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1. Introduction

The composite fermion (CF) model [1] has been very successful in the
explanation of incompressibility of a whole family of fractional quantum Hall
(FQH) states [2] at the “Jain series” of the Landau level (LL) filling factors
νe = n/(2np ± 1). At these fillings, the CF transformation involving attach-
ment of an even number 2p of magnetic flux quanta φ0 = hc/e to each electron
converts a partially filled LL of electrons with strong (Coulomb) interaction into a
small number νCF ≡ n of completely filled LL’s of nearly noninteracting CF’s (the
general relation between electron and CF filling factors being ν−1

CF = ν−1
e − 2p).

In filled shells, the weak residual CF–CF interactions play no role and the in-
compressibility of νe = n/(2np ± 1) states is said to result from a single-particle
cyclotron gap of the CF’s in the reduced magnetic field B∗ = B − 2pφ0%, where
% is the 2D electron/CF concentration (connected to νe = 2π%λ2 via magnetic
length λ =

√
h̄c/eB).

Recently, Pan et al. [3] have observed the FQH effect in a spin-polarized
electron gas at a series of filling factors between two neighboring Jain states, i.e.
at 1/3 < νe < 2/5, and thus corresponding to the fractional CF filling factors,
1 < νCF < 2. In particular, the incompressible states observed at νe = 4/11, 3/8,
5/13 correspond to νCF = 4/3, 3/2, and 5/3, respectively. Clearly, incompressibil-
ity of these states must depend on the CF–CF interaction within a partially filled
second CF LL.
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The familiar values of second-CF-LL fillings, ν ≡ νCF − 1 = 1/3, 1/2,
and 2/3, respectively, suggested analogy [4] to electron states at the same fill-
ings of the same (second) electron LL, i.e. to the FQH effect at νe = 2 + ν (“2”
due to spin degeneracy of the first electron LL), i.e. at νe = 7/3, 5/2, and 8/3.
However, the analogy fails [5] due to the qualitatively different short-range e–e
and CF–CF interaction pseudopotentials (interaction energy V as a function of
pair angular momentum R) in their respective second LL’s. In fact, despite active
research [6–8], the nature of νe = 4/11, 3/8, and 5/13 states is not yet completely
understood.

In this paper we study spin polarization of the νe = 4/11 state, motivated
by the troubling fact that the spin-polarized state has been observed [3] but it is
not well understood, while the unpolarized state which appears to be much easier
to understand (analogy to the electron Laughlin state works) has not yet been
reported in experiment. The main result is the spin phase diagram, from which
we predict a spin transition at νe = 4/11, induced, e.g. by an additional electric
field narrowing the electron layer.

2. Results and discussion

The numerical (exact-diagonalization) calculations were carried out in the
Haldane geometry [9]. In this model, N particles (e.g., CF’s) are confined to
a sphere, with the normal magnetic field B yielding the desired LL degeneracy
g = 2Q + 1 produced by a Dirac monopole of strength 2Qφ0 in the center. To
avoid finite-size errors, the calculations are repeated for different (N, g) and the
results are extrapolated to N →∞ and N/g → ν.

To compare the energies of polarized and unpolarized states at νe = 4/11
we must calculate and compare the single-particle energies ε of the appropriate
quasiparticles (QP’s) and their many-body correlation energies u. For the polar-
ized state these QP’s are the Laughlin quasielectrons (QE’s) [10] in the second
spin-↑ CF LL. For the unpolarized state the QP’s are the reversed-spin Rezayi
[11] QER’s in the lowest spin-↓ CF LL. In the CF picture, ∆ε = εQE− εQER is the
difference between the CF cyclotron and the Zeeman energies.

The actual values of ε can be extracted [12, 13] from an exact diagonalization
of finite electron systems. In Fig. 1a they are drawn as a function of width w of the
quasi-2D electron layer, with the electron wave function in the normal direction
taken as χ(z) ∝ cos(zπ/w). To put the shown width range in perspective, let us
note that a 12 nm well at B = 10 T corresponds to w/λ = 1.9, and a 40 nm well
at B = 23 T corresponds to w/λ = 8.1.

The short-range QE–QE and QER−QER pseudopotentials V (R) are ob-
tained from the exact diagonalization [5] or Monte Carlo [14] calculations of a
finite number of electrons. The long-range behavior of V (R) results from the
known −e/3 electric charge of QE’s and QER’s. Matching the two limits, we
obtain the result shown in Fig. 1b for w = 0.
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Fig. 1. (a) Dependence of the QE and QER energies ε on electron layer width w.

(b) QE’s and QER’s interaction pseudopotentials V (R) in an ideal 2D layer (w = 0).

Fig. 2. (a) Correlation energy u in the ν = 1/3 state of QE’s or QER’s as a function of

their inverse number N−1 in an ideal 2D layer (w = 0). (b) Phase diagram (critical layer

width w vs. magnetic field B) for the QE–QER spin transition at νe = 4/11, assuming

the effective (width dependent) electron Landé g∗-factor for GaAs. For comparison, the

thick dashed line is for a constant (bulk) value g∗ = −0.44. Two thin lines additionally

ignore the correlation energy u (adequately for ν ¿ 1).

The many-QP correlation energy per particle is defined as u = (E +
Ubckg)/N , where E is the interaction energy of the ground state of N QP’s
and Ubckg = −(Nq)2/2R is a correction due to the interaction with the charge-
-compensating background (with the sphere radius R = λ

√
Q). In Fig. 2a we

plot u(N) obtained for w = 0 from diagonalization of N ≤ 12 QP’s. The results
of extrapolation are uQER = −0.026e2/λ (very close to the value for an electron
Laughlin state when the charge difference e → e/3 is taken into account) and
uQE = −0.013e2/λ. The difference ∆u = uQE − uQER was recalculated in a simi-
lar manner for various widths w. Whether QE’s or QER’s will form a ν = 1/3 state
at νe = 4/11 depends on the competition of the Coulomb and Zeeman energies.
The condition for the QE ↔ QER transition is ∆ε+∆u = EZ. In Fig. 2b we drew
the spin phase diagram assuming width dependence on the effective Landé factor
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g∗ appropriate for GaAs wells [15]. Clearly, the spin transition in narrower wells
shifts quickly to higher B (i.e., to higher %e ∝ B). The role of QP–QP interaction
in stabilizing the QER phase is evident from the comparison of boundaries dividing
correlated QE/QER liquids (thick lines) and non-interacting QE/QER gases (thin
lines).
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