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Abstract

The electronic states of a parabolic quantum dot in a magnetic field are studied with the inclusion of the spin—orbit interaction.
The analytical formulae for the ground state energy of the interacting system are derived. The spin—orbit interaction is shown
to introduce new features to the far infrared absorption spectrum, where it leads to the splitting of the two principal modes.
The results are compared with the charging experiments by Ashoori et al. and the far infrared absorption measurements by

Demel et al.
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1. Introduction

Recent progress in the semiconductor nanostructure
technology has allowed for creation of the quasi-zero-
dimensional (0D) systems known as quantum dots [1].
These structures can be obtained e.g. by applying spa-
tially modulated electric field to the 2D electron gas
[2,3], or by embedding a small piece of one semicon-
ductor into another, with higher conduction band en-
ergy (this can be achieved e.g. through etching [4-7],
interdiffusion [8] or self-organized growth [9,10]). The
resulting lateral potential is often very well approxi-
mated by the isotropic parabola [11-13]. The confine-
ment in all three spatial directions leads to a discrete
energy spectrum of the system with characteristic ex-
citation energies of the order of few meV, which can
be studied using the spectroscopy methods [2-5].

Due to the so-called generalized Kohn theorem
[14,15] for the parabolic confinement the electron—
electron Coulomb interaction does not affect the res-
onance energy spectrum under the far infrared (FIR)
radiation. The FIR resonant spectrum of the corre-

* Corresponding author.

lated many-electron dot is therefore identical to that
of a single electron and consists of two degenerate
modes. The degeneracy can be removed by a perpen-
dicular magnetic field under which the two modes
evolve into the inter-Landau-level (cyclotron) and
intra-Landau-level frequencies. However, a number
of experiments seem to show a slight dependence of
the two resonance energies on the number of elec-
trons in the dot [3-5]. Moreover, a small splitting of
the two principal modes is observed [4] what reveals
their additional sub-level structure.

The theoretical investigations of the ground state of
quantum dots containing 2—15 electrons were reported
e.g. in Refs. [15-20]. In this paper we calculate analyt-
ically the ground state energy of a system of a larger
number of confined electrons (~ 15 — 100) within a
Hartree—Fock approximation. The spin—orbit interac-
tion is included here in the manner analogous to that
used for many-electron atoms and not via the bulk
band-structure parameters, since the considered sys-
tem is strongly localized (diameter ~ 20 lattice con-
stants [4]) and the small piece of crystal, to which
the motion of electrons is limited, cannot be treated
as an infinite periodical lattice. Instead, we propose to
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extract the spin—orbit coupling from the band-structure
description and include it later on the level of the
Bloch envelope wave functions by adding the appro-
priate term to the Hamiltonian. As demonstrated by
Darnhofer and Rossler [19] for two electrons, inclu-
sion of the spin—orbit interaction through the band-
structure parameters in the InSb dot leads to the similar
effects on the electronic structure as obtained here for
the GaAs dots (spin—orbit coupling in bulk InSb sig-
nificantly exceeds that in bulk GaAs).

The results obtained within proposed here frame-
work seem to explain a number of experimentally ob-
served effects, like an appearance of the higher modes
in FIR absorption and their anti-crossing in a magnetic
field [4] or the characteristic bumps in the magnetic
field dependence of the ground state energy [6]. Let
us also underline that we managed to fit very well the
characteristic magnetic field at which the anti-crossing
in FIR spectrum and the bumps in energy occur. The
fact that this was impossible without including the
spin—orbit interaction (see the numerical results and
discussion by Palacios et al. [20] for up to 15 elec-
trons) seems to prove the importance of this effect.

2. Model

The interaction between the spin and orbital angular
momentum: ¢ and /, of an electron confined in a quasi-
two-dimensional quantum dot is included in the way
analogous to that used in many-electron atoms, i.e. via
the single-particle potential:

Vis=uol-6. (1)

The coupling constant « is connected with the average
self-consistent field (6U) acting on the electron, via
the relation

= B(oU). )

For a Z-electron atom the dimensionless parameter

B is

Zer\ AN
- () = (&) ©
In the case of a quantum dot § will be treated as
a fitting parameter, while the magnitude of the field

(6U) will be estimated according to the electronic
structure of the dot.

Let us write the total Hamiltonian of a system of
many electrons, in the effective mass approximation,
including the kinetic energy in the perpendicular mag-
netic field B, parabolic confinement of the charac-
teristic frequency wy, spin—orbit coupling as above,
the Zeeman splitting for the effective g-factor and the
electron—¢lectron Coulomb interaction controlled by
the dielectric constant &:
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In the above m™ is the effective mass, r are the po-
sitions, p = —ihV are the momenta, 4= }B(y, —x,0)
are the vector potentials in the symmetric gauge, / and
o are the projections of the orbital angular momentum
I and spin ¢ across the plane of motion.

In the Hartree—Fock (HF) approximation the equa-
tion for the HF wave functions i/ reads

(e + W(ro) + 3, [ 4 Airour'a (')
= SiWi("O'), (5)

where Hp is the Hamiltonian of a single (non-
interacting) electron for the field B defined in Eq. (4),
V; denotes the Hartree potential

n(r')
n=5 fo g ©
with

nry =33 1ro)l, (7)
L,

and A4, is the Fock correction:
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Introducing the exchange operator G as
Gtro) =3 [ar o'W, ©)

the HF equations (Eq. (5)) can be written in a compact
form:

[Hp + Vi + Gilfs(ro) = ei(ro). (10)

Following the work by Shikin et al. [21] we employ
here the approximate formula for the charge density
in the parabolic dot (of confining frequency wy), ob-
tained within the classical regime and therefore appli-
cable for large numbers of electrons N:

n(ry = {H(O)%\/RZ —r2 for r<R,
0

for r > R,

(1)

with the charge density in the center n(0) = 3N/2R%.
The dot radius R, for the classical system given ex-
plicitely in Ref. [21] will be calculated here in a vari-
ational manner (from the minimum energy condition)
in order to account for the quantum corrections. Using
the formula (11) the Hartree potential is calculated:

3IntNe? r2
) =R (1 - ﬁ) (12)

(we take this form also for » > R).
3. Quantum dot at zero magnetic field
3.1. Single-electron states
Let us first consider the case of zero magnetic field.
Neglecting for the moment the exchange term (which

will be included later as a perturbation) we obtain the
following Hartree equations:

21,
( A+ —m* QP + ocla) Yi(ra)

T )
3nNe?
_ (g,. - %) W(ro), (13)

where we use the effective frequency, renormalized by
the Hartree term (Eq. (12)):

0F = o 3nNe?

Ot (%)

Eq. (13) can be solved analytically and the obtained
eigenstates are

Yi(re) = Yams(ro) = Om()Rum(7 )Xo (15)

with the spin eigenfunction y, (with eigenvalues 6 =
i%h), the angular wave function of the angular mo-
mentum eigenvalue m

bu(0) = = (16)

and the orbital wave function

||
Ry = Y2, (L)

Iy \ (e + |mP! \ G
—r2 213 1 |m| r*
xe™ 2L () (17)
0

In the above Ll,',"l are the Laguerre polynomials:
L"(z) = iz—lmlezg_’_(zﬂrHMIe—Z) (18)
m AT m) dzm ’

Iy = \/h/mQy is the characteristic length, n =
0,1,2,... is the principal quantum number, m is the
azimuthal quantum number (|m|<n and the parity of
m is the same as that of n), and n, = 1(n — |m|) is
the radial quantum number.

The eigenenergies associated with the eigenfunc-
tions Y, are

niNe?

4¢R

In the absence of the spin—orbit interaction («=0)
they form degenerate shells labelled by n. Non-
vanishing o splits these shells into the doubly degen-
erate sub-levels.

Often used is a complementary (Fock—Darwin) rep-
resentation

Yi(re) = Yn,n_o(ro) = On_n_(r))os (20)

with ny = 0,1,2,... The two sets of quantum num-
bers: [n,m] and [ny,n_] are connected by the simple
relations: n = ny +n_ and m = n; — n_. The orbital
part of Y is defined as

L @r®hr- g

Vien- (1) = \/51'—[[6 vnln_!

enme = 18(n+ 1) + amo + 3 (19)

(21)
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where the raising operators a* and b are

1 [x+1iy 0 0
+ _ |2y i
ou [ h(m )]
1 [x—1i o .0

The eigenenergies labeled by ny and ¢ are

Enin_o = &+ (n+ -+ %)
3nNe?

+e_ (n_ + %) + 4R’

(23)

where ¢4+ = AQ) + «0.

3.2. Many-electron ground state

The ground state energy of the system in terms of
the N lowest Hartree eigenenergies ¢;, with i standing
for the composite index [n, m, g], reads

¢ (')
(fo:;g,—ﬂ/dr/dr e (24)

where the subtracted integral represents the direct
Coulomb energy of the system, counted twice in the
summation of the Hartree energies ¢;. Introducing the
Fermi energy ¢p separating the occupied and unoc-
cupied Hartree energy levels in the ground state, and
calculating the self-interaction integral we arrive at
the formula

2.2
Z@(ep &)e — 3”’N . (25)

In the above @ is the Heaviside function. The Fermi
energy is determined by imposing the fixed number
of electrons N:

N=> 6@k —=&) (26)

The details of calculating the Hartree energy &, are
given in Appendix A, and here we shall only present
the final result:

2
N¥2RQi 1 — B—N. (27)

_ 9N 2e? +z
- 36

20eR 3

The radius of the dot R can now be determined from
the minimum condition 88,/0R = 0, equivalent to the

equation
3nNe? 100ag BN
2= — 1-=— 28
N = 4eRm* [ 277R ( T

where ag = eh?/m*e? is the effective Bohr radius.
Confining our considerations to the case of the large
number of electrons, we can solve the above equa-
tion perturbatively with respect to the small parameter
ag/R<1. The zeroth order approximation Ry can be
written in the form

3nNe?
R=""_ 29
0 4em™* w3 (29)
and coincides with the classical result obtained in Ref.
[21]. Assuming the first-order approximation in the

form R = Ry(1 + 9), the correction ¢ reads

_100as BN
0= 817R, (1 36 > (30)

Disregarding higher corrections (non-linear in 4), the
effective confining frequency €2 can be found based
on its definition (14):

N

Q=2 (1-— FN , 31

7=05(1- 5 3D
where we use the notation

100a
2 B 2
32
0= 27mR, “ (32)

Finally, we arrive at the formula for the ground state
energy in the Hartree approximation:

InNZe* 1 B*N 2
& = 20eR, + ghQO (1 36 ) N 33)

The first term in the above equation, calculated in Ref.
[21], is the classical energy of N interacting electrons
confined in a parabolic well:

9N 2e?
208R0

:/drn(r). %m*wgrz

_]m/d”“w’ (34)
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The second term is the quantum correction and splits
into the energy of oscillation with the frequency £o:

LhQoN¥ =" O(er — &) 5m™ Qi i) (35)

and the spin—orbit interaction term.

Let us now include perturbatively the exchange
interaction, neglected so far in the Hartree approx-
imation. As the first-order correction A& we shall
calculate the average value of the exchange operator
G, defined by Eq. (9), in the Hartree ground state
obtained without including the spin—orbit interaction:

A8 =) O — &)ilGili) po. (36)

We have verified that the effect due to the spin—orbit
interaction is indeed negligible here: for § = 0.3 the
correction to A& does not exceed 0.15 meV per elec-
tron for N < 100 (compare with the energy scale in
Fig. 1). Similarly, the second-order correction proved
to be smaller than the first-order correction by the
orders of magnitude (reaching merely 1072 meV),
which is then a good approximation to the actual
exchange energy.

As shown in Appendix C, Eq. (36) can be conve-
niently written as

A& =

4/5 (1 3 >N7’4e2(1_50)’ an

93\ 4/N/ R

where &g = o6(f = 0).

Thus we have obtained the total ground state energy
& of the system of N electrons confined in a parabolic
well, including the kinetic energy, the direct and ex-
change Coulomb interaction, and the spin—orbit cou-
pling:

& = & + A8, (38)

In Fig. 1 we present the average ground state energy
per electron ¢ = &/N plotted as a function of the num-
ber of electrons N. The two curves corresponding to
the parameter § equal 0.3 and 0.6 are shown to be a
reasonable interpolation between the classical result
by Shikin et al. [21] and the experimental data by
Ashoori et al. [6].

80

GaAs

ground state energy per particle (meV)

T LI B ‘ L | L | T T T T

15 20 25 30 35
numbper of electrons

Fig. 1. The average ground state energy per electron as a function
of the number of electrons in the dot. The classical result (squares)
is taken from Ref. [21], the experimental data (squares) — from
Ref. [4], and the two curves in between (circles) are obtained
within our model for two values of the spin—orbit coupling constant
B (GaAs, hwy = 54 meV).

3.3. Far infrared absorption

Let us now consider the selection rules for the op-
tical transitions of the system under the far infra-red
(FIR) radiation. Absorption of the FIR light, leading
to the excitation of the electron droplet, has been a
powerful tool in the experimental studies of quantum
dots [2-5].

Since the wavelength of the FIR light is much larger
that the radius of the dot, one can use the dipole ap-
proximation for describing the interaction between the
light and electrons. The probability of the optical tran-
sition between the initial (i) and final (f) states is
proportional to the squared matrix element of this in-

teraction:
i >

<f

where E is the electric field, uniform over the volume
of the dot. The dipole matrix element dg vanishes
unless there is a pair of the HF states, one in the initial
and the other in the final many-electron state, with

2

d? ~ , (39)

eE - Z O(ep — &)
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equal spins and different by unity in each of the orbital
quantum numbers [n, m]:

f

o =g, Inf —nl| =1, im' —ml| =1, (40)

with all other corresponding HF states equal in the ini-
tial and final state. In other words, the absorption of a
FIR photon leads to the excitation of a single electron
from its (initial) HF state to another (final) HF state
with the same spin ¢ and the orbital quantum num-
bers changed according to Eq. (40). Translating these
selection rules to the Fock—Darwin representation we
have

o =, no=nl +1, nl=nl,
or
o =d, A=n 1, nf =4, (41)

i.e. the excited electron changes one of its orbital quan-
tum numbers [n,,n_] by unity.

The above selection rules lead to the splitting of the
resonance energy:

~ & =y =hQ)+ 1o (42)

The magnitude of this splitting % depends on the num-
ber of electrons according to Eq. (B.5).

4. Quantum dot in a magnetic field

4.1. Single-electron states

Sketched in the previous section for the case of zero
magnetic field the procedure of minimization of the
Hartree energy with respect to the dot radius R, with
later perturbative inclusion of the exchange interac-
tion, has been also carried out for non-zero fields. The
explicit form of the Hartree equations including the
presence of a perpendicular magnetic field is

hz
(——*A +im* (QF + 1) - Lhawl

2m
3nNe? >¢l( o).

—gupoB + oclo> Yi(ro) = ( &2 eR(B)

(43)

where . = eB/m*c is the effective cyclotron fre-
quency and the zero field radius R appearing in the
definition of Q} (14) is now replaced by R(B). We

shall also denote the total confining frequency by
Q% =QF + 4a) and its corresponding characteristic

length by I = \/h/m*Q'.

The eigenfunctions of Eq. (43) are of the same
form as given by Eqgs. (15) and (20), only with the
characteristic length replaced by /. The corresponding
eigenenergies read

tnmo = B (n + 1) — Lhawem

3nNe?
_ 44
guRGB + amo + ——— 4eR(B)’ (44)

or, in the other representation,
1
enin_o =ty (14 +3) + e (- +3)

3nNe?
4¢R

—guoB + (45)
with ey = Q)+ (%hwc +ag). Since the Zeeman
splitting is rather small for GaAs (g ~ - yielding
gus ~ 0.05meV/T), which is the most common ma-
terial used for the quantum dots, we shall neglect it
in the further considerations.

Including the magnetic field leads to the possibil-
ity of crossings between different energy levels ¢;.
Whether the two close levels & and ¢; actually cross,
or their crossing is forbidden, depends on vanishing
of the off-diagonal matrix element of the operator de-
scribing the change of the Hamiltonian due to small
change of the field. Thus the condition for the allowed
level-crossing is

oH | .\ _
<1]ﬁ 2>:0. (46)

The operator 0H/0B commutes with the spin and
inversion (r — —r) operators. Its commutation with
the angular momentum requires assumed here circu-
lar symmetry of the confining potential. Hence, while
for the states of non-equal quantum numbers » and
o we have the condition (46) guaranteed, for a pair
of states different only in m in general it is no longer
true. This leads to the anti-crossing of levels, which
can be taken into account by changing the formulae
for eigenenergies:

3nNe?

4¢R(B)’
(47)

gnma:hgl(n“" 1)+m (%hﬂ)c +10" +
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Analogously we have to modify the definition of a
pair of energies ¢, and ¢_, appearing in Eq. (45), into
e+ = Q) + |1hw, + ao]. Let us underline that this re-
arrangement of levels is a perturbative approximation,
beyond the Hartree—Fock approach.

4.2. Many-electron ground state

The many-electron Hartree ground state in the mag-
netic field £o(B) is defined analogously as in Eq. (24).
Using the procedure sketched in Appendix D one can
bring it to the form

9N 2 .,
60(B) = S5 o + 3NR
3nNe? 7 B2fEN
2 B
__ore I —
% (“"’”B 48m*R(B)3> V 36

(43)

with the functions f and ug defined in Appendix D
by Egs. (D.16) and (D.17), respectively.

Analogously as for the zero magnetic field, the
ground state radius of the dot R(B) can be found from
the minimum energy condition

3&0(B) 0
OR(B)

(49)

which resolves into the equation

3nNe? 100ap B fEN
CUOuB = 1 — .
4em*R(B)? 277R(B) 36
(50)
In the zeroth order approximation we obtain
3niNe? 1
Ro(B) = ;o = = R}, (s1)

dem*wgug  usB

where Ry is given by Eq. (29). The first order correc-

tion 6(B) defined as: R(B) = Ro(B)(1 + 6(B)) reads
100as [ PPEN

81mRy(B) 36 )

oB) = (52)
In Fig. 2 we have drawn the radius as a function of
the field. The dependence is fairly weak. When the
magnetic field is increased, at low fields the radius
also increases, and later, at higher fields, slightly falls
down. The initial increase of the radius in the rising

dot radius R(B)/R

GaAs,

N=30

0.96

r ‘ T ‘r T
o] 1 2 3 4
magnetic field (T)

Fig. 2. The dot radius as a function of the magnetic field for N = 30
electrons. The three curves correspond to the spin—orbit coupling
constant f§ equal to 0.0,0.3 and 0.5 (GaAs, hwy = 5.4 meV).

field is an effect due to the spin—orbit interaction, and
vanishes for f = 0.

Finally, the ground state energy in the Hartree ap-
proximation can be found in the form

2,2 2 12 /
InN7e —u?;nth (1 _ BN 32N> N32,

6B = oere®) T3

(53)

Calculating the correction due to the exchange en-
ergy in the obtained above Hartree ground state is far
more complicated for non-zero magnetic fields. There-
fore the hypothesis is used, according to which the
kind of dependence of the exchange energy on the
number of particles is not affected by the presence of
the field [22]. As a result we obtain the following for-
mula for the exchange energy:

4,/5 (1 3 )N7/4e2

BB =55\ " am) i)

(1 — d0(B)),
(54)

where 09(B) = &(B; = 0). Thus the total ground
state energy within our approach reads

&(B) = o(B) + AS(B), (55)
and the average energy per particle is ¢(B) = §(B)/N.
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Fig. 3. The average ground state energy per electron as a function
of the magnetic field and the number of electrons. The three
frames correspond to the spin—orbit coupling constant f equal to
0.0,0.3 and 0.5 (GaAs, hwy = 5.4 meV). Insets show the chemical
potentials.

In Fig. 3 we drew the magnetic field evolution
of the average ground state energy per electron
e(B) = &(B)/N. The three frames correspond to the
parameter f equal 0.0 (no spin—orbit coupling), 0.3
and 0.6. We find the qualitative agreement between
our curves and the data reported by Ashoori et al., ob-
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63 1 0o 1
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ground state energy per particle (meV)
1
z/z z z
I I I I
N (%3] (¥ W
[Yed o - N

2 3
magnetic field (T)

)
N2

Fig. 3. Continued.

tained in the single electron capacitance spectroscopy
(SECS) experiment [6]. Comparing the curves in the
three frames one can conclude that including the spin—
orbit interaction brings the model curves fairly close
to the measured behavior (the fitting is particularly
good for f =0.3).

4.3. Far infrared absorption

Let us now discuss the FIR absorption under the
magnetic field. Since the magnetic field does not
affect the structure of the HF wave functions, the se-
lection rules (40) remain unchanged and the transition
energies are

&'(B) — 6'(B) = ex = hQ + | hw, £ La(B)| (56)
2 2

and we deal with four resonance branches.

In Fig. 4 we compare the dependence of the FIR
resonance energies obtained within our model with
that reported by Demel et al. [4]. Assuming that the
experimentally observed higher mode is due to the
spin—orbit interaction as presented here, we again
managed to find a good agreement for f=0.3.
Particularly, the zero-field lower resonance energy
(~2.8meV), the magnetic field at which the anti-
crossing occurs (~1T), and the energy at this cross-
ing (~3.9meV), seem to be fit very well. A gap
separating the anti-crossing levels, observed in the
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GaAs, N=25
£5=0.3

resonant transition energy (meV)

I ' I T | ' T
0 1 2 3 4
magnetic field (T)

Fig. 4. FIR absorption spectra of a quantum dot containing 25
electrons. Squares — experiment by Demel et al. [4], lines — the
model (GaAs, = 0.3, hwy = 7.5 meV).

experiment, is probably due to a slight anisotropy of
the confining potential.

5. Conclusions

The self-consistent theory of a many-electron quan-
tum dot has been developed with the inclusion of the
electron—electron (Coulomb) and spin—orbit interac-
tions. Included here quantum corrections to the ground
state energy of the system improve the classical result
by Shikin et al. [21] and compare well with the exper-
iments by Demel et al. [4] and Ashoori et al [6]. The
spin—orbit interaction is shown to have a strong effect
on the electronic structure of the system, leading to
the splitting of the resonance energy in the far infra-
red (FIR) absorption. Predicted here anti-crossing of
the FIR absorption modes in the magnetic field de-
scribes very well the similar behavior reported by
Demel et al. [4].

The critical magnetic field, at which the FIR modes
cross and a bump in the ground state energy occurs,
is around 1T, which agrees with the experiments for
GaAs [4, 6], and on the other hand with the numerical
calculations for a two-electron InSb dot by Darnhofer
and Rossler [19].
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Appendix A. Hartree energy at zero magnetic field

In order to perform the summations over the occu-
pied states in Egs. (25) and (26), it is convenient to
introduce the non-zero temperature of the electrons 7,
and eventually find the limit for 7 — 0. The temper-
ature leads to a replacement of the sharp Heaviside
function in Egs. (25) and (26) by the smooth Fermi
distribution function:

ng(einy +e_n_)

—1
=(l-|rexp'€+n+Jrkg_]},L Hs) , (A1)
B

where ps =y — %(a+ +¢_) and p is the chemical
potential.

In order to conveniently hide for the moment the
constant terms in Egs. (23) and (25) we introduce the
primed energy symbol

3nNe?  3mNe? 9nNe?
/I _ . -
F=E-N-Tr t Toek T 20:R
(A2)
and rewrite Egs. (25) and (26) in the form
N= > n(esns+en-), (A.3)
nin_o
E(T)= z (eyny +e_n_)
H-R_O
X ng(epns +e—n_) + Ni(eq +e-).
(A4)

In order to find the thermodynamically stable state we
shall further introduce the following thermodynamical
potential:

O= > ¢einy +en), (A.5)

nin_o
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where we define: ¢¢(¢) = — kg T In(1 + exp[(us — €)/
(kgT)]). At low temperatures the minimization pro-
cedure with respect to @ is equivalent to finding the
ground state, as we have

&'(T)=®+uN — TS (A.6)
(with the entropy § = ¢@/¢T) and

gol = @y + €N, (A7)

where: @y = limy_o @ and ¢f = limy_q 4.
Let us now introduce the Laplace transformations

_ 1 c+ioco d R o
- L
f(p) = /0 " dene)e,
1 c+ico -
¢s(5)=§‘a/‘ dp dy(ple™,
b(p) = /0 ds pu(e)e . (A8)

Using these expressions we can rewrite Egs. (A.3) and
(A.4) as follows:

N= Z / dszo(£)< a”s) (A.9)

oo [[wao(-2)

where

1 c+4-ioo egp
) = omi /c—ioo dpp(l —e P )(1 —epe-)
(A.11)

(A.10)

i c+ioo etP
- d .
70= 55 [ P —em s
(A.12)

We chose the constant ¢ in such a way that all the sin-
gular points of the subintegral lie on the left-hand side
of the integral contour (the contour encloses all sin-
gularities inside). Since —0n;/0¢ tends to the Dirac’s

delta for T — 0, one finds that:
_ 1! Hos LI TR
N= Z{LJrs_ S<a++a_)+2
N [Pl (#OS)+P (%)]
&4 e
&+ Hos 1
_S\p (B Y_
e [ ? (8+> 12}
1 s
2 [m(f)- g ()
et &_ 12 &4 &

(A.13)

where pgs = € — %(SJ, +¢.), and

(A.14)
&_

In the above formulae we have introduced the follow-
ing notation:

cos(2mix)

P = 2 =iy
i=1

o0 - .
B sin(2mix)
Poji(x) = E :22ji2j+17t2j+1’
=1

E4E- i/ cos(2mix) — cos(2mjy)

R, ) = == (o) —(jer )P

ij—l
\/ +3— Z
i,j=1

 (8+/@mi)) sin(2nix) — (e-/(2n))) sin@njy)
(ie- Y — (je+ )

F(x,y) =

(A.15)

The above functions are periodic with the period 1.
In the relevant range of domain the absolute value of
each function is less than unity. Moreover, note that
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for0<x <1

Pi(x)~—x+ % - |P1(x)|<%,

Pyx) ~ ix* = Ly + L — [Py(x)| < 5,

Pi(x) = 1 — 1x? + Lx — |P3(x)| <0.009.
(A.16)

The energy of the system & one can find from
Eq. (A.14) using £p(N) determined from Eq. (A.13).
Taking into account that ¢ = £ + as and introduc-
ing: vg = ér/\/eré_, Eq. (A.13) can be rewritten as
follows:

1 (A + (20/2)

2 (hQ)* — (%0/2)

12 (2 (2)]
()4
() a2 2))

(A.17)

N+ =

The absolute values of all periodic functions are
ranged here by unity. Hence, for N » 1, we note that
all the terms under the summation on the right-hand
side of the above equation are small compared to N
if only

ﬁ"Q(,) + %“ Hos 1
2 / 1 P / T}
hQy — s hQy + /2 12

or o< ShQO

<1

(A.18)

Provided this condition one can use the perturbation
method and look for the solution in the form of the
following series:

(A.19)
From Eq. (A.17) we

VFE=VoF +ViIF+ Vop + -,

where: [vor|> |viE| > [var|> -
find

VOF:\/N+

1 (R + (320

2P —(ap vN (A.20)

and, using: S, = eor — A = vop /(AR — (32)2 —

hQy
1 T Ho
- p (s ), p [ Hos
e 4V0FZ{ 1<'ﬁ+)+ l(ﬁv
0 [+] 1
(8 5) 2 ()
&4 3+ E_ 8+ 12

22 [ (%) S}

Using the above expressions for vg we find that (for
N>1)

er = vory/ (RQp)2 — (S [1 + :ﬂ + O(N—W)],
OF

(A22)
N
by = — 3 VoFy/ (h))? — (30)?
VIF —372
x {1 +3— +O(N* )}, (A.23)
VoF
@@0/ =@y + Ner
= ZNvor /(B 24> — (La)?[1 + O(N 32)].
(A.24)

The main non-oscillating term in the above formula
for @, is of the order of Nv/N while the oscillating
terms are at most of the order of v/N. In the formula
for & the non-oscillating term is of the order of NvN
and the oscillating terms are at most of the order of
unity.

The estimation of the magnitude of spin—orbit
coupling constant « is given in Appendix B. Using
Eq. (B.5), the final form of the formula for the Hartree
energy, given explicitely in Eq. (27), can be now ob-
tained from Eq. (A. 24) by substituting Eq. (B.5) and
shifting & back by the previously omitted constant
(according to Eq. A.2).

Appendix B. Spin—orbit coupling constant at zero
magnetic field

According to Eq. (2) one needs to estimate the
average self-consistent field (dU) acting on an
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electron. The energy of a classical particle in the two-
dimensional potential $m*Q{2r?, moving on the orbit
of radius r, is

SU = tm*Qfr* + 1041. (B.1)

Substituting the classical variables by the respective
operators and averaging dU first over the quantum
state [n, m, o],

(nmo|3U |nme) = JhQo(n+m+ 1) (B.2)

and then over all occupied states, one can obtain the
following formula:

(3U) = QINhQ() > (4 m+ Dng(nhQp),  (B3)

nma

where the spin—orbit energy under the distribution
function n; has been neglected. One can now use the
following relation:

Z(n+m+ Dng(nx + my)

nma

_ a@O 6(60
-wL B e

and finally arrive at the formula:
o = 1PRQFVN. (B.5)

Based on the above equation, the second criterion in
Eq. (A.18) can be expressed as

18
VN < 55 (B.6)

which gives N < 144 for f = 0.3.

Appendix C. Fock energy at zero magnetic field

Eq. (36) can be written as

2e? A
A& = -—8_ Z Z I,’,lmm nos(nth)nos(n'h.Qo),

nn’ m,m'

(C.1)

where the prime in the second sum excludes terms
with m = m’, and

il / dr / a4y V(Wm0 Y1)

=

2
- i/m dxx /OO dx’x/ " d—ge_i("’“""w
15 Jo 0 0 2n

~ an(x)Rn’m’(x)an(xl)Rn'm’(xl)
Va2 = 2xx'cosO+x2
Expanding the subintegral into the Legendre polyno-
mials and integrating over # one obtains

Irl’ml — l
nm

/
lOO

1
X { / dt R (£ )Ry (22115
0

(C2)

dx sznm(x Wy me (X)

oC
%
XZ’ Q| Am| Dk
k=0

+ / At Rom(£3) R (£ )¢ 181
1

o0
th-“aHMak}, (C3)
k=0

where Am = m — m’ and q; = (2k — 1)!1/(2k)!1. The
integral l,;’:n’;’l decays rapidly for Am — oo and hence
we can cut off the summation over m’ in Eq. (C.1)
keeping only the terms with m’ = m + 1. In the inte-
gral over x we deal with a subintegral with factor e*
and thus the most contributes the region around x = 1.
Provided that the function in braces (in Eq. (C.3)) is
smooth with respect to x, it can be replaced by its
value at x = 1. Moreover, Since Ry()Rpm(t) ~ e"
the second term in the braces can be neglected as small
in comparison with the first one. Hence, for |Am| = 1
the integral 1,’,{',;”/ attains the form:

1ot 1 e
I:”;n ~ l_/ dXx2an(x)Rn;m/(x)
0J0
1
X / At 2 Rum ()R (1)(3 + %12 +-49)
0

2

~ i, (/oc dxean(x)R,,/m/(x)) , (C4)
305 \Jo



L. Jacak et al. | Physica B 229 (1997) 279-293 291

where we have taken into account the relation

1
/ Q1 2 R (YR (1)
0

~ % / dt PRy ()R (1). (C.5)
0

Since

/ dx X Ry (X )Ry s 1(x)
0

m ntm
==+ [ 1+ —6n’,n+1

|ml 2
- ”$m6n/,n_1], (C.6)

2
we have

1 ntm
lnm,n’m:tl = % [(1 + T)Bn’,n-f-l

+ ("5 Jovnc | (©7)
and

2¢? ,
A& = o nos(nh Qo )Yngs(n'h Q)
0 nm,n’'m’

X (Inm,n’m—lsm’,m—l + Inm,n’m+15m’,m+l)

4¢? vl
-3z l%;(n + Dnos(nh) - 7 ~ E]'

(C.8)

Using Eq. (B.4) we finally find the correction due to
exchange interaction in the form of Eq. (37).

Appendix D. Hartree energy in a magnetic field

Similarly as in the case of the zero magnetic field
(see Appendix A) it is convenient to shift the Hartree
energy &p(B) and introduce

InN2e?

&y(B) = éo(B) — 20:R(B)’

(D.1)

given by

&(B) = Z (e4ny +e_n_)ns(erny +e-n_)

nin_o

+N3(es +e-). (D.2)

In order to calculate &;(B) we further introduce the
notation:

(hQ)* — (7U(B))’
[(R25)? — GaB)P P — (zhwa(B))

Vi = et (D.3)
[(RQp) — (Fo(B))] - [(hQ25)* — (3hwe )]
(2 — GuB)PE — (Shwc(B))?
(D.4)

=

and rewrite Eq. (A.13) as

€ Hos 1
2 (2)-wl) @

All the oscillating functions here are small compared
to N if

25 p, () - Ll en (D.6)
e N 12
or
o(B)o
VB + Chooy + hog |1 +2 o
<4N [\/(m;)z + (Lho, 2
~1ho, 1+2°‘;Z)" } (D.7)
(M

At low magnetic fields, i.e. for %ha)c@c(B), the cor-
rections to ' and o due to the field are negligible and
the above condition is satisfied for sufficiently high N.
At strong magnetic fields, when %hcoc>cx(B), it takes
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the form
w 2 (93]
1 C C
i (29;3> T
W, 2 W,
4N [4/1 =l - = .
< +<2%) TR (D.8)
which leads to
2
wc
(2%) <N. (D.9)

For example, taking the parameters for GaAs and
N =15 the above yields B<17 T. The solution of
Eq. (D.5) can be represented as the series: vp = vor +
vir + - - -, where

VQFZ\/N—%-FCZ.

The first-order correction we find as

! 15 1
- p | 0 p {50
N 4"%2 {[ 1 (8+)+ l (8-
o (5:8) 2 (5)-1]
. & e &y 12
IS ANR
&4 E— 12

where ug, = gr — #2£2. Using the above expressions
for vg, we obtain

@:W¢M%P4ammugmmmy
(A )> — (Fa(B))?

(D.10)

(D.11)

x [1 Uy O(N“W)} (D.12)
VorF

84(B) = 2Nvor

y \/[(mg)Z—(éa(B»Z]z—(%hwca(w
(R, ~ G(B))?
x[1+ON~3y). (D.13)

Following the similar procedure as for the zero mag-
netic field (see Appendix B) we shall now estimate

spin—orbit coupling constant, which is now a function
of the field. Analogously to Eq. (B.3) we have (ne-
glecting here the spin—orbit energy):

I PPy
(8U) = 557% > (n+m+ ng

x(nhQ + tmhey), (D.14)
and further
«(B) = LB fzhQpVN, (D.15)
with the renormalizing function
z
= /1+2z%/N (1 - ———) (D.16)
fl} V 1 + 22 z:wc,/'ZQ‘;

At low fields the function f3 tends to unity, while for
B — oo it decays to zero: fz ~ 1/v/N. Therefore, to
a good approximation, in the definition of fz we can
replace Qj by Qo, defined by Eq. (32).

Finally, using the above formula for «(B), and
introducing the following function uz:

ug =1+ (0¢/2Q ) —

1 z
(v —4773)

the Hartree energy of the system can be written in the
form of Eq. (48).

, (D.17)
2= f2N/36
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