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The spin excitations of quantum Hall states at filling factors2 and‘g1 are investigated numerically in the
systems with comparable cyclotrofi¢.) and Zeemank,) gaps. The relevant quasiparticles and their inter-
actions are studied, including spin wave and skyrmion bound states=Fdya spin instability at a finite value
of e=hw.— E; leads to an abrupt paramagnetic to ferromagnetic transition, in agreement with the mean-field
approximation. However, fong a new quantum phase transition is found in finite-size droplets that involves
a gradual change from para- to ferromagnetic occupancy.
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The elementary excitations of a two-dimensional electrorthe filled, rigid|0|) LL enters through the exchange ener
| _ ; : g g g )%
gas(2DEG) with energy quantized into Landau levéld's) 3. The ratioe/Ec is taken as an arbitrary parameter. Al-
by a high magnetic fiel@® have been extensively studied for though we do not discuss the effect of the finite widtof a
decades. The chargg excitations govern transport, includinggjistic 2DEG(Ref. 6 and only present the results obtained
the integral and fractional quantum Hall effe@tQHE and  gjng the pseudopotentiaf(R) (interaction energy as a
FQHB.” The ZSp”.] excitations appear in the context of SPINsnction of relative pair angular momenttn for w=0
waves(SW'’s),” spin instabilities, related quantum phase tran'shown in Fig. 1a), we have checked that our conclusions
sitions (QPT’s),>* and skyrmions:® amiain valid formecE)
In this Rapid Communication we study spin excitations of The Hamiltonia?H fc.>r electrons confined to tHe1) and
IQH and FQH systems with densitiescorresponding to the , . ) :
filling factors v=2mo\?~2 and? (here = iicleBis the |11 LL'S contains the single-particle terns ¢ 2,0) and the
intra- and inter-LL two-body interaction matrix elements

magnetic length The cyclotron fw.) and Zeeman E) ] ;
splittings are assumed comparable and much larger than t#81S M2’ |V|mss’,mys) calculated for the Coulomb poten-

Coulomb energyEc=e?/\. In this situation, the spin excita- tial V(r)=e”r and connected with pseudopotentials
tions couple two partially filled LL's with different orbital Vss(R) shown in Fig. 1a) through the Clebsch-Gordan co-
indices,n=0 and 1. These LU, denoted t91) and|1]),  efficients (on a sphereR=2I—L whereL=I,+1, is pair
are separated by a small gap-#w,—E,<Ec from each ~angular momentujn

other and by large gapsfw.>Ec from the lower, filled HamiltonianH is diagonalized in the basis ®¥-electron
|0]) LL and from the higher, empty LL’s, as shown sche- Slater determinantgm;s; - - - mysy). This allows automatic
matically in Fig. Xc). resolution of the projection of pseudospi§, € =s;) and of

For ther=2 ground statéG9), it is well knowr? that a  angular momentum L=3m;). The quantum numbeK
spin-flip instability occurs at a finite gap and wave vector =3N+ S, measures the number of reversed spins relative to
k. In the mean-field approximatioMFA), this instability = the paramagnetic configuration. The length of angular mo-
signals an abrupt, interaction-induced QPT from paramagmentum(L) is resolved numerically in the diagonalization of
netic (P;|0]) and|07) filled) to ferromagnetic;|0|) and  each §,,L,) Hilbert subspace. The length of pseudospin is
|1]) filled) occupancy. Our numerical results confirm thenot a good quantum number because of the pseudospin-
validity of the MFA for v=2. However, forv=% they pre- ~asymmeteric interactions. The results obtained on Haldane
dict a new and unexpectétl—+F QPT that occurs through a sphere are easily converted to the planar geometry, where
series of intermediate GS’s with increasing number of spirandL, are appropriatef} replaced by the total and center-
flips ase is decreased fromap to ¢ (the lower and upper of-mass angular momentum projectiodd,and Mgy, .
boundaries of for the P andF occupancies, respectively Let us begin with the discussion of the IQH regime. Fig-
Since the transition rangAe=e,—er scales with the in- ure 2 presents the spin-excitation spectraNer 14, at the
verse system size, the gradial>F QPT should be experi- filling factors equal to or different by one flux from=2.
mentally observed only in finite FQH dropléts. Only the lowest state is shown for eakhandL. The energy

The model is the same as that used eafifezxcept that E is measured from the lowest paramagnetic stateE
now the spin excitations connect two different LL's. The =Eg) and excludes the inter-LL gap. Symbolse* andh
electrons are confined to a spherical sufarfeadiusR. The ~ denote reversed-spin electrofparticles in thg1|) LL) and
radial magnetic field is due to a monopole of strengtt®2  holes (vacancies in thé07) LL) created in the “vacuum”
defined in units of the flux quantunpy,=hc/e so that state(completely filled|OT) LL).
47R’B=2Q¢, andR?= Q2. The single-electron states are ~ The excitation spectrum of the “vacuum” state is shown
labeled by angular momentuins- Q+n and its projectiorm.  in Fig. 2b). TheK=1 band is a SW; in a finite system it has

Only the partially filled|07) and|1]) LL's (labeled by L=1 toN, as follows from addition of the* andh angular
pseudospirs=1 and|) are included in the calculation, and momenta,|=Q+1 andl,=Q. In an infinite system, the
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/W_,_,M 0.0 —2K]|, respectively. In both cases, finitexQ means mas-
QER-QH sive LL degeneracy, as expected for charged particles in a
magnetic field.

Let us check if the negative SW energykat 1.1\ "1 or
the SW-SW attraction causes instability of the 2 GS to-
wards the formation of one or more SW’'s whenis de-
creased. The single-SW instability has been ruled out by
Giuliani and QuinA who showed that it is pre-empted by
. . : : : 08 a direct transition to the ferromagnetic GS. The critical
o 1 2 3 4 5 60 1 2 3 4 5 value of ¢ for this P—F QPT is expressed through the

R kA involved self-energiesgo=3 1o+ 3 (S11— S 00) = & V/2Ec

FIG. 1. The Coulomb pseudopotentialsfor the pair of () ~ ~0-47Ec, and itis larger tharEo—Esy . Since the energy
electrons in then=0 and 1 LLs, and(b) reversed-spin electron Per spin flip,[E(K)—Ey]/K, is smaller for the SW conden-
(e*) or quasielectron (QF) in then=1 LL and hole(h) or quasi-  sates and skyrmions than for a single SW, we still need to
hole (QH) in then=0 LL. (c) Schematic of the LL structure at  check for a possible vae Wy, €* —S, , or h— Sy insta-
=2, with theh ande* quasiparticles. bility. Figure 3a) shows that despite evident SW-SW,

SW-e*, and SWh attraction GE=E—Ey+Kgq is the en-
continuous SW dispersion is given %y Egu(k) ergy to creat&k SW's in “vacuum” or in the presence of an
=Eg+ tEcVm/2{1—exp(- ) [(1+2k9)Io(K?) —2Kk1,(xK7)]},  €* or h), the Wy and Sy energies are all positive at
wherex=1k\, | andl, are the modified Bessel functions, =eg,. This precludes spin instability at=2 other than the
and k=L/R. Egy(k) starts atE=E, for k=0 and has a directP—F transition(skipping the states with intermediate
minimum atk~1.19 ! andE~E,—0.147 Ec. The van-  spin).
ishing of SW energy ak=0 is the result of exact cancella-  To translate our finite-size spectra to the case of an infinite
tion of the sum ofe* and h exchange self-energies;>;, 2DEG, in Fig. 3b) we have plotted the energies of the SW
+390, by thee* —h attractionVe«p, atk=0; the entiree*—  condensate calculated for different electron numbeis,

h pseudopotential is shown in Fig(d. <14. Clearly, all data fall on the same curve whéi/ N

The energy spectra corresponding to consecutive spiis plotted as a function of “relative” spin polarization,
flips (K=2,3,...) atv=2 all contain low-energy bands at {=K/N. This resembles the insensitivity & of the SE()
L=K. For eachK, the GS’s(open circles haveL=K and curves for the SW condensates @&t 1, except that now
their energies fall on a nearly straight li&(K). These GS’s  SExN2 (rather thar=<N°).
are therefore denoted byWwy=KXSW and interpreted as The data of Fig. 3 allow calculation of the SW binding
containingK SW'’s with parallel angular momenta each of energies,Ux=[E(K—1)—Ey]+[Esw—Eg]—[E(K)—Eg],
lengthL =1, similar to theL=K SW condensates at=1°  for the Wy andS states. Because of the SW-SW attraction,
The new feature at=2 is the SW-SW attractiofdue to a  all these energies increase in a similar way as a function of
finite dipole moment of an inter-LL SWgiving rise to a K, in contrast tov=1 whereUy decreased for skyrmions
negative slope oE(K). and vanished for the SW condensate.

Let us now turn to Figs. @) and 2c) showing spin exci- Let us now turn to the FQH regime. Ai=4/3, which
tation spectra in the presence of ah or h. The series of occurs for Q=3(N—1), and for sufficiently large, the N
GS's forK=1 (open circleg are charged bound states, simi- electrons in th¢01) LL form the Laughlinv= % state. These
lar to the skyrmions and anti-skyrmions a&1. Their an-  electrons, each with angular momentlimQ, can be con-
gular momenta result from a simple vector additionlgf  verted into an equal number of composite fermig@$’s)
andl,. For S, =KXSW+e* andSg =KxXSW+h we get (Ref. 12 each with effective angular momentui =|
L=(le)*" '@ ()*=Q+1 and L=(l) @) 1=|Q  —(N-1), exactly filling their effective LL. The elementary

V (e2/N)

0.2

0
< C ' FIG. 2. The excitation energy spectra of 14
oy : * electrons in the0T) and|1]) LL's calculated on
I : X a sphere for =12 (a), 13 (b), and 14(c), cor-
oy ¢ S responding to filling factorsy=2. The lowest
w "AAAAAA E Vo A |0]) LL is filled. Eq is the energy of the lowest
¥ N.=|14 A\ '\( paramagnetic K=0) state, and dashed lines
-2 é XOH®A ' \\/o mark the lowest states for different valueskaf
(a)2Q=12 '~ (K0 1234 (b) 20=13 \NZ (c)2Q=14
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sphere for(r?)<R?, i.e., for R<Q) this is equivalent to a
superlinear decrease bfas a function ofR.

It is clear from Fig. 1a) that the Coulomb inter-LL
pseudopotentiaVy(R) is a short-range repulsion foR
=Ry=1. This implies the Jastrow prefactors with>7R,

j =2,3,... in the|0)N"t@|1]) wave function, if onlyv
if . rpoanoo I <(1+u) "% In particular, this establishes the REas a
; stable reversed-spin QP of the=% state, in analogy to the

' " ' ' — v 0.0 reversed-spin electroe’, at v=2. The angular momentum
K ' kKN of QE% on a sphere can be obtained in the two-component
CF picturé® appropriate forv=3, i.e., with both 0-0 and
wave condensates of Fig. 2, plotted as a functioiKoSettinge 0-1 Laughlin correlations modeled by .attaChmem of two
= &, ensures degeneracy of para- and ferromagnitie @ andN) flux quanta to each electron. The resulting CF angular mo-
configurations.(b) The energy of spin-wave condensates for ~Menta ardou=Q* andlqoe=log=Q* +1, whereQ*=Q

(a)N=14 20=13 (vac) | | (b) v=2

20=12 (e*)

2Q=14 (h)

FIG. 3. (a) The energy of skyrmions, anti-skyrmions, and spin-

=10 to 14(rescaled byy/N) as a function off=K/N. The skyr- —(N—-1).
mion curve is shown for comparison. The excitation spectra at filling factors equal to or differ-

ent by one flux fromv=13% are displayed in Fig. 4AN=8 in
charge excitations of the= 3 state are two types of Laugh- gach frame, and the values o©2are 20, 21, and 22, corre-
lin quasiparticles(QP’s), quasielectrondQE’s) and quasi-  sponding to the following GS's & =0: (a) QE atL =4, (b)
holes (QH’s), corresponding to an excess particle in aNwyacuum” (filled CF LL) with L=0, and(c) QH atL=4.
(empty excited CF LL, or a hole in théfilled) lowest CF o low-energy charge excitations forQ2=21 form the

LL, respectively. . .
. . magnetoroton (QE QH) band. The low-energy spin excita-
The reversed-spin quasielectrons (&3 (Refs. 8 and 18 tions with K=1 are the following:(a) QEX at L=IQE§=4

do not occur atv=3 because of the electrons completely
filling the |0]) LL. This causes a difference between thefor 2Q=20, (b) the SW (QE+QH) band withL going
SW's atv=3 and3, similar to that betweem=2 and 1. At from 1 toN=8, as follows from vector addition dbn and

v=7; the SW consisted of a QH and a QEand atv=75 itis  |ge  for 2Q=21, and(c) a band of Q&+ QH, states with
fo.rmed by a QH and a different reversed-spin QP that W& bound GS denoted as O&H, for 2Q=22.
will denote by QE . To d | ith Fia. 2. OF q |
The QE; has the same electric charge efe as QE or © draw analogy with Fig. 2, QE correspon S to an elec-
: ; s ey tron in the|17) LL (not shown because of high energy
QEg but it belongs to an excited electron L1, | ). Similar * + -
. .. QES toe*, QH toh, and QEEQH, to S; . The latter state is
to the case for QH, QE, and QEthe existence and stability h v “skvrmion” at y=2 TheS- it =1 and
of the QE; depend on the validity of the CF transformation ("€ 02 y's yrm|on+ atv=j3. . ed states W't* =1an
for the underlying system dfi—1 electrons in thgo1) LL ~ L=Q" +1 ortheSy states wittK=2 andL =|Q* —2K| do
and one electron in thi | ) LL. This requires Laughlin cor- NOt occur because of the weakened Coulomb repulsion at

relations between thil|) electron and thé07) electrons, ~Short range in the excited LL. As shown in Figlaj, the
i.e., the occurrence of a Jastrow prefacﬁbf’(zi(o)_zj(l))lb, linear behavior ofV((R) betweenR=1 and 5 prevents

in the many-body wave function, with=2 for »r=(1 Laughlin correlations for two or more electrons in the 1
+M)71:%' Such correlations result from Short_rangee LL. This invalidates the CF model and causes breakup of
repulsion, and the criterion{$'°that the pseudopotential ~ QEx’s when two of them approach each otltat this point,
must decrease more quickly than linearly as a function of thgairing of electrons in the=1 LL occurs'®*) For the same
average square—e separation(r?). On a plane(or on a  reason, noVy states at =K appear in Fig. &) for K>1.

QE+QH
N *\*‘N—M—*—* kK x Kk k ok ok k ok kK
> o

* * oy ok ok
0 % ) ez
QE vac QH
g -
2 le eee|® o . FIG. 4. Same as Fig. 2, but fdf=8 electrons
,_,I_.C’ oo’ @"":.—.—H_. 'M and for the monopole strength€)2-20 (a), 21
- QER QER+QH (SW) QE;QH, (b), and 22(c), corresponding to the filling fac-
tors v~ 3.
N=8
-1 7] m R m R as
trLgannt" OLE R *om
| ~ 7 (a)2Q=20 (b)2Q=21|| KO0 1 2] (c)2q=22
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0 5 10 0 5 10 0 5 10
L L L

201301-3



ARKADIUSZ WOJS AND JOHN J. QUINN

O - ground state 0.1

0.0

Ep<esmy|

(a) 2Q=3(N-1), v=4/3, e=¢,

VBT T T

00 02 04 06 08
K/N

--0.1

FIG. 5. (a) Same as Fig.®), but for the filling factorvz%. (b
Data forN=28 plotted for different values of.

Even more significant in Fig. 4 than the absenceSgf
and Wy states is the large and negative SW eneggy(k)
atv=3%. This is in striking contrast to the=2 case, and it is

explained as follows. The SW energy is the sum of the; QE

and QH self-energies and the REQH attraction. Of these
three terms, only the QE self-energy, —3q
=—1\ml2E¢, is the same av=2 and %, while the QH
self-energy 3§, and the QE—-QH pseudopotential
VQEEQH(k) are both reducecbecause of only partial filling

of the |07) LL and the fractional QP charge, respectively

As a result, the large and negativeX ;;, term becomes

dominant inE¥,(k). Note that even without knowing ana-

lytic expressions forX§, or VQ%QHf(k), the fact that
VQE;QH(OO) =0 allows the estimate (VQE;;QH(k), as shown
in Fig. 1(b), and of2§;~0.17 E¢. Note thatVgex on (0)~
—0.11 Ec~§Vexn(0) andS3~33 oo.

The dependence of the GS energyieaK/N for v=1% is

shown in Fig. %a). As in Fig. 3,¢ is set to the value for
which theP andF configurationgat {=0 and 1 are degen-
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erate. Clearly(almos} all energies at &0{<1 are negative.
This effect does not depend oy on the contrary, all data
points for moderate values @f seem to to fall on the same
curve, characteristic of an infinitg@lana) system. Negative
excitation energies imply that the paramagnetic Laughlin
=3 state is unstable toward flipping of only a fractign
<1 of spins where is decreased. This is illustrated in Fig.
5(b) where we display the data fdd=8 corresponding to
five different values ot. The gradual decrease offrom ep
to eg drives the system through entire series of G@®sen
circles with fractional values off. This sequence of GS's
are distinctly different from the abruj®—F QPT found at
v=2, and they are not expected in the MFA.

We do not know the scaling of energies in Figabwith
N for large systems, but expect it to be sublinear. This im-
plies collapse of the transition range: for N—co, and pre-
cludes detection of the gradu@—F QPT in an infinite
2DEG. However, this QPT could still be observed in finite-
size FQH dropleté,whereAs remains finite.

In conclusion, our numerical study of small systems at
=2 serves as a test of the MFA which predicts an abrupt
interaction-induced®—F QPT associated with the spin-flip
instability. This test should also be applicable to a similar
instability and QPT which occurs for a bilay&twhere? w,
is replaced by the symmetric-antisymmetric splittitngag).

For the fractionalv=3 state the series of spin-flip GS’s be-
tween the para- and ferromagnetic states is a prediction that
is susceptible to experimental observation.
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