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Abstract. The thermodynamics of the cranked anisotropic harmonic oscillator model of the
nucleus is studied within the grand canonical ensemble. The equilibrium shape of the system is
determined with respect to temperature and number of particles, both with and without rotation,
A serjes of sharp deformation transitions, closely comrelated with the harmonic-oscillator shell
stuctyre, are found for the rotating system at sufficiently low temperatures.

1. Introduction

Let us consider the system of A nucleons in the rotating deformed harmonic oscillator
potential as the grand canonical ensemble described by the temperature T and the chemical
potential ¢, The deformation of the system is described by the anisotropic osciliator
frequencies wy, wy, @, (connected with the Hill-Wheeler ellipsoidal deformation parameters
8 and y). These parameters are assumed to be functions of temperature, number of particles
and total angular momentum of the system. As these parameters enter the Hamiltonian we
deal with the effective theory with intrinsic anisotropy. The equilibrium shape of the system
is found by minimization of the thermodynamical potential with respect to w,, wy, @,, @ and
¢ (deformation parameters, angular velocity of the whole system and chemical potential,
respectively), provided that temperaiure, number of particles and total angular momentum
are fixed.

The novelty of this approach relies on inclusion of the temperature-dependent
thermodynamic mixture of all various quantum states instead of a sole, arbitrary chosen
state, which was done previously in the investigations of the same model (e.g. works by
Bohr and Mottelson [1], Kinouchi et af [4], Ripka et al [7], Stamp [10], Troudet and Arvien
[11], Zelevinski [12]). Let us underline that even though the thermalization procedure is
rather widespread within nuclear theory (e.g. Goodman [2], Sato [9]), the analysis of even
a simplified model, as presented in this paper, would be significant since it is exact and
complete, and may be helpful in understanding the rotation of heated nuclei within a more
realistic approach.
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2. Formalism

The effective cranked Hamiltonian considered has the form (in the rotating reference frame,
rotation around the x-axis):

N
v =Y () ()
i=l
where
7Y = hy — Rol, 2)
» ﬁ§+ﬁ§+ﬁf m. 29 2.2 2.2
ho:T +E(cuxx +wyy” + w;z%) (3)

w is the cranking angular velocity, I; is the x-component of the single-particle angular
momentum. The eigenenergies of this Hamiltonian have the form:

£2 = hawy(n; + %) + Ao, (n; + %) +hw_(n_+ é) “)

where a = (n,, 7., n_) and

1 1
2 2, .2 2
o = i(cuy + o} +20%) £ §J(w§—w§)2+8w2(w2y+w§). (5

Within the thermodynamical approach with the inclusion of temperature, we have to
average the dynamical varlables over the grand canonical ensemble. This procedure,
in contrast to the previous considerations, removes the restriction to the sole quantum
configuration with fixed energy. Instead, we demand that temperature is a fixed parameter.

We use the grand canonical potential §2 = —k3T In Z (kp is the Boltzmann constant)
corresponding to the partition function Z = T exp{—(}‘}‘” — pﬁ) /kaT]. In this ensemble
the occupation numbers of single-particle levels follow the Fermi distribution. In order
to be able to manage with the fixed average number of particles A and fixed average
total angular momentum £ we now perform the Legendre transformation and introduce the
following new potential:

@ = @+ ha{L,) + p(N). (6)

Here f,z = Zi(fx).' and N is the operator of the number of particles, and we assume
(L) = L and (Kf y == A/, This procedure leads to the substitution of the role of w with £,
and of u with A. Therefore we deal with three fixed external parameters: T, A, £ (instead
of T, u, ). The intrinsic variables are w,, w,, w,, & and p.

We assume additionally (after Stamp {10], Troudet and Arvieu [11]) the non-
compressibility condition imposed on w,, wy and e, which makes them mutually dependent.
Having in mind a rich discussion of the form of this condition (Kinouchi et al {4], Ripka
et al [7], Stamp [101), we choose it as the conservation of potential volume

Wyt = cug = const. ¥)]

Parameter oy can be in general a function of temperature, but even for temperature-
independent w, the average volume of the system (V) = /{x2){¥2){z?)} grows with
increasing temperature as the nucleons spread to the higher single-particle orbitals (as
demonstrated similarly by Sato [9]). One can introduce the thermal dependence of wg via an
additional condition imposed for example in the form: wy{V) = const. Nevertheless, within
the considered model, wp plays only the role of a scaling parameter at each temperature
independently, and its conceivable dependence on temperature does not influence the results
qualitatively, leading only to rescaling.
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Assuming the system to be in equilibrium we write out the necessary conditions for the
minimum of the potential @: ‘
ap o ad ¢ ad
dawy dwy e, dew o ®
supplemented with equation (7). The above equations together with the definition (6) of the
potential ¢ lead to (from now on setting & and kg to unity):

w2{x?) = cvg(yz) (9a)

= &2(z%) (5b)

(1) =N 9c)
deor

mo((y") + (%) - 50— (s + Do ~ -+ ey =L 9d)
w+ —

WOy, = Wi (%e)

where the average spatial dimensions are

1

by =2t ) (10)
1701 1-A

(ﬁ:E[ +A(n++é)+ - (n_+§)] (106)
1 ]14B i-8

@) = g | Pt 4+ e+ D] (100)

with A = (0] — w? + 40 /(@} — ) and B = (0? — 0 + 40?) /(] — w?). Statistical
averaging has the form:

() =Tre™ ) = fexpls? — w)/kaTI+ 117" .

Equation (9a, &) is the condition for the minimum of the potential £ with respect to the
shape parameters, (9c) sets the average number of particles to A, (9d) sets the average
angular momentum to £, and (9e) is the non-compressibility condition (7). Substituting
formula (10) into the system (9) one can rewrite the latter in the following equivalent form:

1+ A 1-A

- e+ )+ — (n_+%)=22—§(n1+%) (11a)
2 2 v Z

(@ — @) (“’*wt“’ et 4 %)) =0 116)

() =N (110)
1+C 1— L

I o

Wy, = (H1e)

where A is defined as in equation (10) and C = 2(0? + w2}/ (@} — w?).

3. Results and discussion

Let us begin with the solution of the system (11) in the zero-angular-momentum limit. In
this case the angular velocity @ in equilibrium is zero for any temperature and number of
particles—no rotation in the laboratory frame. The dependences of the deformation and
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Figure 2. Dependence of the chemical potential
4« on the number of particles A, corresponding to
figure 1. The inset shows equal quasi-periods in

5 st against AY3 coordinates. Visible sharp jumps
50 100 of the chemical potential near ‘magic’ numbers A
number of particles N indicate closed nuclear shells.

the chemical potential on the number of particles calculated for T = 0.05 and T = 0.25
(in wo units) have been presented in figures 1 and 2. At low temperatures (T < 0.3
in wq units) the equilibrium shape of the non-rotating system strongly depends on the
number of particles, being spherical only in some intervals of A", These intervals narrow
with decreasing temperature and in the limit 7 — O reduce to the ‘magic’ numbers,
corresponding to the closed shells. The chemical potential undergoes sharp steps at the
‘magic’ numbers A which indeed indicate the stable configurations (the fluctuation of the
number of particles given by {N2) — (N)? = k3T 8N /du appears to be close to zero),
A direct consequence of the occurence of the shell structure is the quasi-periodic character
of the deformation and u as functions of A. In the case of the harmonic-oscillator model
the length of the quasi-period is constant against A"'/>—see insets in figures 1 and 2. The
harmonic-oscillator shell structure for zero temperature was originally described by Bohr
and Mottelson [1]. It can be mentioned that although the number of particles in nuclei is
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limited to the order of 100 which leads to only a few ‘magic’ numbers, a similar model is
applicable to alkaline metal drops for which A can be much larger (¢f work by Reimann
et al [6}, and references therein). Qutside the *magic’ intervals the system is deformed to a
biaxial ellipsoid, having rotational symmetry along a spontaneously chosen axis (the x-axis
in figure 1). The deformations decay with the growth of temperature and for approximately
T = 0.3 disappear completely—the system is spherical for all numbers of particles.

It is convenient to introduce the Hill-Wheeler parametrization (see, for example, Troudet
and Arvieu [111) for describing the deformation of an ellipsoid:

v {x%} = Ro-exp \/Eﬁcos (?" - 4—”)]
i 4 3
NE 2%
/(yz) = Ry - exp -\/;ﬁ cos (y - -;):I
Vizd) = Ry - exp \/gﬁcos y:l . (12)

As the non-rotating nucleus is biaxial, we have ¥ = /3 for w, < 1 (oblate symmetry) and
y = 0 for wy > 1 (prolate symmetry). The dependence of 8 on NV has been shown in the
inset in figure 1.

Since the low-temperature shell structure is specific for the anisotropic oscillator model,
we deal in general with two qualitatively distinct cases of the non-rotating system: deformed
or spherical. Hence, the analysis of the rotation will be iltustrated with the computations
performed for A" = 100 and A = 120, corresponding to the strong deformation and the
spherical shape without rotation, respectively.

Now we pass on to solving {11) for non-zero £. One can recognize that we deal with
a system of highly nonlinear equations with multivalued solutions. Due to the form of
equation (11b) the solutions of the whole system split into two types: axially symmetrical,
with e, = w,—corresponding (o the biaxial ellipsoid with the angular momentum along
the axis of symmetry, and non-axial, with wy # w,—corresponding to the triaxial ellipsoid
rotating around one of the principal axes. The former case needs some clarification as
the transformation to the rotating reference frame is non-unique from a quantum point of
view and hence cannot be performed. Consequently, the nucleus cannot undergo collective
rotation in this regime. The state in which the system has non-zero total angular momentum
and axial symmetry is however possible as the result of non-collective motions of the
individual nucleons on axially symmetrical orbitals (cf Bohr and Mottelson [1], Goodman
[3], Nawrocka et al [3]). In this case L is a sum of the single-body angular momenta I,
which are good quantum numbers here. It can be admitted that despite the axial symmetry,
the nuclei of different £ are distinguishable due to the axial deformation resulting from the
occupation by some of the nucleons of the states with higher [, (above the Fermi level).
Despite the distinct physical background, we proceed formally and arrive at the axial case
of the system of equations (11) obtained from the cranking procedure (2). The quantity
however cannot be interpreted as angular velocity for non-collective motion and is only a
parameter in the Legendre transformation. In this case (0, = @,) we have wx = wy L @
and the system (11) reduces to

wy(ne +n_+ 1) =w,2n, + 1} (13a)
Wy =@, : (135)
1) =N (13¢)
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ho—ny)=2L (13d)
Wy, = . (13e)

Let us now examine in more detail the non-axial solutions of the system (11). By direct
calculation one can find out that for low temperatures there exists a very rich family
of solutions of the system (13} following the irregular behaviour of potential & (with a
great number of extrema) as a function of the shape of nucleus. The solution of physical
importance (thermodynamicaily stable) is the one at which the thermodynamical potential @
reaches the global minimum (it is the minimal envelope of the collection of all solutions of
(11)). This solution is the piece-wise continuous function of £, The discontinuous changes
of variables wy, w, and w, determine the phase transitions of the deformation of a nucleus.

average dimensions

T T T

LR
o} 50 100 150 200 250 angu[ar momentum

Figure 3. Dependence of the average spatial dimensions of the system {ellipsoid semi-axes X,
¥ and Z) on the angufar momentum £, for particle numbers A = 100, 120, and temperatures
T = (.05, 0.25, 0.35. Both horizontal and vertical axes are common for all frames. The thin
dashed lines in frames for T = 0.35 comespond to T = 1.

In figures 3-7 the stable solutions of the system (11) have been presented both for
N = 100 and 120 and T = 0.05, 0.25, 0.35, 1.00 (all in units of wy with & and kg
set to unity). In figure 3 the evolution of the average dimensions (ellipsoid semi-axes):
X=y/3, Y=/ and Z= \/@ in increasing £ has been plotted, figure 4 presents
corresponding trajectories in the Hill-Wheeler (8, ) plane, while in figures 5~7 we present
corresponding graphs for u, @ and ¢ against L.

For both systems, A/ = 100 and 120, corresponding to the deformed and
spherical non-rotating shapes respectively, we observe the continuous transition from low-
temperature behaviour with gumercus step-like changes in the deformation accompanied
by discontinuities in the chemical potential, angular velocity, moment of inertia etc, to the
characteristic classical picture with a single phase transition separating regions of oblate
symmetry (MacLaurin sequence) and triaxial shape tending to the prolate symmetry in the
high £ limit (Jacobi sequence). A common property of the behaviour of the angular velocity
@ with respect to £ (for both nuclei and at both low and high temperatures) is the occurrence
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Figure 4. Evolution of the shape with increasing angular momentum, corresponding to fipure
3, shown as trajectories in the Hill-Wheeler (8, y) plane. High-T curves have been obtained
for T = 1. For clarity the plane has been stretched vertically {x3).

of the maximum very close to the high-temperature Jacobi point. Since scaling energy ay
is the distance between single-particle energy levels for a non-rotating spherical nucleus,
and T is of the order of the thermal spread, it is expected that at T = 1 {in wyp units) all
quantum effects disappear and classical behaviour is realized,

For N/ = 100 at very low temperatures (the curves for 7 = 0.05 in figures 3-7) a
nucleus begins rotation (small £) around the axis perpendicular to the axis of symmetry
(prolate shape) and continues motion for higher values of £ with the shape very close to
prolate with a bigger deviation only in the region of £ = 50. For a little higher temperature
a narrow region appears below £ = 50 where an oblate shape js favourable. This region
expands with the growth of temperature, being £ = 27-50 for T = (.25, and reaching the
whole range £ = 0-50 close to T = 0.35. Simultaneously, all discontinuities except the
axial-non-axial transition gradually disappear. Further increase in T only flattens the signs
of the low-temperature steps and around T = 1 the curves practically reach the limiting

high-T shapes.
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For N/ = 120, in contrast to the previous case, even at very low temperatures the

rotation begins in the oblate regime and motion continues around the axis of symmetry up
to a critical value of £ (38.5 for T = 0.05) from where the equilibrium shape is ciose to
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b) N=100
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N=105

T=0.25

thermodynamical potentfal @
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Figure 8. Typical dependences of the thermody-
namical potential & on the deformation. Two-
; dimensional graphs are obtained as sections of three-
N=120 : T=1.00 | dimensional surface ® (wy, w;) along direction ey =

T t T ;. (a) Fixed temperature 7 = 0.05 and varied
075 1.00 125 150 0.75 100 125 150 pumber of particles A, (b} fixed number of parti-
shape parameter 3= &) cles N = 100 and varied temperature T.

prolate, Similarly as in the case of A = 100 the growth of temperature gradually smooths
the curves and broadens the oblate regime region, which is £ = 061 at T = 1. The
high-temperature behaviour of both nuclei is qualitatively the same, as the effect of the
filled shell does not appear in that case.

It is also interesting to observe that the potential @ for the equlibrium state is always
a continucus, regular function despite the sharp step-type deformation transitions at low
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temperatures (see figure 7). Typical graphs of this potential as a function of the shape
parameter for a non-rotating system are shown in figure 8—for a few values of AV at fixed
T = 0.05 in (8a), and for a few values of T at fixed A = 100 in (85). The graphs have
been obtained as the sections of three-dimensional surface ${(wy,w,) along the direction
wy = w,. Since we know that for £ = 0 the equilibrium shape is always axially symmetrical,
this section is sufficient to observe how the equilibrium shape is chosen as a result of the
competition between different minima of &. Thus, in (8a) we can see how the discontinuous
change of the shape as a function of the number of particles takes place around A = 100,
and how filling of the shell is reflected in the dependence of ¢ on the deformation. In (3b)
it is easy to observe the effect of thermal spreading.

An additional important result is that for the stable (minimum of &)} solutions of
equations (11) the collective rotation is, with good accuracy, a rigid-body rotation (with
uniform density of mass), independent of temperature, number of nucleons and angular
momentum. The deviation from the rigid-body regime appears as a second term in equation
(94), which for ®-minimum solutions is very smali compared to £. Hence, we have
L~ mw({y*) + (z2)). In figure 9 we have plotted the moment of inertia I, calculated for
a rigid body with the uniform distribution of mass: I,, = m({y*} + {z%)), as a function of
L, for N' = 100 and 120, both for low and high temperatures (T = 0.05 and 1.00). The
rigid-body angular momentum L, = @l as a function of £ is a straight line: £, = L.
Let us underline that for other solutions of equations (11) (which do not minimize ®) this
is not true.

6000
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--------- N=120, T=0.05
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=

]

=
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-_? Figure 9. Moment of inertia calculated
for the rigid-body rotation [, (in fi/ey
units), as a function of the angular
momentum L. Numbers of particles

0 l‘llilillilillil‘lllillll .N'=100,120.TemperaturesT=0.05,
angular momentum L coincident in this figure).

It is also interesting to consider the high-temperature limit (kz T 2 hiwg) of the behaviour
of a nucleus within this model (see also appendix). There are only two solutions of equations
(11} in this case. One solution has axial symmetry and exists for all values of £. It undergoes
an instability at a certain value Ly, leading to the occurrence of a smooth maximum in
the dependence w(£). This is called the MacLaurin sequence. However, above the critical
value £, < Ly (bifurcation point} the triaxial solution appears and it tends to the prolate
symmetry for high £, which is energetically more favourable. Angular velocity w decreases
with increase of £ in this solution. The change of the shape (and consequently also of the
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other parameters such as @, u etc) in £, is continuous and the corresponding phase transition
is of second order. The instability in the bifurcation point £, is called the Jacobi instability,
and the whole triaxial solution the Jacobi sequence. The limiting high-T behaviour of the
parameters @, @yy,, £ and 4 in the transition point can be found:

L. 1 1 (nwo)
Ze o (X0 5. 14
N = A 12/ads T (14
wo _ 1 Ry 5 (hwo)3 (15)
wo 2342 ksT 144394 \kpT
@ _ (@)L(%)z: ! +*’/5(h"’°)2+... a6)
Wre Wy @y ﬁ 144 \ kT
pe _ kgT ( ﬁmg) 1 (hwg)

InNV +3In — ) +.... 17
hag oo ksT/ 1232 \ksT un

Hence, in the high-T limit, the axial-non-axial transition takes place at the critical value
of the average angular momentum per particle (1/+/3). The deformation at the critical
point tends to @y /Wy — V2, while the angular velocity e, being at the same time the
maximum angular velocity of the system in equilibrium, decays to zero with the growth of
T. As was necessary for the classical-limit approximation we also get exp(u./ksT) — 0.
The dependences of the critical parameters on temperature, following equations (14)—(17),
are shown in figure 10.
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Figure 10. Thermal dependences of critical parameters at the high-temperature Jacobi transition;
upper frame: angular momentum per single particle £ /A and angular velocity e,; lower frame:
deformation parameter w,. and chemical potential u.. Straight horizontal lines correspond to
the high-temperature limits of £, /N and wyc in the upper and lower frame, respectively.

In conclusion, let us summarize that for the equilibrium state of a nucleus within the
cranked anisotropic harmonic oscillator model, at sufficiently low temperatures (T < 0.3ap)
we deal with the multiple first-order phase transitions of the shape. At high temperatures
the evolution of the shape of a nucleus follows the MacLaurin and Jacobi sequences with a
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single second-order phase transition. Despite the complicated behaviour of the shape, in the
case of collective rotation, stable configurations for all A, T and £ correspond, with good
accuracy, to the rigid-body regime. The phase transitions at low temperature originate from
exchange interaction of fermions, which was taken into account by the minimizing procedure
applied to the potential <. Let us also mention that the sharp deformation transitions at
low temperatures would be smoothed by including the fluctuations, similarly demonstrated
by Rossignoli er af [8].
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Appendix

In the high-temperature limit (exp[u/kpT] < 1) the summations in equations (11} can be
performed analytically:

hw, hoy o Ao -
1) = e*/*2T [ 8 sinh h 1
{1) sin 25 T sin ZkgT ZkgT (18a)
(ny +1/2) = (1) coth 2k T {=+,—,x. {1856)
The thermodynamical potentials 2 and ¢ are
= -—kBTN O =(u— kgT)N'l‘ﬁwﬁ (19)
with chemical potential:
hew Wy heo_
w=ksTIn (SNsmh 2T sinh ZkBT sinh ?-ksT) . (20)

Due to the continuous character of the transition in £,, we can calculate the critical
parameters L, @y, Wye, Wy, @, and g, by solving the high-T version of the system (11)
in the non-axial regime (the right-hand factor in (11£) must vanish) and then take the limit
wy — w; — 0. Thus, expanding cothx & 1/x + x/3 (1.5% error for x = 1), formulae
{14)(17} are obtained.
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