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Abstract

The residual interactions between Laughlin quasiparticles can be obtained from exact numerical diagonalization studies of

small systems. The pseudopotentials VQPðRÞ describing the energy of interaction of QE’s (or QH’s) as a function of their

‘relative angular momentum’ R cannot support Laughlin correlations at certain QP filling factors (e.g., nQE ¼ 1=3 and

nQH ¼ 1=5). Because of this the novel condensed quantum fluid states observed at n ¼ 4=11; 4/13 and other filling fractions

cannot possibly be spin polarized Laughlin correlated QP states of the composite Fermion hierarchy. Pairing of the QP’s clearly

must occur, but the exact nature of the incompressible ground states is not completely clear.
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Fractional quantum Hall states have been observed recently

at unexpected values of the electron filling factor n [1].

Some of these states have been attributed to composite

Fermions (CF’s) of different ‘flavor’ with the notation 2CF,
4CF,… used for CF’s with different numbers of attached

Chern–Simons (CS) flux quanta [1,2]. This idea is not new.

It is equivalent to a CF hierarchy scheme [3], which

involved the reapplication of the CS transformation to

quasiparticles (QP’s) in partially filled CF angular momen-

tum shells (or Landau levels) proposed to describe odd

denominator fractions that did not belong to the Jain

sequence [4] of filling factors. Furthermore, it is known from

exact numerical diagonalization studies of small system that

certain fractional filling (e.g., n ¼ 4=11 corresponding to

quasielectron (QE) filling fraction nQE ¼ 1=3 and n ¼ 4=13

corresponding to quasihole (QH) filling nQH ¼ 1=5) do not

possess Laughlin-type incompressible liquid ground states

[3,5]. The reason for this is that the CS transformation

applied to QP’s in the CF hierarchy picture is applicable

only to interacting systems which support Laughlin

correlations [5]. By Laughlin correlations we mean the

maximum avoidance of pair states with the largest pair

angular momentum L0 (or smallest value of the ‘relative

angular momentum’, R ¼ 2l 2 L0; where l is the angular

momentum of the individual particles). In order to support

Laughlin correlations [5–7], the pseudopotential VðL0Þ

describing the interaction energy of a pair of particles as a

function of the pair angular momentum L0; must increase,

approaching the avoided value of L0; more quickly than

L0ðL0 þ 1Þ: We refer to such a potential as ‘superharmonic’

since it increases more quickly than any VHðL
0Þ ¼ A þ BL0̂2

(where A and B are constants), defined as a harmonic

pseudopotential [5–7]. For electrons in the lowest Landau

level ðn ¼ 0Þ; V0ðL
0Þ is ‘superharmonic’ at every value of L0:

For excited Landau levels [8] ðn $ 1Þ VnðL
0Þ is not

superharmonic at all the allowed values of L0: Neither is
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the pseudopotential VQPðL
0Þ [5–10], describing the inter-

action of Laughlin QP’s, superharmonic at all allowed

values of L0: In these situations the interacting particles tend

to form pairs or larger clusters in order to lower the total

energy [8]. These pairing correlations can also lead to a

nondegenerate incompressible ground state. Moore and

Read [11] proposed such an incompressible ground state of

pairs to explain the observation of the fractional quantum

Hall effect at n ¼ 5=2: For Laughlin QP’s of the n ¼ 1=3

state, it has been shown that VQEðL
0Þ is not superharmonic at

R ¼ 1; and VQHðL
0Þ is not at R ¼ 3: Therefore, suggestions

[1,2] that n ¼ 4=11 and n ¼ 4=13 are daughter states in a spin

polarized system that arise from Laughlin condensation of

QP’s at nQE ¼ 1=3 and nQH ¼ 1=5 cannot possibly be

correct.

The object of the present paper is to demonstrate by both

analytical and numerical techniques that Laughlin corre-

lations will not occur for the lowest energy states in the

spectrum if the pseudopotential is subharmonic. By using

the quasiparticle pseudopotentials VQPðL
0Þ obtained by

numerical diagonalization of small systems of electrons,

we have obtained the energy spectra of systems containing a

small number of QP’s (with 4 # NQP # 18 at QP filling

factors in the range 1=3 # nQP # 2=3). These results are

thought of as ‘numerical experiments’ with which intuitive

physical models are to be compared. The simple models that

we have considered are based on the idea that only two

coefficients VQPðRÞ of the QP pseudopotential play an

important role in determining the nature of the correlations

(R ¼ 1 and R ¼ 3 for QE’s; R ¼ 3 and R ¼ 5 for QH’s,

with VQHðR ¼ 1Þq VQH at R ¼ 3 and R ¼ 5). Though no

simple model exactly fits the numerical experiments, it

seems clear from the numerical experiments alone that the

correlations among the QP’s which give rise to the novel

fractional quantum Hall (FQH) states are of a new type that

involves formation of pairs. These correlations are very

different from the Laughlin correlations, which give rise to

the standard CF hierarchy of spin polarized FQH states.

To eliminate boundary conditions but preserve transla-

tional symmetry in a two dimensional (2D) electron gas of

finite size, it has become customary to confine the electrons

to a spherical surface of radius R: A magnetic monopole of

strength 2Qf0 (where f0 ¼ hc=e is the flux quantum and 2Q

is an integer) at the center produces a radial magnetic field

of magnitude B ¼ 2Qf0=4pR2: The single particle eigen-

functions in this Haldane geometry [12], are called

monopole harmonics and denoted by lQ; l;ml; where Q is

half the monopole strength, l the angular momentum, and m

its z-component. The single particle eigenvalues are given

by e l ¼ ð"vc=2QÞ½lðl þ 1Þ2 Q2�; where vc is the cyclotron

frequency. Because e l must be positive, the minimum value

of l is Q; and we can label the angular momentum shells by

ln ¼ Q þ n; where n is a non-negative integer. For

convenience of notation we will write the monopole

harmonics as ll;ml with Q being understood.

For a system of N electrons confined to a shell of angular

momentum l; we can form N electron eigenfunctions with a

given value of L; the total angular momentum, and M; its

z-component. They can be written lL;M;al with the label a

distinguishing distinct multiplets with the same values of L:

The Wigner–Eckart theorem states for a scalar interaction

H0 that kL0;M0;a0lH0lL;M;al ¼ dLL0dMM0 kLa0lH0lLal and

that the reduced matrix element on the right hand side is

independent of M: The eigenfunction for the ath multiplet

of total angular momentum L formed by adding the angular

momenta li ¼ l of N identical Fermions can be written

llN ; Lal ¼
X

L12L00a00

GLa;L00a00 ðL12Þll2
; L12; lN22

; L00a00;Ll: ð1Þ

Here the GLa;L00a00 ðL12Þ are ‘coefficients of fractional grand-

parentage’ [13]. The wavefunctions on the right hand side of

Eq. (1) are obtained by adding the angular momentum L12 of

the pair k1; 2l to the angular momentum L00 of the a00

multiplet of the j ¼ 3; 4,…, N remaining Fermions to

obtain the total angular momentum L: Although

ll2; L12; lN22; L00a00; Ll is not antisymmetric under the inter-

change of i ¼ 1 or 2 with j ¼ 3; 4,…, N; the eigenfunctions

llN ; Lal are totally antisymmetric. We define the ‘pair

amplitude’ GLaðL
0Þ by [14] GLaðL

0Þ ¼
P

L00a00 lGLa;L00a00 ðL0Þl2:
Orthonormality of the eigenfunctions llN ; Lal gives the

sum rule
X

L0

GLaðL
0Þ ¼ 1: ð2Þ

A second useful sum rule

1
2

NðN 2 1Þ
X

L0

L0ðL0 þ 1ÞGLaðL
0Þ

¼ LðL þ 1Þ þ NðN 2 2Þlðl þ 1Þ ð3Þ

can be obtained by using Eq. (1) together with the simple

theorem on pair angular momenta L̂2 þ NðN 2 2Þl̂2 ¼P
ki;jl ðl̂i þ l̂jÞ

2 [7]. In this equation l̂i þ l̂j is the angular

momentum operator of the pair ki; jl; and the sum is over all

pairs. The energy of the multiplet lLal is given by

EaðLÞ ¼
1
2

NðN 2 1Þ
X

L0

GLaðL
0ÞVðL0Þ; ð4Þ

where VðL0Þ is the pseudopotential. It is clear from Eq. (4)

and the sum rules [Eqs. (2) and (3)] that, for a ‘harmonic

potential’ VHðL
0Þ; the energy is given by EaðLÞ ¼ c1 þ

c2LðL þ 1Þ where c1 and c2 are independent of a. Because

the right hand side of this equation is independent of a;

every multiplet with the same value of L is degenerate, and

the harmonic pseudopotential introduces no correlations [6,

7]. Any linear combination of eigenfunctions with the same

value of L (i.e.,
P

a calLal) has the same energy.

Since R ¼ 2l 2 L0; we can think of the pseudopotential

as a function of R; and write VðRÞ ¼ VHðRÞ þ DVðRÞ:

Correlations are completely determined by the anharmonic

part DVðRÞ: For a simple model in which DV ¼ D1dR;1;

with the constant D1 . 0; the lowest energy state for each
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value of L is the one with the smallest value of GLaðR ¼ 1Þ;

which we will call GL0ðR ¼ 1Þ: This is exactly what we

mean by Laughlin correlations. In fact, if D1 is infinite, the

only states with finite energy are those for which GL0ðR ¼

1Þ vanishes. The complete avoidance of the pair states with

R ¼ 1 corresponds exactly to the Laughlin–Jastrow factorQ
ki;jl ðzi 2 zjÞ

2 in the Laughlin wavefunction for the n ¼ 1=3

state [15].

Now let’s consider a model pseudopotential which can

be superharmonic or subharmonic at R ¼ 1; viz., one in

which DVðRÞ ¼ D1dR;1 þ D3dR;3: We assert that if D3 is

sufficiently large, Laughlin correlations will not produce the

lowest energy state. We demonstrate this as follows:

(i) the Laughlin correlated L ¼ 0 ground state which

occurs at 2Q ¼ 3ðN 2 1Þ when D3 ¼ 0 must have the

minimum possible value of G0ðR ¼ 1Þ:

(ii) in the presence of D3 . 0; decrease G0ðR ¼ 3Þ by an

amount DG:

(iii) in order to satisfy the first sum rule, Eq. (2), other pair

amplitudes will have to increase.

For simplicity, let’s assume that only GðR ¼ 1Þ and

GðR ¼ jÞ; with j an odd integer between 2l and 5, increase.

By taking DGðR ¼ 1Þ ¼ xjDG and DGðR ¼ jÞ ¼ ð1 2 xjÞ

DG along with DGðR ¼ 3Þ ¼ 2DG; the first sum rule is

automatically satisfied. The second sum rule, Eq. (3),

determines xj; giving xj ¼ 1 2 2ð4l 2 3Þð4l 2 jÞ21 �

ðj 2 1Þ21: The change in energy of the L ¼ 0 ground state

in the presence of D1 and D3 is given by

DE0 ¼ DGðxjD1 2 D3Þ: ð5Þ

This becomes negative when D3 . xjD1: For example, if we

take j ¼ 5; x5 ¼ ð4l 2 7Þð8l 2 10Þ21: The value of D3 ¼

x5D1 is exactly the same value that causes DVðRÞ to behave

harmonically between R ¼ 1 and R ¼ 5: It always gives a

superharmonic pseudopotential VðRÞ at R ¼ 3; but at R ¼

1; it is superharmonic only if D3 , x1D1: It is not difficult to

see that transfer of DG to R ¼ 1 and R ¼ 5 results in the

minimum value of xj: The transfer of pair amplitude to pair

states with R ¼ 1 together with the decrease in pair

amplitude at R ¼ 3 is a clear indication of the formation

of Fermion pairs with R ¼ 1 and the avoidance of pair states

with R ¼ 3 (and the maximum repulsive interaction).

Numerical studies [8,16,17] of small systems clearly

support this picture when the pseudopotential is not

superharmonic.

The number of electrons required in order to have a

system of QP pairs of reasonable size is, in general, too large

for exact diagonalization in terms of electron states and the

Coulomb pseudopotential [18]. However, by restricting our

consideration to the QP’s in the partially filled CF shell, and

by using the QP pseudopotential obtained from numerical

studies [5–10] of small systems of electrons, we can reduce

the numerical diagonalization to manageable size [19]. The

QP pseudopotentials determined in this way [16] are quite

accurate up to an overall constant which has no effect on the

correlations. Furthermore, because the correlations are

primarily determined by the short range part of the

pseudopotential, the numerical results for small systems

should describe the essential correlations quite well for

systems of any size. In Fig. 1, we present low energy spectra

for three different cases: (a) is for N ¼ 10 QE’s at 2l ¼ 23;

and corresponds to nQE ¼ 1=3 and n ¼ 4=11; (b) is for N ¼

12 QE’s at 2l ¼ 25; and corresponds to nQE ¼ 1=2 and n ¼

3=8; (c) is for N ¼ 12 QE’s at 2l ¼ 21; and it should also

correspond to nQE ¼ 1=2 and n ¼ 3=8: The pseudopotentials

given by Lee et al. [10] were used in obtaining these results.

For small values of R; their VQEðRÞ agrees reasonably well

with our earlier results [5–9], and the spectra and pair

amplitudes are not very sensitive to which of these different

VQEðRÞ is used. The nQE ¼ 1=3 state is one of a sequence of

states occurring at 2l ¼ 3N 2 7 whose spectra we have

evaluated numerically for 4 # N # 12: The other two states

belong to the sequence 2l ¼ 2N þ 1, which together with

Fig. 1. Low energy spectra and pair amplitude functions: Frames

(a), (b), and (c) show the energy spectra for N ¼ 10 QE’s at 2l ¼ 23;

for N ¼ 12 QE’s at 2l ¼ 25; and for N ¼ 12 QE’s at 2l ¼ 21 as a

function of total angular momentum L. Frames (d), (e), and (f)

display pair amplitude functions GðRÞ for the ground states of the

case presented in (a), (b), and (c), as a function of relative pair

angular momentum R: The solid circles are the ground state values

of GðRÞ for the QE pseudopotentials. The open circles are the values

for the superharmonic electron pseudopotential. All spectra were

obtained using VQEðRÞ given in Ref. [10].
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their conjugate states at 2l ¼ 2N 2 3 (obtained by replacing

N by 2l þ 1 2 N; the number of QH’s) correspond to nQE ¼

1=2 and n ¼ 3=8: Frames (a) and (b) show L ¼ 0 ground

states separated by a substantial gap from excited states.

Frame (c) does not have an L ¼ 0 ground state, though a

simple pairing model [16,17] would predict one for this

case. In frames (d), (e), and (f) the values of the pair

amplitude functions GðRÞ as a function of R for the ground

states of (a), (b), and (c) are shown as solid dots. For the sake

of contrast, GðRÞ for a superharmonic electron pseudopo-

tential are shown as open circles. The pairing at R ¼ 1 and

avoidance of R ¼ 3 QP states are quite clear.

A very simple pairing model was presented [16,17]

earlier which assumed that all the QE’s formed R ¼ 1 pairs.

The pairs can be treated as Bosons [17] or as Fermions [16],

and if Laughlin correlations between the pairs are assumed,

incompressible ground states are formed at nQE ¼ 1=3; 1/2,

and 2/3 and nQH ¼ 1=5; 1/4, and 2/7 giving novel condensed

states at the values n ¼ 5=13; 3/8, 4/11, and n ¼ 5=17; 3/10,

4/13 observed experimentally [1]. However, the simple

‘complete pairing’ model is probably too simple. Two major

difficulties are not yet understood. First, the states obtained

in our numerical calculations occur at 2l ¼ 3N 2 7 (for

nQE ¼ 1=3) for N ¼ 8; 9, 10, 11, and 12, and at 2l ¼ 3
2

N þ 2

(for nQE ¼ 2=3) for N ¼ 10; 12, 14, 16, and 18. Complete

pairing can only occur for N even, and the sequence at

2l ¼ 3N 2 7 occurs for both odd and even values of N: In

addition, the simple ‘complete pairing’ model would predict

the nQE ¼ 1=3 state at 2l ¼ 3N 2 5 and the nQE ¼ 2=3 state

at 2l ¼ 3
2

N þ 1; instead of at the values of 2l observed in the

numerical study. Although this discrepancy is a finite size

effect which becomes negligible for large N; we consider it

important and are trying to understand its cause. It is worth

noting that the formation of Fermion triplets (i.e., three QE’s

forming a compact droplet with angular momentum 3l 2 3)

would lead to the relation 2l ¼ 3N 2 7; as would partial

pairing with N1 ¼ 1
3

N unpaired and 2N2 ¼ 2
3

N paired QE’s.

However, both cases require N to be divisible by three. We

are currently exploring these and other extensions of the

simple model of complete pairing, but have no clear answer

at present. The second problem is that the nQE ¼ 1=2 states,

which occur at 2l ¼ 2N 2 3 and 2l ¼ 2N þ 1 values

predicted by the simple model, are found in our numerical

calculations as conjugate pairs at 2l ¼ 9 and N ¼ 4 or 6, at

2l ¼ 17 and N ¼ 8 or 10, and at 2l ¼ 25 and N ¼ 12 or 14.

However, incompressible states are found numerically

neither at 2l ¼ 13 and N ¼ 6 or 8, at 2l ¼ 21 and N ¼ 10

or 12, nor at 2l ¼ 29 and N ¼ 14 or 16, where the simple

model suggests they should occur. These results are

summarized in Fig. 2, a plot of N versus 2l which contains

four straight lines 2l ¼ 3N 2 7; 2l ¼ 3
2

N þ 2; 2l ¼ 2N 2 3;

and 2l ¼ 2N þ 1: The last two are conjugate pair states for

nQE ¼ 1=2: The value at which nQE ¼ 1=3 and nQE ¼ 2=3

states found in our ‘numerical experiments’ are shown as

solid squares and solid dots, respectively. The values at

which we find nQE ¼ 1=2 states are shown as open circles

and squares (the circles and squares surround the solid dots

and solid squares at 2l ¼ 17; where nQE ¼ 1=2 and nQE ¼

1=3 or nQE ¼ 2=3 fit the observed states). The expected but

unobserved states at 2l ¼ 13 (for N ¼ 6 and 8), 2l ¼ 21 (for

N ¼ 10 and 12), and 2l ¼ 29 (for N ¼ 14 and 16) are

indicated by the symbol ‘þ’. It would be tempting to

suggest that when the number of QE’s is even (N ¼ 4, 8, 12)

for 2N , 2l þ 1; that the pseudopotential of the Fermion

pairs (FP’s) would be subharmonic at nFP ¼ 1=5 (corre-

sponding to nQE ¼ 1=2), and that the Fermion pairs would

themselves form pairs. Then, only values of N divisible by

four would lead to condensed states. There are two problems

with this hypothesis. The first is that the relation between 2l

and N would change from the values 2l ¼ 2N 2 3 and 2N þ

1 found numerically. The second is that we do not know the

Fermion pair–Fermion pair interaction with a great degree

of confidence. These difficulties are being investigated, but

at the moment, they call into question the validity of our

simple ‘complete pairing’ model. Despite this, we are

confident from our numerical and analytical work that some

pairing of the QP excitations must occur so that the QP’s can

avoid pair states with the maximum repulsion.
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