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Abstract. We study “second generation” of fractional quantum Hall states which contain
a partially filled composite fermion (CF) Landau level (LL). We explain the role of CF–CF
interaction in the incompressibility of the underlying quantum electron liquid. In particular,
using exact diagonalization on a Haldane sphere, we determine two- and three-body CF
correlation functions for these liquids and show that the CFs form a paired state (instead
of a Laughlin liquid) when filling ν = 1/3 of their second LL. At ν = 1/2 we show that
the CFs group into even larger clusters rather than form a Moore–Read paired state. We also
address the problem of spin polarization of interacting CFs and predict transition to the partially
unpolarized ground state in sufficiently narrow quantum wells and/or weak magnetic fields.

1. Introduction
About two decades after the discovery of fractional quantum Hall (FQH) effect by Tsui, Störmer
and Gossard [1] and Laughlin’s idea of the incompressible electron liquid [2], and over a decade
after introduction of Jain’s composite fermion (CF) model [3], Pan et al. [4] discovered FQH
effect in a spin polarized two-dimensional (2D) electron gas at a new, unexpected series of
Landau level (LL) filling factors νe. These new fractions lied outside of the Jain sequence [3] of
states at νe = n/(2pn ± 1), which are defined by the complete filling of n lowest shells by the
CFs each carrying an even number of magnetic flux quanta. In contrast, the most prominent
of the new FQH states occur at νe = 4/11 and 3/8, corresponding to fractional fillings ν = 1/3
and 1/2 of the second CF LL. Evidently, partial filling of a degenerate CF shell in these electron
liquids implies that their incompressibility must involve interactions and correlations among the
CFs. Therefore, in contrast to the Laughlin and Jain states whose understanding within the CF
model invoked only the emergence of a quasi-cyclotron gap in the single-CF spectrum, the new
liquids have been called the “second generation” FQH states [5, 6, 7, 8].

Familiar values of ν = 1/3 and 1/2 suggested similarity between partially filled electron and
CF LLs in the “first” and “second generation” FQH states [9]. In the first case, for νe = 4/11,
it revived Haldane’s “quasiparticle hierarchy” [10]. Its CF formulation originally proposed by
Sitko et al. [11] consists of the CF→ electron mapping followed by reapplication of the CF
picture in the second CF LL, leading to a “second generation” of CFs [5, 6, 7, 8]. However,
this idea ignored the known requirement of a strong short-range repulsion between the particles
to which a CF can be succesfully applied [12, 13, 14]. Indeed, this idea was later precluded by
exact diagonalization studies [15], in which a different series of finite-size νe = 4/11 liquids was
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Figure 1. Schematic of the CF transforma-
tion applied to a partially filled lowest elec-
tron LL. At the electron filling factors ν = 1/3
and 2/5, the transformation yields completely
filled one and two CF-LLs (νCF = 1 and 2),
respectively, and their interaction is irrelevant
for incompressibility. At 1/3 < ν < 2/5, the
CFs partially fill CF-LL1 (1 < νCF < 2), and
the low-energy dynamics of the system is de-
termined entirely by the CF–CF interaction.

identified with gaps which appear to persist in the thermodynamic limit. On the other hand, for
νe = 3/8, the Moore–Read liquid state [16, 17] of paired CFs in a half-filled shell was proposed
[18]. However, it was eventually ruled out in favor of the anisotropic (stripe) order [19, 20].

This paper contains a review of the main ideas published in a series of our earlier papers
dealing with the problem of CF–CF interaction [14, 15, 21, 22, 23]. It is organized as follows.
In Sec. 2 we recall the CF picture of the νe = 4/11 and 3/8 states. In Sec. 3 we explain how
the CF wave functions and CF–CF Haldane interaction pseudopotentials [24] are extracted from
the Ne-electron exact-diagonalization calculations [14], and justify the use of such effective CF–
CF pseudopotentials for the description of correlated many-electron states at ν = 1/3 or 1/2.
In Sec. 4 we discuss the role of anharmonic contributions to the short-range pseudopotential
in determining short-range correlations. In Sec. 5 we move to the discussion of numerical
calculations for N interacting CFs, in which we identified the series of finite-size nondegenerate
ground states with excitation gaps which extrapolate to ν = 1/3 or 1/2 in the limit of large N
[15]. In Sec. 6 we analyze the wave functions of these N -CF ground states and, in particular,
calculate their two- and three-body correlation functions, from which we find that the νe = 4/11
state is a paired state of CFs [21, 22]. Although the precise form of the correlation between
the CF pairs is not known, it is demonstrated that they are certainly not of a Laughlin form
defined by the maximum avoidance of the relative two-pair angular momentum [25]. Finally, in
Sec. 7 we consider spin-flip excitations of the “second generation” states, discuss the possibility
of partially unpolarized ground states, and construct the spin phase diagram at νe = 4/11 (from
which we predict a spin transition under realistic realistic conditions) [23].

2. Composite fermion picture of the “second-generation” incompressible liquids
In the CF model, electrons filling a fraction νe of the lowest LL capture part of the external
magnetic field B in form of quantized flux tubes of strength 2pφ0 (here, φ0 = hc/e is the flux
quantum and p is an integer). By binding magnetic flux tubes, electrons are converted into
CFs, which experience reduced magnetic field B∗. The (real) electron and (effective) CF filling
factors are related to one another through ν−1

CF = ν−1
e − 2p. For 1/3 < νe < 2/5 the choice of

2p = 2 yields 1 < νCF < 2 and a fractional filling ν ≡ νCF − 1 < 1 of the second CF LL.
In particular, let us look at the CF picture of the νe = 4/11 FQH state of electrons, illustrated

in Fig. 1. Assuming complete spin polarization, the CFs fill their entire lowest LL (CF-LL0)
and a fraction νQE ≡ ν = 1/3 of their second LL (CF-LL1). Similarly, the electron filling factor
νe = 3/8 translates into the ν = 1/2 filling of CF-LL1. The CFs in the partially filled CF-LL1

represent quasielectrons (QEs) of the underlying incompressible νe = 1/3 Laughlin liquid [2]
(the liquid itself represented by the completely filled CF-LL0). This CF↔QE equivalence is
exact at ν ≪ 1 but, remarkably, it appears valid at higher values of ν as well.
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Figure 2. (a) Haldane interaction pseudopo-
tentials of different CFs (QE, QH, and QER).
(b) Example of 11-electron spectrum used to
obtain VQE. λ is the magnetic length.
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Figure 3. a (a) Radial charge distributions
of different CFs (QE, QH, and QER) obtained
from the 10-electron exact diagonalization.
(b) Same for electrons in two lowest LLs.

3. Haldane pseudopotential for interaction of Laughlin quasielectrons (QEs)
In order to study the QE–QE correlations at νe = 4/11 or 3/8 (i.e., correlations in the partially
filled CF-LL1), we must first determine the form of QE–QE interaction. Within an isolated LL,
interaction hamiltonian can be conveniently defined by its Haldane pseudopotential V (R) [24],
i.e., by the dependence of the pair interaction energy V on the relative angular momentum R
(for identical fermions, R must be an odd integer). The pseudopotential can be extracted from
exact diagonalization of Ne electrons (with the Coulomb interaction) on a Haldane sphere [10],
with the angular momentum of the LL shell chosen equal to l = 3(Ne − 1)/2 − 1 (on a sphere,
2l + 1 is the LL degeneracy), such as that for Ne = 11 in Fig. 2(b). In such spectra, the lowest
energy band contains the states of two QEs, and the dependence of the Ne-electron energy E
on the total angular momentum L is (up to a constant) the QE–QE pseudopotential.

The QE–QE pseudopotential obtained in this way is plotted in Fig. 2(a), together with the
pseudopotentials calculated analogously for the other Laughlin quasiparticles: quasiholes (QHs)
and reversed-spin quasielectrons (QER). The easily noticed and essential feature of the QE–QE
interaction is the relatively weak repulsion at the smallest allowed relative angular momentum,
R = 1. This is strikingly different from the pseudopotentials in other CF-LLs (e.g., from VQH

or VQER) or from the known electron pseudopotentials in LL0 or LL1 (not shown).
The reason for weak short-range QE–QE repulsion is the ring-like charge distribution profile

̺(r) of the QEs, very different from other CFs or from electrons in other LLs. The curves of
̺(r) shown in Fig. 3(a) were calculated from the wave functions of the appropriate Ne-electron
ground states on a sphere (e.g., at l = 3Ne/2 − 2 for the QE).

Before moving on to analysis of many-QE systems, let us pause for a moment to repeat
and stress what follows: (i) The weak short-range QE–QE repulsion is not an assumption. It is
evident from exact diagonalization [14, 22] but also from an independent Monte Carlo calculation
[19], both of which involve the Coulomb interaction between quasi-2D electrons. Therefore, it
does not depend on any assumptions on the nature of QEs themselves, and it ought to be
considered a fact implied by “numerical experiments” carried out on a well-defined model. (ii)
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Figure 4. Energy spectra (energy E versus
angular momentum L) for 12 electrons in LL0

with 2l = 29 (a) and for 4 QEs interacting
through VQE in CF-LL1 with 2l = 9 (b).
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Figure 5. Sample N -QE excitation spectra
(energy E versus angular momentum L; E0

is ground state energy) corresponding to
fractional fillings ν = 1/3 and 1/2 of CF-LL1.

This peculiar short-range behavior of VQE(R) invalidates analogy between electron and QE
systems at the same ν. In particular, it precludes Laughlin correlations among QEs at ν = 1/3
or Moore–Read pairing of CFs at ν = 1/2.

4. Role of harmonic pseudopotential in determining pair correlations
Let us now move to the argument that VQE(R) cannot support Laughlin correlations among
the QEs. This results from the property of the “harmonic” pseudopotential VH(R), defined
as proportional to the average squared distance

〈

r2
〉

. Its general form on a sphere is
VH(R) = α + β · L(L + 1), with constant α and β, and R = 2l − L. For large 2l (or on
a plane) this is equivalent to VH ∝ R at R ≪ 2l at short range. The following operator

identity,
∑

ij L̂2
ij = L̂2 + N(N − 2) l̂2 [13], links the total angular momentum L of N single-

particle angular momenta l with the pair angular momenta Lij. It implies that VH induces
no correlations, in a sense that all many-body multiplets at the same L have the same energy.
In other words, the total interaction energy of a many-body system with interaction VH deoes
not depend on the relative occupation of different pair eigenstates. This is obviously not the
case when V is not harmonic. Any positive anharmonic contribution to V yields avoidance of
the corresponding pair state in the low-energy many-body states. In particular, the dominant
anharmonic repulsion at R = 1 leads to the Laughlin correlated ground state of electrons at
ν = 1/3. In comparison to VH the pseudopotentials in LL0, LL1, and CF-LL1 are all qualitatively
different: strongly superharmonic, roughly harmonic, and strongly subharmonic at short range,
respectively. Consequently, the correlations in those partially filled shells must also be different.
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The above discussion raises several questions regarding the nature of the “second-generation”
liquids: (i) Can VQE(R) yield incompressibility? (ii) At what filling factors? (iii) What are the
QE–QE correlations? and (iv) What is the many-QE wave function at ν = 1/3 and 1/2?

5. Evidence for incompressibility from exact-diagonalization of N interacting QEs
Armed with the knowledge of VQE(R) we are ready to address the problem of QE
incompressibility by exact diagonalization of the N -QE interaction hamiltonians at the values of
N and 2l corresponding to a given ν. This approach rests on the following nontrivial assumptions
or additional properties: (i) The two-body pseudopotential is sufficient to describe interaction
among many QEs. (ii) The pseudopotential determined at ν ≪ 1 can also be used at ν = 1/3
or 1/2. (iii) The QE–QH excitations are negligible.

In place of a rigorous analysis of the above issues let us demonstrate directly the accuracy
of the mapping of an Ne electron system with Coulomb interaction at 1/3 < νe < 2/5 onto
a corresponding N -QE system with VQE(R). In Fig. 4 we compare the 12-electron spectrum
at 2l = 29 with the corresponding 4-QE spectrum at 2l = 9. Remarkably, the QE spectrum
reproduces the bottom of the electron spectrum rather well (with higher many-electron states
involving additional QE–QH pairs), justifying the CF mapping.

Two examples of N -QE spectra of VQE(R) and showing non-degenerate (L = 0) ground
states with a gap are shown in Fig. 5. By looking at different combinations of (N, 2l), we have
identified a whole series of such ground states at 2l = 3N − 7. This is different from Laughlin’s
relation 2l = 3N − 3, even though it extrapolates to the same filling factor ν = 1/3. We also
found a gapped ground state for (N, 2l) = (14, 25), coincident with the 2l = 2N − 3 series of the
Moore–Read electron liquid in LL1, but the assignment of ν = 1/2 to this state is less certain.
At other (N, 2l) either the ground state is degenerate (L 6= 0) or the excitation gap is marginal.

To verify that the 2l = 3N − 7 (and the more problematic 2l = 2N − 3) series of finite-size
states indeed represent the extended ν = 1/3 (and ν = 1/2) incompressible QE liquids, in Fig. 6
we plot the energy gap ∆ as a function of N . Indeed, it seems plausible that the gap will not
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close in large systems, and thus that it is due to QE–QE interaction rather than merely due to
an artificial boundary. Moreover, Fig. 7 makes it clear that the pair correlation functions g(r)
for the N = 11 and 12 states of the 2l = 3N − 7 series are essentially identical, at the same
time being very different from both the curve for 14 QEs at 2l = 25, and several other curves
obtained for known FQH states of electrons [21].

6. Evidence for pairs and clusters of QEs from 2- and 3-body correlation functions
The nature of gapped N -QE ground states identified in the previous section from the exact
diagonalization can be elucidated by their pair and triplet Haldane amplitudes [22]. These
amplitudes, G2(R) and G3(T ), are the discrete two- and three-body correlation functions,
which count the fraction of pairs or triplets as a function of two- and three-body relative
angular momentum, respectively. They are easily calculated as the expectation values of the
model, short-range two- and three-body interaction pseudopotentials, VR(R′) = δ(R,R′) and
WT (T ′) = δ(T ,T ′). Two-body matrix elements 〈i, j|VR|k, l〉 = 〈i, j|L〉 〈L|k, l〉 δ(L, 2l − R) are
simply the products of the appropriate Clebsh-Gordan coefficients. Analogously, the three-
body matrix elements 〈i, j, k|WT |l,m, n〉 = 〈i, j, k|L〉 〈L|l,m, n〉 δ(L, 3l − T ) involve expansion
parameters related to the Racah coefficients.

Up to the normalization factors, the amplitudes corresponding to the minimum allowed values
of Rmin = 1 and Tmin = 3 have a simple interpretation of the average number of “compact”
pairs or triplets, N2 =

(N
2

)

G2(Rmin) and N3 =
(N

3

)

G3(Tmin). In Fig. 8(a) we plot N2/N as a
function of N/2l for the ground states of N particles at different values of 2l. The data for
N = 10 and 12 nearly overlap, suggesting a genuine, size independent effect, while the difference
between QEs in CF-LL1 and electrons in LL0 or LL1 strikes out immediately. While N/2l is only
an approximate measure of ν in finite system, the exact values of ν assigned to the particular
12-particle incompressible ground states are indicated next to the filled symbols. The defining
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property of the Laughlin state – the complete avoidance of the R = 1 pair state – is clearly
visible in Fig. 8(a) as the vanishing of N2 at the ν = 1/3 filling of LL0. Evidently, the ν = 1/3
state of QEs shows a different behavior.

More telling of the QE correlations is Fig. 8(b), in which we show a matching plot of N3/N .
The most striking result is the vanishing of N3 of the QEs at the ν = 1/3 filling of CF-LL1.
Combined with the value of N2 ≈ N/2, this strongly suggests pairing (in real space) of the QEs
at ν = 1/3. On the other hand, N3/N ∼ 0.4 for the QE filling ν = 1/2 indicates formation of
some triplets (or larger clusters) in this state. This is in obvious contrast to the known vanishing
of N3 in the Moore–Read state describing the half-filled electron LL1.

The question of correlations among the CF pairs (QE2 molecules) that leads to
incompressibility and the FQH effect at νe = 4/11 remains open. However, the pseudopotential
of the QE2–QE2 interaction has been calculated [15]. Fig. 9 shows that it is quite different than
the pseudopotential for electron molecules in LL0. In particular, it is roughly linear at small R.
This, however, does not make the situation similar to the electrons forming a Moore–Read state
in LL1 due to different QE2 and e statistics.

7. Spin phase diagram and depolarization in an unpolarized correlated QE liquid
Let us now address the question of spin of CFs, completely ignored in the preceding sections. It
is long known [26] that QER (the reversed-spin quasielectron; represented by a spin-flip CF in
CF-LL0) has lower Coulomb energy ε than QE. Hence, the latter remains the lowest negatively
charged excitation of the Laughlin liquid only when it is additionally favored by a sufficient
Zeeman energy, EZ. The comparison of εQE and εQER as a function of width w of the quasi-2D
electron layer is shown in Fig. 10(b).

Whether QEs or QER (or their combination) will occur in a gas depends only on the
competition of εQE and εQER. However, in a liquid (e.g., at ν = 1/3), their correlation energies
per particle u must also be compared [27]. They are defined as u = (E + Ubckg)/N where
Ubckg = (Ne/3)2/2R accounts for the charge-compensating background (R is the radius of the
Haldane sphere). For the QERs, many-body interaction energy E is calculated similarly as
described for the QEs, only using a different pseudopotential VQER shown in Fig. 2(a). The
finite-size estimates of uQE and uQER are compared in Fig. 10(a).

Transition between the QE and QER liquids at ν = 1/3 occurs when εQE + uQE =

Symmetry and Structural Properties of Condensed Matter IOP Publishing
Journal of Physics: Conference Series 104 (2008) 012017 doi:10.1088/1742-6596/104/1/012017

7



-0.04

-0.03

-0.02

-0.01

0.00

(a)
correlation energies

u 
(e

2 /λ
)

QER

0.00 0.05 0.10 0.15
1/N

QE

0 2 4 6 8
0.00

0.04

0.08

w/λ

ε (e2/λ)
(b) QP energies

QE

QER

w=0

Figure 10. (a) Correlation energies u in
the ν = 1/3 liquids of QEs or QERs, as a
function of their inverse number N−1. (b) QE
and QER Coulomb energies ε as a function of
electron layer width w.

10 20 30 40 50 60 70
w (nm)

0

10

20

30

B
 (

T
)

QE liquid

QER gas

QE
R  liquid

QE gas

solid - ν=1/3 (νe=4/11)
dashed - ν«1/3 (νe~1/3  )

Figure 11. Phase diagram (the critical layer
width w vs magnetic field B) for QE–QER

spin transition at ν = 1/3 (i.e., at νe = 4/11).
Thin dashed line is for a gas of uncorrelated
QEs or QERs at ν ≪ 1/3 (i.e., at νe ≈ 1/3).

εQER + uQER + EZ. By combining the calculated values of ε and u (to reduce the finite size
error we use the values extrapolated to large N) and the width dependence of electron Landé
g-factor [28] we have obtained [23] the spin phase diagram displayed in Fig. 11.

Clearly, larger widths and stronger magnetic fields both favor spin polarization, and the
transition to a partially unpolarized phase (note that pure liquids of QEs and QERs correspond
to complete and intermediate spin polarizations of the whole electron liquid, P = 100% and 50%,
respectively) requires the opposite conditions. The role of CF–CF interactions in stabilizing the
QER liquid is also evident from comparison with the phase boundary calculated neglecting
uQE − uQER (i.e., for a CF gas). It is noteworthy that all FQH experiments so far [4] were done
either deep inside the QE phase or close to the predicted phase boundary.

8. Conclusion
We used a combination of the CF theory and exact numerical diagonalization to study “second-
generation” incompressible quantum liquids corresponding to the fractional filling of CF-LL1.
We have explained that the low-energy electron dynamics in these states can be mapped
onto the problem of a smaller number of Laughlin QEs interacting through an effective pair
pseudopotential. Short-range behavior of this QE–QE pseudopotential is very different from
that of electrons in LL0 or LL1. This leads to the particular form of QE–QE correlations in
CF-LL1, which is very different from electron correlations in a partially filled LL0 or LL1. In
particular, we have demonstrated that the νe = 4/11 state is not a Laughlin state of QEs,
despite having a familiar value of νQE = 1/3. Instead, we have shown that this state involves
QE pairing (similar to the Moore–Read state describing electrons at the half-filling of LL1). On
the other hand, we have shown that the νe = 3/8 state is not a paired Moore–Read state of
QEs despite having the same νQE = 1/2. Instead, it seems to involve formation of larger QE
clusters. We have also looked at the possible spin transition at νe = 4/11, corresponding to the
crossover between a paired QE state and a Laughlin state of QERs.
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discussions, and acknowledge partial support from grant N202-071-32/1513 of Polish MNiSW.

References
[1] Tsui D C, Störmer H L and Gossard A C 1982 Phys. Rev. Lett. 48 1559
[2] Laughlin R B 1983 Phys. Rev. Lett. 50 1395
[3] Jain J K 1989 Phys. Rev. Lett. 63 199; 1994 Science 266 1199
[4] Pan W, Störmer H L, Tsui D C, Pfeiffer L N, Baldwin K W and West K W 2003 Phys. Rev. Lett. 90 016801
[5] Smet J H 2003 Nature (London) 422 391
[6] Chang C C and Jain J K 2004 Phys. Rev. Lett. 92 196806
[7] Peterson M R and Jain J K 2004 Phys. Rev. Lett. 93 046402
[8] Goerbig M O, Lederer P and Morais Smith C 2004 Phys. Rev. Lett. 93 216802; 2004 Phys. Rev. B 69 155324
[9] Mandal S S and Jain J K 2002 Phys. Rev. B 66 155302

[10] Haldane F D M 1983 Phys. Rev. Lett. 51 605
[11] Sitko P, Yi K S and Quinn J J 1997 Phys. Rev. B 56 12417
[12] Haldane F D M and Rezayi E H 1985 Phys. Rev. Lett. 54 237
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