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Transition between the polarized and partially unpolarized states with distinct composite fermion correlations
is predicted for realistic parameters.
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I. INTRODUCTION

There has been considerable speculation about the nature
of “second-generation” incompressible quantum liquid �IQL�
states observed recently by Pan et al.1 Their incompressibil-
ity depends on spin and charge dynamics of the fractionally
charged Laughlin quasiparticles �QPs�.2

The experiment of Pan et al. employed the fractional
quantum Hall �FQH� effect,3 a nonperturbative interaction
many-body phenomenon, dependent on magnetic quantiza-
tion of the two-dimensional single-electron energy spectrum
into massively degenerate Landau levels �LLs�.4 It coincides
with the formation of electron IQLs and thus occurs at the
particular fractional values of the LL filling factor, defined as
�e=2��e�

2 �where �e is the electron concentration and �
= ��c /eB�1/2 is the magnetic length�.

The emergence of IQLs is explained as follows by the
composite fermion �CF� theory.5 Electrons partially filling
the lowest LL are said to capture 2p magnetic flux quanta
�0=hc /e and become �weakly interacting� CFs moving in a
reduced effective magnetic field, corresponding to a higher
effective CF filling factor �CF. The most prominent IQL se-
quence at �e=s�2ps±1�−1 �with s and p being a pair of inte-
gers� corresponds to �CF=s, i.e., to the integral quantum Hall
effect of the CFs.

However, not all IQLs found in the lowest LL can be
explained in this way. Recently, Pan et al.1 observed the
FQH effect at �e= 4

11, corresponding to �CF= 4
3 , i.e., to a par-

tial filling of a CF-LL. This discovery demonstrated that
CFs, like electrons, can form IQLs. The origin of incom-
pressibility of the correlated CF liquid of Pan et al. �also
called a second-generation FQH state� has been vigorously
studied for the last three years.6–12 However, some of even
the most fundamental questions remain controversial.

The subject of this paper is polarization of the �e= 4
11

state. It is largely motivated by the wealth of theory of spin
dynamics in the “first-generation” FQH states.13–20 However,
our main goal is to extend the work of Chang et al.21 and
directly address the experimental results of Pan et al. in tilted
magnetic fields1 which indicated ferromagnetic order. In the
CF picture, this corresponds to a completely filled lowest
CF-LL �0↑� and a 1

3-filled first excited CF-LL with the same
spin �1↑�. Since the Laughlin �= 1

3 state in CF-LL1 was ear-
lier ruled out22 based on the form of short-range CF-CF in-

teraction pseudopotential, the explanation for the observed
incompressibility must be different. This distinction makes
the polarized �e= 4

11 state an object of intense investigation.23

Although several ideas were formulated �e.g., CF
pairing9,11�, neither an analytic CF wave function nor an in-
tuitive understanding for the incompressibility has been
reached. A partially unpolarized state was also proposed,24

with the �= 1
3 filling of the lowest CF-LL with reversed spin

�0↓�. In contrast to the polarized state and due to a different
form25 of CF-CF interaction in CF-LL0, it is expected to be a
Laughlin CF liquid. However, this state has not yet been
observed in experiment.

Let us summarize this remarkable situation as follows:
The polarized state has been observed but it is not well un-
derstood, and the unpolarized state has not been observed but
it appears to be much easier to understand. In this paper, we
calculate the single-particle and correlation energies in these
two competing CF states, depending on the experimentally
controlled parameters �electron layer width, concentration,
and magnetic field�. The main result is the spin phase dia-
gram, from which we predict a spin transition at �e= 4

11, in-
duced, e.g., by an additional electric field narrowing the elec-
tron layer. Suggested experimental demonstration of this
transition would shed more light on the role played by spin
of correlated CFs.

II. NUMERICAL MODEL

The calculations were done in Haldane’s spherical
geometry,26 convenient for the numerical studies of incom-
pressible quantum liquids with short-range correlations. To
model an extended �planar� two-dimensional �2D� system of
interacting particles filling a fraction � of a degenerate LL,
their finite number N is considered within a shell of appro-
priate angular momentum l and degeneracy g=2l+1 �con-
taining states with different angular momentum projections,
�m�� l�. The assignment of the filling factor � to a finite
system �N ,g� is not trivial. It requires identifying the depen-
dence g=�−1N+� which defines a series of finite systems
representing an infinite state � �here, the “shift” � is inde-
pendent of N but it depends on the form of correlations, i.e.,
in particular, on ��.

In the original formulation,26,27 these l shells represent
LLs of a charged particle confined to a surface of a sphere of
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radius R, with the normal magnetic field B produced by a
Dirac monopole of strength 2Q=4�R2B /�0. Specifically, the
nth LL on a plane �called LLn, with n	0� corresponds to the
shell of l=Q+n on a sphere.

Here, we do not use the particular form of the �Q ;n ,m�
wave functions but take advantage of the fact that the sym-
metry of angular momentum eigenstates �l ,m� under 2D ro-
tations mimics the symmetry of the planar eigenstates under
2D �magnetic� translations. Thus, the interaction matrix ele-
ments are guaranteed to obey general rules for a scalar op-
erator in the basis of spherical harmonics, but the particular
values are put into the model “by hand,” so as to describe
the actual interaction among the considered particles �on
the plane�. This is done by specifying the Haldane
pseudopotential,28 defined as interaction energy V as a func-
tion of relative angular momentum R. On a sphere, relative
and total pair angular momenta are related by R+L=2l, and
the matrix elements �l1 ,m1 ; l2 ,m2�V�l3 ,m3 ; l4 ,m4� are con-
nected with V�L� through the Clebsch-Gordan coefficients.

The many-body interaction Hamiltonian is diagonalized
numerically in the configuration-interaction basis. The en-
ergy levels E are determined separately for each subspace of
the total spin S and angular momentum L.

III. SINGLE-QUASIELECTRON ENERGIES

In the mean-field CF transformation, the liquid of corre-
lated electrons at �e= 4

11 is converted to the system of CFs
with an effective filling factor �CF= 4

3 . Thus, the low-energy
dynamics of Ne electrons with Coulomb interaction in the
lowest LL can be mapped onto that of � 3

4Ne CFs completely
and rigidly filling the lowest CF-LL �0↑� and the excess of
N	 1

4Ne CFs in the �= 1
3-filled next lowest CF-LL �either 1↑

or 0↓, depending on the relative magnitude of electron Zee-
man energy EZ and the effective CF cyclotron gap 
e2 /��.
Each CF in the partially filled 1↑ or 0↓ LL represents a
“normal”2 or “reversed-spin”15 quasielectron �QE or QER� of
the underlying incompressible Laughlin liquid, respectively.

The Coulomb energies �QE and �QER
of these two QPs can

be extracted25,27 from exact diagonalization of finite systems
of Ne electrons in the lowest LL with the appropriate degen-
eracy g. The Laughlin ground state occurs at g=3Ne−2

gL; it is nondegenerate �L=0� and spin polarized �S
= 1

2Ne�. A single QE or QER appears in the Laughlin liquid in
the lowest states at g=gL−1 and either S= 1

2Ne or 1
2Ne−1,

respectively. The QE and QER energies � �defined relative to
the underlying Laughlin liquid� are obtained from the com-
parison of the �Ne-electron� energies at g=gL and gL−1.

The numerical procedure and the result for an ideal 2D
electron layer were presented earlier.25,27 In Fig. 1, we com-
pare the QE/QER energies calculated for quasi-2D layers of
finite width w. Here, w is the effective width of the electron
wave function in the normal �z� direction, approximated by
��z�
cos�z� /w�. It is slightly larger than the quantum well
width W; e.g., for symmetric GaAs/Al0.35Ga0.65As wells, w
	W+3 nm over a wide range of W	10 nm. The regular
dependence on system size in Fig. 1�a� allows reliable ex-
trapolation of � to Ne

−1→0 �planar geometry�. From the com-

parison of �QE�w� and �QER
�w� in Fig. 1�b�, it is clear that

their difference � is less sensitive to the width than any of
the �. To put the shown width range in some perspective, let
us note that a �fairly narrow� W=12 nm well in a �fairly low�
field B=10 T corresponds to w /�=1.9 and ��w� /��0�
=0.9, justifying the 2D approximation. On the other hand, a
wide W=40 nm well in a high field B=23 T gives w /�
=8.1 and ��w� /��0�=0.5, i.e., a significant width effect.

IV. QUASIELECTRON INTERACTIONS

The weak effective CF-CF interactions are known with
some accuracy from earlier studies.11,22,25,29,30 At least at suf-
ficiently low CF fillings factors ��

1
3 , they can be well ap-

proximated by fixed Haldane pseudopotentials �independent
of the CF-LL filling or spin polarization�. The short-range
QE-QE, QER-QER, and QE-QER pseudopotentials can be ob-
tained from finite-size diagonalization for Ne electrons with
up to two reversed spins �S= 1

2Ne−2� at g=gL−2.
The result is a reliable account of the relative values

VR,R�=V�R�−V�R�� at small neighboring R and R�, but
the absolute values are not estimated very accurately. Fortu-
nately, since vertical correction of V�R� by a constant does
not affect the many-CF wave functions and only rigidly
shifts the entire energy spectrum, a few leading values of V
completely determine the �short-range� CF correlations at a
given �. Therefore, the knowledge of those few approximate
values of VQER

and VQE was sufficient to establish that �i�
the QERs form a Laughlin �= 1

3 liquid,21,24,25 which in finite
N-QER systems on a sphere occurs at g=3N−2, and �ii� in
contrast, the QEs form a different �probably paired� state9,11

at the same �= 1
3 , which, on a sphere, occurs at g=3N−6.

However, the relative strength of QE-QE and QER-QER
pseudopotentials VQER

and VQE must be also known �in ad-
dition to V� to compare the energies of many-QER and
many-QE states �i.e., of the spin-polarized and unpolarized
electron states at �e= 4

11�. The absolute values of VQER
and

VQE can be obtained by matching29 the short-range behavior
from exact diagonalization of small systems with the long-
range behavior predicted for a pair of charges q=− 1

3e. Spe-
cifically, the short-range part of VQER

�R�, which describes a

FIG. 1. �Color online� Dependence of the quasielectron �QE�
and reversed-spin quasielectron �QER� energies � on �a� the inverse
electron number Ne

−1 in a finite-size calculation and �b� the electron
layer width w. � is the magnetic length.
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pair of CFs in the 1↓ CF-LL, is shifted to match �V0�R�, the
electron pseudopotential in the lowest LL rescaled by �

�q2�q

−1� / �e2�e
−1�= �q /e�5/2. Similarly, the short-range part

of VQE�R�, related to the 1↑ CF-LL, is shifted to match
�V1�R�.

The result in Fig. 2�a� for an ideal 2D layer was reported
earlier;11 in Fig. 2�b�, the width dependence of the leading
parameters V has been plotted. It is noteworthy that VQE is
much more sensitive to the electron layer width w than VQER

.
This is explained by stronger oscillations in VQE�R� at w
=0, which tend to weaken in wider wells �when the charac-
teristic in-plane distances decrease relative to w�. The curves
for VQER

�1� and VQE�3� have been drawn with dashed lines,
since the QER-QER and QE-QE pair states associated with
these dominant pseudopotential parameters will be avoided9

in the unpolarized and polarized �= 1
3 CF ground states, re-

spectively.

V. CORRELATION ENERGIES OF QUASIELECTRON
LIQUIDS

As mentioned above, due to the strong QER-QER repul-
sion at short range �R=1�, the QERs form a Laughlin �= 1

3
state similarly to the electrons at �e= 1

3 . The corresponding
series of nondegenerate N-QER ground states on a sphere
occurs at the Laughlin sequence of g=3N−2. In Fig. 3�a�,
we plot the size dependence of their correlation energy u �per
particle�, defined as

u =
E + Ubckg

N
� . �1�

Here, E is the interaction energy of the ground state of N
QERs and Ubckg=−�Nq�2 /2R is a correction due to interac-
tion with the charge-compensating background �with the
sphere radius R=��Q taken for 2Q+1=g, in analogy to the
relation for electrons in the lowest LL�. The factor �
=�Q�Q−1�−1 is used to rescale the energy unit e2 /�

=�Qe2 /R from that corresponding to gQER
=3N−2 to that of

an average ḡ= 1
2 �gQER

+gQE�=3N−4, to allow for a later com-

parison of u calculated for QERs and QEs at different g �and
thus, at different magnetic lengths � corresponding to the
same area 4�R2�.

The correlation energies u were calculated for N�12 and
extrapolated to N−1→0 to eliminate the finite-size effects.
Neither the particular form of Ubckg �i.e., the assumption of
g=2Q+1 for the relation between R and �� nor the rescaling
by � directly affects the extrapolated value �they only affect
the size dependence, and thus the accuracy of extrapolation�.
For an ideal 2D system, the result of extrapolation is uQER
=−0.026e2 /�=−0.405�e2 /�. This value is very close to �u0,
where u0=−0.412e2 /� describes the Laughlin state of elec-
trons in LL0. Good agreement confirms not only Laughlin
correlations among the QERs �which are guaranteed by the
form of VQER

and can also be verified directly by the analy-
sis of pair amplitudes� but, more importantly, the accurate
estimate of the absolute values of VQER

�R� drawn in Fig. 2�a�
and used in the N-QER calculation.

Let us turn to the QEs. The dominant QE-QE repulsion at
R=3 causes the QEs to form pairs11 rather than a Laughlin
state at �= 1

3 �although the exact wave function of this incom-
pressible state is still unknown�. The corresponding series of
nondegenerate N-QE ground states on a sphere was
identified9 at g=3N−6, different from the Laughlin se-
quence. The QE correlation energy u was calculated from the
same Eq. �1� but with a different �=�Q�Q+1�−1 �where g
=2Q+1 also�. By using different �QER

and �QE, we removed
the discrepancy between � /R of finite N-QER and N-QE sys-
tems, in order to improve size convergence of u=uQE
−uQER

.
In an ideal 2D system �w=0�, the extrapolated value at

N−1=0 is uQE=−0.013e2 /�, twice smaller �in the absolute
value� than uQER

of a Laughlin state. The difference u
=0.013e2 /� is the key numerical result of this paper. The

FIG. 2. �Color online� �a� Haldane pseudopotentials �pair inter-
action energy V as a function of relative angular momentum R� for
quasielectrons �QE� and reversed-spin quasielectrons �QER� in an
ideal 2D �w=0� electron layer. �b� Dependence of pseudopotential
increments VRR�=V�R�−V�R�� on the electron layer width w. �
is the magnetic length.

FIG. 3. �Color online� �a� Correlation energy u in the �=1/3
incompressible liquid of quasielectrons �QE� or reversed-spin
quasielectrons �QER� as a function of their inverse number N−1 for
two different widths w of the quasi-2D electron layer �� is the
magnetic length�. �b� Difference u=uQE−uQER

as a function of
N−1. �c� Phase diagram �critical layer width w vs magnetic field B�
for the QE-QER spin transition at �=1/3 �i.e., at �e=4/11�, assum-
ing the effective electron Landé g* factor for GaAs �dashed line is
for the bulk value g*=−0.44, ignoring dependence on the layer
width w�. Thin lines are for uncorrelated QEs or QERs �at ��1/3�.
The experimental points were taken after Pan et al. �the plus, cross,
and dots after Refs. 1, 31, and 32, respectively�.
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accuracy of this estimate can be judged from the extrapola-
tion plot in Fig. 3�b�.

The fact that uQER
�uQE can be explained from the

comparison11 of QER and QE charge-density profiles ��r�.
The roughly Gaussian �QER

is �up to normalization� very
similar to �0 of an electron in the lowest LL, yielding similar
QER and electron pseudopotentials V�R� and correlation en-
ergies u �in the �-rescaled units�. The ringlike �QE is more
complicated and has a bigger radius, causing stronger �on the
average� QE-QE repulsion. The estimate of how much stron-
ger depends on the accurate matching of the short- and long-
range QE-QE pseudopotentials in Fig. 2�a�. Therefore, to
gain more confidence, we compared uQER

with u1 of the elec-
trons filling �= 1

3 of LL1, whose �1 falls between �QER
��0

and �QE in terms of occupied area and the number of oscil-
lations. For the known33 g=3N−6 sequence of nondegener-
ate �= 1

3 ground states in LL1, we obtained u1=−0.32e2 /�.
Upon rescaling for the fractional QP charge, �u1
=−0.021e2 /� falls between �u0	uQER

=−0.026e2 /� and
uQE=−0.013. This demonstrates that the difference between
uQER

and uQE is caused by the difference between �QER
and

�QE and supports the obtained order of magnitude of u.
To demonstrate the dependence of the correlation energies

on layer width, we also showed data for w=8� in Figs. 3�a�
and 3�b�. The extrapolated values for this very wide layer are
uQER

=−0.025e2 /� and uQE=−0.031e2 /�. Significant de-
crease of both energies compared to w=0 reflects an overall
�averaged over in-plane distances, i.e., over R� reduction of
the QP repulsion in wider wells caused by the spread of
electron �and thus also QER and QE� wave functions in the z
direction. Due to different in-plane dynamics, uQER

and uQE

depend differently on width, and their difference u
=0.06e2 /� at w=8� is about twice smaller than that at
w=0.

VI. SPIN PHASE DIAGRAM FOR �e=4/11

Whether QEs or QERs will form a �= 1
3 state at �e= 4

11
depends on the competition of Coulomb and Zeeman ener-
gies. The condition for the QE↔QER transition is

� + u = EZ. �2�

The competing phases differ in electron-spin polarization
�P=100% vs 50%�. They are both incompressible but prob-
ably have different excitation gaps �and thus might not show
equally strong FQH effect�. In an ideal 2D electron layer, the
excitation gap �for neutral excitations� of the polarized state
can be expected9 below 0.005e2 /�, and, for the Laughlin
state of QERs, it is estimated at �0.06�e2 /�=0.004e2 /�
�note, however, that a much smaller value of �0.001e2 /�
was predicted in Ref. 21�. The nature of charged excitations
and the corresponding transport gaps �especially in more re-
alistic conditions, i.e., for w�0, including LL mixing and
disorder, etc.� are not known, and their prediction should
require a much more extensive calculation.

Let us concentrate on the question of stability of either
QERs or QEs at �e= 4

11. In order to draw the phase diagram
for GaAs heterostructures in Fig. 3�c�, we combined the es-

timated dependences of � / �e2�−1� and u / �e2�−1� on w /�
�where e2�−1 /�B=4.49 meV/T1/2 and ��B=25.6 nm T1/2�
with published data34 on width dependence of the effective
Landé factor g*, governing the Zeeman splitting EZ=g*�BB
�for W	30 nm, it is g*=−0.44 and EZ /B=0.03 meV/T; in
narrower wells, g* increases, passing through zero at W
	5.5 nm; recall that w	W+3 nm�.

The most important phase boundary drawn in Fig. 3�c�
divides the polarized and unpolarized �e= 4

11 states, i.e., the
correlated QE and QER liquids at a finite �= 1

3 . In the experi-
ment of Pan et al. in Ref. 1, the polarized �e= 4

11 state was
observed in a symmetric W=50 nm GaAs quantum well at
B=11 T. The corresponding point �w ,B� marked with a plus
lies very close to the predicted phase boundary, suggesting
that the experimentally detected polarization depended criti-
cally on the choice of a very wide well. Reference 31 reports
identification of an incompressible �e= 4

11 state at a very high
field B=33 T, taken as an argument for spin polarization.
Indeed, the corresponding data point marked with a cross
�W=30 nm was assumed after Ref. 32� lies deep inside the
predicted “QE liquid” phase area. The �e= 4

11 state was also
observed32 in several other systems marked with dots and
lying rather close to the predicted phase boundary. However,
no clear evidence for an unpolarized �e= 4

11 has yet been
reported.

It is clear from Fig. 3�c� that the spin transition in nar-
rower wells shifts quickly to higher magnetic fields �i.e., to
higher electron concentrations �e=�e�2��2�−1�, especially
when the width dependence of g* is taken into account. This
suggests that the spin transition at �e= 4

11 might be confirmed
in an experiment similar to Ref. 1, carried out in a sample
with the same W and �e but with the layer width w tuned by
the electric gates �inducing a controlled well asymmetry�.

The role of QP interaction in stabilizing the QER phase is
clear from the comparison of boundaries dividing correlated
QE/QER liquids and noninteracting QE/QER gases �the gas
occurs at ��

1
3 , with the critical equation �=EZ; the CF

gas↔ liquid transition was recently demonstrated by inelas-
tic light scattering35�. Additional boundaries �not shown here,
but see Fig. 13�b� in Ref. 20� appear at even smaller B,
defining the areas of stability for a gas of CF skyrmions of
different sizes.18–20,36 Note also that � is determined more
accurately than u, possibly explaining the incorrect position
of the experimental point inside the predicted QE gas and/or
QER liquid area.

Let us also note that crossing the phase boundary �e.g., by
applying an additional parallel magnetic field� might not nec-
essarily cause an instantaneous phase transition. This is be-
cause the competing spin phases are macroscopically differ-
ent, and flipping the first single spin might take more energy.
In other words, the mixed QE/QER liquids might have �at
the phase boundary� higher energy than both the pure QE
and QER states. This scenario, analogous to the supercooling
or superheating in a gas-liquid transition, must be taken into
account when interpreting experimental results in tilted mag-
netic fields.

VII. CONCLUSION

By combining composite fermion theory with exact nu-
merical diagonalization, we studied two spin states of the
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second-generation incompressible quantum liquid at �e= 4
11.

Our main result is prediction of a transition between these
competing states, different not only by the spin polarization
but also by the microscopic mechanism of incompressibility
�the nature of CF-CF correlation�. Starting with effective in-
teraction pseudopotentials of polarized and reversed-spin
Laughlin quasielectrons �QE and QER�, we determined their
correlation energies u in conditions adequate for realistic 2D
electron layers of different widths w and in different mag-
netic fields B. This allowed us to draw a spin phase diagram
of the �e= 4

11 state in the �w ,B� coordinates. Comparison of
our numerics with the experiments of Pan et al. is not con-
clusive. In particular, it seems that the effect of the CF-CF
interaction and correlation on the spin phase boundary might
be overestimated in the present model �with a likely origin in
the limited accuracy of the quantitative estimate of the

CF-CF pseudopotentials in Fig. 2�. However, our prediction
of the spin transition induced in the same quantum well by
external electric gates offers a possibility of more accurate
testing of the theory. Hall measurements in the samples lying
deeper inside the predicted QER liquid phase area might also
be insightful. Finally, in constructing the phase diagram, we
only considered the extreme polarizations of P=100% and
50%, leaving out the possibility of mixed QE/QER states
near the predicted phase boundary.
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