Eq. (1),
‘12, Lig;IN72 Lol L> is a state of angular momentum L. It is antisymmetric under
permutation of particles 1 and 2, which have pair angular momentum Lq,, and under
permutation of particles 3, 4, ..., N, which have angular momentum L'. The label «
(or o') distinguishes independent orthogonal states with the same angular momentum
L (or L").

It is not difficult to prove the operator identity

L*+N(N-2)* =) L} (2)

pairs
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Figure 1. The pseudopotential for a pair of electrons of total angular momentum
Ly as a function of | = S + n. Energy is measured in units of ¢?/R, where R is

the radius of the sphere. (a) monopole harmonics, n = 0; (b) spherical harmonics,
S = 0, calculated for a radial wavefunction which localizes the electrons at radius R.

Here [ = > I; and j}ij — [+ Zj. If we take diagonal matrix element of Eq. (2)
between states IZN, La>, we obtain

(IN,La| Y L3 IN,La)y = L(L+ 1)+ N(N = 2)I(1 + 1). (3)

pairs

The left hand side is simply %N(N — 1) times the average value of the square of the

pair angular momentum in the state IZN,La>. Clearly, states with higher L have
higher values of this quantity. The left hand side of Eq. (3) can be expressed as

(V. La| Y 12 1N, La %N(N )Y GralLi) (L +1), (&)

pairs Lqs

where

Gra(Li2) Z |G Lo, 1o (L)) (5)



From the orthonormality of the functions ‘ZN, La>,

NN Ghapar(Liz) Guspar(Liz) = bas (6)

L12 Lo’

and

Y Groa(Liz) = 1. (7)

L12

The energy of the state ‘ZN, La> is given by

Eo(L) =) Gra(L12) V(L12). (8)

L12

It is noteworthy that the average value of Epairs j}?] is independent of which multiplet
« is being considered. In view of Eqs. (3), (4), and (8), it is not surprising that in
atomic physics, where V(L13) decreases rapidly with L;2, Hund’s second rule holds.
For states with L = Lyax only a single multiplet ever appears, and it has the highest
value of the average pair angular momentum. Despite this strong indication that,
in atomic systems, the state with the largest allowed value of L (consistent with the
maximum value of the total spin) has the lowest energy, Hund’s rule is considered an
empirical rule, that can be rigorously justified only by numerical calculations.

For the case of monopole harmonics, V(Lj3) rises very rapidly with increas-
ing Li5. Therefore, low energy states must somehow be able to avoid having large
grandparentage in states with large values of Li;. In a previous paper we have
demonstrated analytically that this is true for three electron systems [11]. For the
monopole harmonics the general trend is to have N; ' > FE,(L), the average E(L)
for all multiplets with angular momentum L, increase with increasing L. However,
when the single particle angular momentum, [, increases beyond some value for an
N-particle system, several multiplets of the same L begin to appear. In Tab. 1 we
present as an example the number of independent multiplets of angular momentum
L, as a function of [y = S, for a system of six electrons. The values of S go from 0
to 15/2, and L from 0 to 15 (the table uses 25 and 2L to avoid printing half-integers
and only values of 2L up to 23 have been included), If the pseudopotential were given
by V(ng) = A+ B Li13(L12 + 1), all of the different multiplets with the same value
of L would be degenerate because of Eqs. (3)~(8), and Ly, the smallest allowed
L-multiplet, would be the ground state. The difference between V(ng) and the ac-
tual pseudopotential V(L13) leads to a lifting of this degeneracy (different multiplets
repel one another). The splittings caused by V(Lq2)— V(ng) can become large when
Ny, the number of times the multiplet L occurs, is large. In this case, a state with
L larger than Lyn can become the ground state since the actual values of E,(L)
depend on how the values of Gr(L12) are distributed, not just on the average value
of 122 for that value of L. For example, the lowest energy multiplet with 2L = 3 and
25 = 14 is lower in energy than the multiplets at 2L = 1 and 2, because it is one of
12 multiplets as compared to only 6 and 4 at 2L = 1 and 3, respectively. Knowing
which multiplet is the ground state or which multiplets form the “low energy band”
without performing detailed numerical calculation is a considerably more difficult
task than it was for spherical harmonics.



Table 1

Number of times the angular momentum multiplet L appears when N = 6 electrons
of angular momentum ly = S are combined in a totally antisymmetric state.

2527|1012 3 4 56 7 8 910(11121314 15|16 17 18 19 20|21 22 23
0 1 1

1 11

2 1 1

3 |1 1 1

4 1

5 |1

6 1

7T |1 1 1 1

8 1 21111 1

9 12 2131131211 1

10 21 4 2 43 42 3 2|2 11 1

11913 4 3 6 3|7 46 4 5|2 4221]1 1

12 42 758|796 967553412211 1
13 1417 511 7|13 9131012|8 117 8 5|6 3 4 2 2|11
14 6 4129 14[1317131814|1613141012|8 8 6 6 3|4 2 2
15 16211 9 1713(2217231924|1823171915(161113 8 8|6 6 3

In the MFCF picture, the angular momentum [y of the lowest shell is replaced
[2] by I§ =1— (N —1). The allowed angular momenta L* are obtained by placing N
composite Fermions in the lowest CF angular momentum shells. This always results
in a smaller maximum possible angular momentum Ly;,x. For example, if 25 > 3N —
3, Liiax = sN(28—3N —=3);if BN—-3>28 > SN —4, L x = (25— 3N +4)(3N —
3 —285); etc. At fillings corresponding to states in the Jain sequence Ly;,x = 0. For
states containing several quasiparticles, a number of different L* values less than or
equal to Ly;,x can occur. From the numerical calculations (and from experiment)
it has been observed that the subset of allowed L* multiplets obtained by placing
N CF’s into the lowest angular momentum shells form the low energy band of the
original electron system. This is plausible because: (i) the allowed values of L* are
always small compared to the original Lyjax and therefore have a small expectation



value of Epairs j}?j, and (ii) electron L values which occur a relatively large number
of times tend to form the low energy band of L*’s. For the six electron system with
a given 2S5, the allowed L* values are those appearing in row with 25* = 25 — 10.
The table of multiplicities depends only on |25], so if 25 — 10 is negative, it is simply
replaced by its magnitude. Because of this, the v = 2/3 state occurs at 25 = 9 and

the v = 2/5 state at 25 = 11.

We have evaluated the coefficients of fractional grandparentage, Gro(L12) for
values of N up to eight and for many different values of 25. In all cases where the
MFCF approximation is applied to the electrons (or to holes in a nearly filled level),
we find that the grandparentage arising from large Ly, is smaller for the lowest energy
band multiplets than for neighboring multiplets.

To some extent this is not very surprising since in order for a state to have
low energy, it is required by Eq. (8) to avoid large parentage G(L13) for large Lqs.
Rather than introduce a second energy scale hw? and assume that there exists a
large cancellation between Chern—Simons and Coulomb interactions, we regard the
MFCF approximation as a prescription (similar to Hund’s rule in atomic physics)
that selects a low angular momentum subset of the set of allowed L-multiplets of
N electrons, which has low grandparentage for the strongly repulsive part of the
Coulomb interaction, and therefore low energy. Our arguments make this hypothesis
plausible, but the proof (as with Hund’s rule) lies in comparison with experiment (in
this case the numerical experiment of exact diagonalization).
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