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Residual Interactions and Pairing of Composite Fermion Quasiparticles
and Novel Condensed Quantum Fluid States
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The residual interactions between quasiparticles (QP’s) in partially filled composite Fermion
(CF) levels can be obtained from exact numerical diagonalization studies of small systems. The
pseudopotentials VQP(R) describing the energy of interaction of QE’s (or QH’s) as a function of
their relative angular momentum R can be used to diagonalize the interactions among these CF
QP’s. It is known that VQP(R) cannot support Laughlin correlations among CF QP’s at νQE = 1/3
or νQH = 1/5. Because of this, the novel condensed quantum fluid states observed at ν = 4/11, 4/13
and other Landau level filling fractions cannot possibly be spin-polarized Laughlin correlated QP
states of the composite Fermion hierarchy. Formation of pairs or larger clusters of CF QP’s clearly
must occur, but the exact nature of the incompressible ground states is not completely understood.
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Fractional quantum Hall states have been observed re-
cently at unexpected values of the electron Landau level
(LL) filling factor ν [1]. Some of these states have been
attributed to composite Fermions (CF’s) of different “fla-
vor” with the notations 2CF, 4CF, . . . used for CF’s with
different numbers of attached Chern–Simons (CS) flux
quanta [1,2]. This idea is equivalent to a CF hierarchy
scheme [3], which involved the reapplication of the CS
transformation to quasiparticles (QP’s) in partially filled
CF angular momentum shells or LL’s proposed to

describe odd denominator fractions that did not be-
long to the Jain sequence [4] of filling factors. In addi-
tion, it is known that the reapplication of the CF trans-
formation is valid only if the QP pseudopotential VQP(R)
supports Laughlin correlations [5].

By Laughlin correlations we mean the maximum
avoidance of pair states with the largest pair angular
momentum L′ (or smallest value of the relative angular
momentum, R = 2l − L′, where l is the angular mo-
mentum of the individual particles). In order to support
Laughlin correlations [5–7], the pseudopotential V (L′)
describing the interaction energy of a pair of particles
as a function of the pair angular momentum L′ must in-
crease, approaching the avoided value of L′, more quickly
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than L′(L′ + 1). We refer to such a potential as su-
perharmonic since it increases more quickly than any
VH(L′) = A + BL̂′

2
(where A and B are constants),

defined as a harmonic pseudopotential [5–7].
The object of the present paper is to demonstrate that

Laughlin correlations will not occur for the lowest energy
states in the spectrum if the pseudopotential is subhar-
monic. We also show that, when VQP(L′) is not super-
harmonic, the interacting particles form pairs or larger
clusters in order to lower the total energy [8]. These
pairing correlations can lead to a nondegenerate incom-
pressible ground state.

For electrons in the lowest LL (n = 0), pseudopoten-
tial V0(L′) is superharmonic at every value of L′. For
excited LL’s (n ≥ 1) Vn(L′) is not superharmonic at
all the allowed values of L′ [8]. In Fig. 1 we show the
pseudopotentials of electrons in the lowest LL (a) and of
quasielectrons (QE’s) in the first excited CF LL (b). The
QE pseudopotential is taken from the work of Lee et al.
[9]. Neither is the pseudopotential VQP(L′) [5–10], de-
scribing the interaction of Laughlin QP’s, superharmonic
at all allowed values of L′.

The number of electrons required in order to have a
system of QP pairs of reasonable size is, in general, too
large for exact diagonalization in terms of electron states
and the Coulomb pseudopotential [11]. However, by re-
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Fig. 1. Pseudopotentials (pair interaction energy V vs.
relative pair angular momentumR) for electrons in the lowest
LL (a) and for QE’s in the first excited CF LL (b). The values
of V in frame (b) were calculated by Lee et al. [9] and are
only known up to a constant. λ is the magnetic length.

Fig. 2. Energy spectra for N = 12 electrons in the lowest
LL with 2l = 29 and for N = 4 QE’s in the first excited CF
LL with 2l = 9. The energy scales are the same, but the QE
spectrum obtained using VQE(R) is determined only up to an
arbitrary constant.

stricting our consideration to the QP’s in the partially
filled CF shell, and by using the QP pseudopotential ob-
tained from numerical studies [5–10] of small systems of
electrons, we can reduce the numerical diagonalization
to manageable size [12]. The QP pseudopotentials de-
termined in this way are quite accurate up to an overall
constant which has no effect on the correlations. Further-
more, because the correlations are primarily determined
by the short range part of the pseudopotential, the nu-
merical results should describe the essential correlations
quite well for systems whose size (e.g., Haldane sphere
radius) is large compared to the correlation length.

In Fig. 2 we display the low-energy spectrum of N =
12 electrons at 2l = 29, and the corresponding spectrum
for NQE = 4 QE’s at 2lQE = 9 obtained in our numerical
experiments.

[The CF transformation applied to the electrons gives
an effective CF angular momentum l∗ = l − (N − 1) =
7/2. The lowest CF LL can accommodate 2l∗ + 1 = 8 of
the particles, so that the first excited CF LL contains the
remaining four QE’s each of angular momentum lQE =
9/2]. The calculation for 2lQE = 9 and NQE = 4 is
almost trivial in comparison to that of N = 12 at 2l =
29, but the low-energy spectra are in reasonably good
agreement, giving us confidence in the use of VQP(R) to

Fig. 3. Pair amplitude functions G(R) for the two ground
states shown in Fig. 2.

describe the CF QP’s.
In Fig. 3 we compare pair amplitude functions G(R)

for the lowest L = 0 states appearing in Fig. 2. It is
clear that the electrons are Laughlin correlated avoiding
R = 1 pair states, but the QE’s are not since they avoid
R = 3 (and R = 7) but not R = 1.

The numerical diagonalizations of the interactions of
the Fermions (electrons or CF QP’s) within the Hilbert
subspace of the partially occupied LL are performed
in Haldane spherical geometry [13]. The particles
are confined to a spherical surface of radius R, and a
magnetic monopole of strength 2Q flux quanta at the
center of the sphere produces a radial magnetic field
B = 2Qφ0/4πR2, where φ0 = hc/e. The single parti-
cle eigenfunctions in this geometry are called monopole
harmonics and are denoted by |Q, l,m〉, where Q is half
the monopole strength, l the angular momentum, and
m its z-component. The single particle eigenvalues are
given by εl = (~ωc/2Q)

[
l(l + 1)−Q2

]
, where ωc is the

cyclotron frequency. Because εl must be positive, the
minimum value of l is Q, and we can label the angular
momentum shells by ln = Q + n, where n is a non-
negative integer. For convenience of notation we will
write the monopole harmonics as |l,m〉 with Q being
understood.

For a system of N electrons confined to a shell of an-
gular momentum l, we can form eigenfunctions with a
given value of L, the total angular momentum, and M ,
its z-component. They can be written |L,M,α〉 with
the label α distinguishing distinct multiplets with the
same values of L. The Wigner–Eckart theorem states for
a scalar interaction H ′ that 〈L′,M ′, α′|H ′ |L,M,α〉 =
δLL′δMM ′ 〈Lα′|H ′ |Lα〉 and that the reduced matrix el-
ement on the right hand side is independent of M . The
eigenfunction for the αth multiplet of total angular mo-
mentum L formed by adding the angular momenta li = l
of N identical Fermions can be written∣∣lN ;Lα

〉
=∑

L12L′′α′′

GLα,L′′α′′(L12)
∣∣l2, L12; lN−2, L′′α′′;L

〉
.(1)

Here the GLα,L′′α′′(L12) are coefficients of fractional
grandparentage [14]. The wavefunctions on the right
hand side of Eq. (1) are obtained by adding the angular
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momentum L12 of the pair 〈1, 2〉 to the angular momen-
tum L′′ of the α′′ multiplet of the j = 3, 4, . . . , N re-
maining Fermions to obtain the total angular momentum
L. Although

∣∣l2, L12; lN−2, L′′α′′;L
〉

is not antisymmet-
ric under the interchange of i = 1 or 2 with j = 3, 4,
. . . , N , the eigenfunctions

∣∣lN ;Lα
〉

are totally antisym-
metric. We define the pair amplitude GLα(L′) by [15]
GLα(L′) =

∑
L′′α′′ |GLα,L′′α′′(L′)|2. Orthonormality of

the eigenfunctions
∣∣lN ;Lα

〉
gives the sum rule∑

L′

GLα(L′) = 1. (2)

A second useful sum rule
1
2
N(N − 1)

∑
L′

L′(L′ + 1)GLα(L′) =

L(L+ 1) +N(N − 2)l(l + 1) (3)

can be obtained by using Eq. (1) together with the simple
theorem on pair angular momenta L̂2 + N(N − 2)l̂2 =∑
〈i,j〉(l̂i+ l̂j)2 [7]. In this equation l̂i+ l̂j is the angular

momentum operator of the pair 〈i, j〉, and the sum is
over all pairs. The energy of the multiplet |Lα〉 is given
by

Eα(L) =
1
2
N(N − 1)

∑
L′

GLα(L′)V (L′), (4)

where V (L′) is the pseudopotential. It is clear from
Eq. (4) and the sum rules [Eqs. (2) and (3)] that, for
a harmonic potential VH(L′), the energy is given by
Eα(L) = c1 + c2L(L + 1) where c1 and c2 are indepen-
dent of α. Because the right hand side of this equation
is independent of α, every multiplet with the same value
of L is degenerate, and the harmonic pseudopotential
introduces no correlations [6, 7]. Any linear combina-
tion of eigenfunctions with the same value of L (i.e.,∑
α cα |Lα〉) has the same energy.
We can think of the pseudopotential V (L′) as a func-

tion of R since R = 2l−L′, and write V (R) = VH(R) +
∆V (R). Correlations are completely determined by the
anharmonic part ∆V (R). For a simple model in which
∆V = 41δR,1, with the constant 41 > 0, the lowest en-
ergy state for each value of L is the one with the smallest
value of GLα(R = 1), which we will call GL0(R = 1).
This is exactly what we mean by Laughlin correlations.
In fact, if41 is infinite, the only states with finite energy
are those for which GL0(R = 1) vanishes. The complete
avoidance of the pair states with R = 1 corresponds ex-
actly to the Laughlin–Jastrow factor

∏
〈i,j〉(zi − zj)2 in

the Laughlin wavefunction for the ν = 1/3 state [16].
Now let’s consider a model pseudopotential which can

be superharmonic or subharmonic at R = 1, viz., one
in which ∆V (R) = 41δR,1 + 43δR,3. We assert that
if 43 is sufficiently large, Laughlin correlations will not
produce the lowest state. We demonstrate this as follows:
(i) the Laughlin correlated L = 0 ground state which
occurs at 2Q = 3(N − 1) when 43 = 0 must have the

Fig. 4. Low energy spectra and pair amplitude functions:
Frames (a), (b), and (c) show the energy spectra for N = 10
QE’s at 2l = 23, for N = 12 QE’s at 2l = 25, and for N = 12
QE’s at 2l = 21 as a function of total angular momentum
L. Frames (d), (e), and (f) display pair amplitude functions
G(R) for the ground states of the case presented in (a), (b),
and (c), as a function of relative pair angular momentum
R. The solid circles are the ground state values of G(R) for
the QE pseudopotentials. The open circles are the values
for the superharmonic electron pseudopotential. All spectra
were obtained using VQE(R) given in Ref. [9].

minimum possible value of G0(R = 1); (ii) in the presence
of 43 > 0, decrease G0(R = 3) by an amount ∆G; (iii)
in order to satisfy the first sum rule, Eq. (2), other pair
amplitudes will have to increase.

For simplicity, let’s assume that only G(R = 1) and
G(R = j), with j an odd integer between 2l and 5, in-
crease. By taking ∆G(R = 1) = xj∆G and ∆G(R =
j) = (1 − xj)∆G along with ∆G(R = 3) = −∆G,
the first sum rule is automatically satisfied. The sec-
ond sum rule, Eq. (3), determines xj , giving xj =
1 − 2(4l − 3)(4l − j)−1(j − 1)−1. The change in energy
of the L = 0 ground state in the presence of 41 and 43

is given by

∆E0 = ∆G(xj41 −43). (5)

This becomes negative when 43 > xj41. For example,
if we take j = 5, x5 = (4l − 7)(8l − 10)−1. The value of
43 = x541 is exactly the same value that causes ∆V (R)
to behave harmonically between R = 1 and R = 5. It
always gives a superharmonic pseudopotential V (R) at
R = 3, but at R = 1, it is superharmonic only if 43 <
x541. It is not difficult to see that transfer of ∆G to
R = 1 and R = 5 results in the minimum value of xj .
The transfer of pair amplitude to pair states with R = 1
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Fig. 5. The sequences of νQE = 1/3 (at 2l = 3N − 7),
νQE = 2/3 (at 2l = 3

2
N + 2), and νQE = 1/2 (at 2l = 2N −

3 and 2N + 1) states shown as straight lines. The values
of N and 2l at which L = 0 ground states separated from
excited states by a substantial gap are shown as solid dots and
solid squares (for νQE = 1/3 and 2/3, respectively) and by
open circles and open squares (for νQE = 1/2). The locations
where L = 0 ground states of N QP’s each with angular
momentum l would be expected in the simple pairing model
but are not found numerically are indicated by the symbol
‘+’.

together with the decrease in pair amplitude at R = 3 is
a clear indication of the formation of Fermion pairs with
R = 1 and the avoidance of pair states with R = 3 (and
the maximum repulsive interaction). Numerical studies
[8, 17, 18] of small systems clearly support this picture
when the pseudopotential is not superharmonic.

In Fig. 4, we present low energy spectra for three dif-
ferent cases: (a) is for N = 10 QE’s at 2l = 23, and cor-
responds to νQE = 1/3 and ν = 4/11; (b) is for N = 12
QE’s at 2l = 25, and corresponds to νQE = 1/2 and
ν = 3/8; (c) is for N = 12 QE’s at 2l = 21, and it
should also correspond to νQE = 1/2 and ν = 3/8. The
pseudopotentials given by Lee et al. [9] were used in ob-
taining these results. For small values ofR, their VQE(R)
agrees reasonably well with our earlier results [5–8,10],
and the spectra and pair amplitudes are not very sen-
sitive to which of these different VQE(R) is used. The
νQE = 1/3 state is one of a sequence of states occurring
at 2l = 3N −7 whose spectra we have evaluated numeri-
cally for 4 ≤ N ≤ 12. The other two states belong to the
sequence 2l = 2N + 1, which together with their conju-
gate states at 2l = 2N − 3 (obtained by replacing N by
2l+1−N , the number of QH’s) correspond to νQE = 1/2
and ν = 3/8. Frames (a) and (b) show L = 0 ground
states separated by a substantial gap from excited states.
Frame (c) does not have an L = 0 ground state, though
a simple pairing model [17, 18] would predict one for
this case. In frames (d), (e), and (f) the values of the
pair amplitude functions G(R) for the ground states of
(a), (b), and (c) are shown as solid dots. For the sake of
contrast, G(R) for a superharmonic electron pseudopo-
tential are shown as open circles. The pairing at R = 1

Fig. 6. Triplet amplitude G3(R3 = 3) plotted as a function
of α in the lowest L = 0 state of different numbers of Fermions
N interacting through Uα in a shell with 2l = 2N − 3.

and avoidance of R = 3 QP states are quite clear.
A very simple pairing model based on Halperin’s idea

[15] was used [17,18] earlier which assumed that all the
QE’s formed R = 1 pairs. The pairs can be treated as
Fermions [17] or as Bosons [18] , and if Laughlin cor-
relations between the pairs are assumed, incompressible
ground states are formed at νQE = 1/3, 1/2, and 2/3 and
νQH = 1/5, 1/4, and 2/7 giving novel condensed states
at the values of LL fillings ν = 5/13, 3/8, 4/11, and
ν = 5/17, 3/10, 4/13 observed experimentally [1]. How-
ever, the simple complete pairing model is probably too
simple. Two major difficulties are not yet understood.
First, the states obtained in our numerical calculations
occur at 2l = 3N−7 (for νQE = 1/3) for N = 8, 9, 10, 11,
and 12, and at 2l = 3

2N + 2 (for νQE = 2/3) for N = 10,
12, 14, 16, and 18. Complete pairing can only occur for
N even, and the sequence at 2l = 3N−7 occurs for both
odd and even values of N . In addition, the simple com-
plete pairing model would predict the νQE = 1/3 state
at 2l = 3N − 5 and the νQE = 2/3 state at 2l = 3

2N + 1,
instead of at the values of 2l observed in the numerical
study. Although this discrepancy is a finite size effect
which becomes negligible for large N , we consider it im-
portant and are trying to understand its cause.

It is worth noting that the formation of clusters of
k Fermions of angular momentum l (when the clus-
ters themselves are treated as Fermions) results in con-
densed liquid states of Laughlin correlated clusters when
2l = mN − [(m − 1)k + 1]. This would give correlated
pair states at 2l = 2N − 3 and correlated triplet states
at 2l = 3N − 7, as observed in our numerical results.
Of course, the occurrence of complete triplet formation
requires N to be divisible by 3, so it would only explain
selected states in the 2l = 3N − 7 sequence. We are
still investigating what happens when incomplete clus-
tering (simultaneously having single Fermions, Fermion
pairs, Fermion triplets, etc.) occurs. The second prob-
lem is that the paired states at 2l = 2N − 3 (and its e–h
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conjugate states at 2l = 2N + 1) do not occur at every
expected even value of N in the numerical experiments.

Our numerical results [19] are summarized in Fig. 5,
a plot of N versus 2l which contains four straight lines
2l = 3N −7, 2l = 3

2N +2, 2l = 2N −3, and 2l = 2N +1.
The last two are conjugate pair states for νQE = 1/2.
The value at which νQE = 1/3 and νQE = 2/3 states
found in our numerical experiments are shown as solid
squares and solid dots, respectively. The values at which
we find νQE = 1/2 states are shown as open circles and
squares (the circles and squares surround the solid dots
and solid squares at 2l = 17, where νQE = 1/2 and
νQE = 1/3 or νQE = 2/3 fit the observed states). The
expected but unobserved states at 2l = 13 (for N = 6
and 8), 2l = 21 (for N = 10 and 12), and 2l = 29 (for
N = 14 and 16) are indicated by the symbol ‘+’.

We know [20] that for a model pseudopotential with
Uα(R = 1) = 1 − α and Uα(R = 3) = α/2, having
approximately α ≤ 0.25 and α ≥ 0.75 leads to Laugh-
lin correlations with G(R = 3) � G(R = 1) and anti-
Laughlin correlations with G(R = 3) � G(R = 1), re-
spectively. For α ≈ 0.5 (as in the first excited electron
LL), G(R = 3) ≈ G(R = 1). For this case, the Moore–
Read state [21] is considered a good description, and it
is directly applicable to the ν = 5/2 state which corre-
sponds in the Uα to α ≈ 0.5.

A model three-body pseudopotential [22] V3(R3) =
δR3,3 (where R3 = 3l − L′ and L′ is the three-particle
angular momentum) can be used to describe the Moore–
Read correlations. In Fig. 6 we display G3(R3 = 3), the
amplitude for triplets with R3 = 3 (the smallest allowed
value) as a function of α, the parameter in the two-body
pseudopotential Uα(R).

It is clear that for 0.4 ≤ α ≤ 0.5, triplets with R3 = 3
are maximally avoided. However, for α ≈ 1, G3(R3 = 3)
is restored to a value even larger than that for α = 0.
This is certainly suggestive of clusters larger than pairs,
and is currently being studied.
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