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Quasiparticle interactions in fractional quantum Hall systems:
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The pseudopotentials describing the interactions of quasiparticles in fractional quantutf@td)l states
are studied. Rules for the identification of incompressible quantum fluid ground states are found, based upon
the form of the pseudopotentials. States belonging to the Jain sequemdd +2pn) !, wheren andp are
integers, appear to be the only incompressible states in the thermodynamic limit, although other FQH hierarchy
states occur for finite size systems. This explains the success of the composite Fermion picture.

[. INTRODUCTION thin solenoids, each carrying an even number & flux
quanta. The resulting CF's move in an effective, reduced
The fractional quantum HalFQH) effect~*i.e., quanti- field B*. Smaller LL degeneracy of CF’s leads to a lower
zation of the Hall conductance of a two-dimensional electroreffective filling factorv* given by
gas(2DEGQG) at certain densities in high magnetic fields, is a
consequence of finite excitation gaps that open abdave (v¥) " t=v1-2p. (1)
compressiblenondegenerate ground stat€S’s) at certain
fractional fillings of the lowest Landau levelLL), v
=1/3,2/5, etc. Because of the LL degeneracy, it is clear tha,E
those incompressible GS’s must originate from electron-
electron interactions. This makes the physics of the FQl—E
effect very different from that underlying the integer quan-

It was found that the sequence of fractional electron filling
ctorsv corresponding to integer CF fillings" agrees with
e values at which FQH states occur. The qualitative suc-
ess of the CF picture led to the conjecture that the CS
harge-flux and Coulomb charge-charge interactions beyond
L . i the mean field largely cancel one another, and the system of
tum Hall (IQH) effect?® despite similar manifestation of the strongly interacting electrons in a high magnetic field is con-
two In transport experiments. . verted to one of weakly interacting CF’s in a lower field.
While the origin of most prominent FQH states at  pHowever, this cannot possibly be correct, since the CS en-
=1/m (m is an odd integer has been explained by ergy (xB) and Coulomb energy=(yB) scale differently
Laughlin? our understanding of why such states are alsquith the magnetic fieldB. Also, higher LL’s used in the
formed at some other filling factoréindependent of the procedure to obtain the wave functions are later eliminated
sample, density, etcor what conditions must in general be by projection, which puts in doubt their role in the final
satisfied for an interacting system to exhibit the FQH effectresult and most likely does not allow for interpretation in
at different fractions, is not yet completely satisfactory. Asterms of an additional, effective magnetic field.
an extension of Laughlin’s idea, Halddrand other *pro- In this paper we attempt to justify Haldane’s hierarchy
posed different, although equivaléiit *hierarchy schemes, picture in terms of the behavior of the interaction between
in which the elementary quasiparticlelike excitations of thequasiparticlesQP’s), which he considered of importance but
Laughlin fluid form Laughlin-like states of their own. How- totally unknown. We derive simple rules for identifying frac-
ever, the original hierarchy approaches all share a majations that do or do not correspond to incompressible FQH
problem: they predict too many fractions and give no apparstates by analyzing pseudopotentiaié® of the QP interac-
ent connection between the stability of a given state and thBons on successive levels of hierarchy. Based on the connec-
hierarchy level at which it occurs. It is knowfP*8that the  tion between the form of pseudopotentiphir energy versus
FQH effect does not occur at some simple fractions predictegair angular momentujrand the nature of low-lying states,
at low levels of hierarchy, while explanation of some other,we explain why QP’s do not form Laughlin states at athl/
experimentally observed ones requires introducing manyillings. Our results validate understanding of experimentally
generations of excitations. observed FQH states in intuitive terms of the hierarchy of
A different approach, introduced by J&lrand developed Laughlin excitations, established in Refs. 7-11. We also
by Lopez and Fradkf and by Halperin, Lee, and Redll, show thatin large systemsvalid incompressible FQH states
involves the concept of composite fermiof@F’s). As for-  obtained in this hierarchy picture are equivalent to Jain
mally described by the mean-field Chern-Sim¢@$) trans-  states, despite the different underlying physics used to justify
formation, the CF’s are constructed by binding part of thethe two approaches. This explains the success of the CF pic-
external magnetic field to electrons in form of infinitely ture when applied to FQH systems better than the assumed
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cancellation between CS and Coulomb interactions. It alsdhe QP’s in the underlyingparen} Laughlin state have a
defines limitations of the CF picture when applied to systemgertain single-particle energgqp, Statistics, number of
with general interactionée.g., recently studied FQH systems available single-particle statgg)p (in analogy to LL degen-
of charged excitonic complexes formed in an electron-holeeracy for electronsand interact with one another. Provided
gas in a high magnetic fielt?). The discussion is illus- their interaction is small compared toandeop, QP'’s can,
trated with results of exact numerical diagonalization calcu4in principle, form Laughlin incompressibl@glaughter states
lations on a Haldane sphérearried out for up to twelve of their own. If » is not exactly equal to the value at which
electrons atv~ 1/3 (Hamiltonians with dimensions of up to QP’s would form a daughter Laughlin state, low-lying QP

3x10°) using a modified Lancz8%algorithm. states will contain their own QP-like excitations in the
nearest-daughter Laughlin state, which can in turn form an
Il HALDANE SPHERE incompressible granddaughter Laughlin state, etc.

Since the QE or QH statistics enters the hierarchy of frac-

Because in the absence of electron-electron interactionttons only through the counting of many-body states, differ-
all many-body states in the lowest Llv{< 1) are degenerate, ent statistics give equivalent results as long as the single-
those interactions cannot be treated perturbatively. Thereparticle degeneraciegge andgqy are chosen correctly. The
fore, numerical diagonalization techniques are commonlymean-field CS transformation can be used to formally con-
used to study FQH systems, which, however, limit their sizevert bosons into fermions by attaching one flux quantum to
to a finite (smal) number of electrons. In order to model a each bosor’~3° For example, in the spherical geometry,
finite density 2DEG, motion afl electrons must be restricted where gop=2lgpt+ 1 is related to QP angular momentum
to a finite area. This can be accomplished by imposing laterdl,p, systems ofN bosons each with angular momentum
confinement? periodic boundary condition§PBO),** or  andN fermions each with angular momentunare equiva-

confining electrons on a closed surfaééaldane spheje lent and contain the samemultiplets if
The last approach is particularly useful as it naturally
avoids edge effects and preserves full two-dimensi¢2) I=k+(N—1)/2 )

translational symmetry of a planar 2DEG in the form of the
rotational symmetry of here. A pair of ntum
n(zjtﬁ;[boeri OS%/ a pleatnye,othz ignteere of mp%M(;, gr?g O:e?:t?v;u A_S shown by Hal(_jar?e(and can be understood from a simple
momenta, correspond to the total angular momentuand plc'Eure of exmfatlpns created between electrons on a,line
its projectionL, on a spheré? The degeneracies associatedQ_ES and QH's in .anN-eIectron Laughlin state_ can be
with CM excitations on a plane correspond to thoseLof VieWed as bosons witkge=Kq=N/2. However, this com-
multiplets on a sphere, and the nondegenerate GS’s of a p|Q1nat|on of statistics and c_jegenera_c_y gives proper counting
nar 2DEG have. =0 in their spherical models. of many-body states only if ,an addmgnal hard core is intro-
The magnetic field perpendicular to the surface of the duceg that forbids two QE’s to be in a pair state with
Haldane sphere of raditR is an isotropic radial field pro- - -~ Such a hard core can be accounted for by a mean-
duced by a magnetic monopole placed at the origin. Théleld*fermlon-to—fermlonZg_szstransformat_lon that replakgs
monopole strength®, defined as the number of flux quanta PY Koe=Kqe— (Noe—1), whereNgp is the QP number.
piercing the sphere, is an integer, as required by Dirac’s In order to stress the connection with Jaln_’s _CF picture
condition® In the extrapolation of finite-size results to the and the recently pr_oposﬁ'mlgrarchy Of, CF excitations, we
thermodynamic limit, the magnetic length=R/\/S is used ~ US€ here a fermionic dgscrlptlon of QP’s. The appropriate QP
as the length scale. The single-particle states on the Haldaf@@gular momenta obtained from H®) are
sphere are labeled by angular momentierS and its pro-
jection|, and are called monopole harmonic¥:>* The en- N=(ngp—1)
ergies form (2+1)-fold degenerate angular momentum 'QPZT’ )
shells, or LL’s, labeled byw=1—S and separated by cyclo-
tron gaps. For the FQH states &t 1, only the lowest
=0) spin-polarized angular momentum shell efS need be
considered. ThéN-electron Laughlinv=1/m states in a P
+1 degenerate shell occur at=2m(N—1).

with — for Iog and + for |o. Note thatl e andl gy given
by Eq.(3) are equal to angular momenta of holes in highest
filled and particles in lowest empty CF LL’s used in the CF
picture.

The expression for the filling factar of a daughter state
lll. HERARCHY OF LAUGHLIN EXCITATIONS is very similar to Eq(1) and reads

Haldane’s hierarchy of FQH states is constructed in the L ,
following way. At certain filling factors,y=1/m (m is an v o =2p+ (1t vgp) (4)
odd integey, electrons form Laughlin incompressible states.
At v slightly different from a Laughlin % filling, the low-  wherevqp is the filling factor of QE’s (+) or QH's (=) in
lying states must contain a number of quasiparticlegshe Laughlin (+1)"! parent state. lteration of Eq4)
(QP’'s—quasielectrons(QE’s) at »>1/m or quasiholes with vop substituted by gives a continuous fraction, termi-
(QH’s) at v<<1/m—in the Laughliny=1/m state. States in- nated when an incompressible statgthout QP’s,vqop="0)
volving more than the minimum number of QP’s required byis reached. For example, for the state containisgl/5 fill-
the difference between and 1in contain additional QE-QH ing of QH’s in thev=1 filling of QE’s in the Laughliny
pairs’® and are separated from the lowest band by ayap =1/3 state of electrons, this procedure gives
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FIG. 1. Diagram of filling factors obtained in the hierarchy of
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=0) hierarchy GS’s can occur at these fillings in finite sys-
tems. Those finite size valid hierarchy G®lsaughlin states

of Laughlin QP’s should be distinguished from othkr=0
GS'’s that can occur at different combinationsMfand 25
[e.g., forN=12 and B=29 in Fig. 3c) of Ref. 11], but do

not have Laughlin-like QP correlations and thus cannot be
associated with a filling factor. At the remaining filling fac-
tors, unmarked in Fig. 1, the hierarchy picture fails as ex-
pected and the system is compressible.

IV. PSEUDOPOTENTIALS

The two-body interaction of identical particles in an an-
gular momentum shell of degenerady+2l can be written in
terms of the pseudopotentiaV(R), i.e. the pair interaction
energyV as a function of relative pair angular momentum

R=2l-L, (6)
wherelL is the total angular momentum of the p&irR is an

odd integer and increases with increasing average
separatiorf® Plotting V as a function ofR rather than ofL

Laughlin excitations. Lines connect parent and daughter states WitH”OWS for meaningful comparison of pseudopotentials in

quasiparticle filling factors shown in boxes. Asterisks, incompress-
ible states; question marks, hierarchy ground states observed only{

finite systems; other fractions, compressible states.

1
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shells of different degeneracy; for—, the pseudopoten-
n .
lals calculated on the sphere converge to the pseudopotential
on a plane(on a plane;R is defined? as the usual relative
angular momentujn

Whether a system of interacting fermions will form a
Laughlin state at the i filling of their angular momentum
shell depends on the short range of repulsive interaction.
Precisely, the Laughlinv=1/m incompressible statdin
which R=m for all pairg is formed if? in the vicinity of
R=m, the interaction pseudopotential increases more
quickly than linearly as a function af(L+1), i.e., more
quickly than that of harmonic repulsioW,,(L)=a+ BL(L
+1), wherea and 8 are constants. More generally, if this

In Fig. 1 we display more filling factors obtained in the hi- condition is satisfied in the vicinity cR=2p+1 for certain
erarchy scheme. The lines connect parent states with thefi; the total many-body Hilbert spa@¢ contains ar{approxi-

daughter states obtained for QP fillingge shown in boxes.

mate eigensubspaé@H,, holding states wittR=2p+1 for

Note that holes created in a parent state of holes are particlédl pairs(i.e., avoidingp pair states of largest repulsiorA
in the grandparent stat@n a sense that their presence in- corresponding low-energy band occurs in the spectrum,
creases overall, i.e. their number increases when the mag-separated from higher states by a gap associatedW{iit).
netic field is decreas¢dFor example, holes created in the At Laughlin fillings of v=(2p+1)~*, the subspace(,, con-

v=1/3 filling of holes in thev=1/3 Laughlin state of elec-

trons will be referred to as QE'’s in the=2/7 state.

As first stated by Haldanewhether a given fraction ob-

tains a single nondegenerate=0) multiplet with R=2p
+1, and the lowest band consists of the Laughlin GS.
The mathematical formalism derived to quantitatively

tained in the hierarchy scheme corresponds to a stable irfireat the ability of electrons to avoid certain pair states in-
compressible GS depends on the stability of the parent statolves the concept of fractionagrand parentagé?** well

and on the interaction between QP’s in the daughter state. Agrown in atomic and nuclear physics and used rec&hty

will be shown in the following sections, these criteria elimi- to describe FQH systems. It is worth noting that avoiding
nate most of all odd denominator fractions that can be conhighest-energy states of three or more particles was recently

structed by an iteration of E@4). The relatively small num-

proposedf* to explain incompressible GS'’s at other fillings

ber of possible candidates left include the Jain sequencéan Laughlin’sy=1/m.

obtained from Eq(1) for integerv*. These stateG@nd their

The electronCoulomb pseudopotential in the lowest LL

electron-hole conjugatehave been marked with asterisks in V¢(R) satisfie$®? the “short-range” criterion i.e., in-
Fig. 1. As will be shown in the following sections, these arecreases more quickly thavi, as a function ofL) in entire
all the incompressible states predicted by the “correct” hi-range of R, which is the reason for incompressibility of
erarchy picture in the thermodynamic limit, and all of them principal Laughlin v=1/m states. However, this does not

have been confirmed experimentaiff?~*® The fractions

generally hold for the QP pseudopotentfaf€on higher lev-

with a question mark in Fig. 1 are most likely compressibleels of hierarchy. We have obtained some of those pseudopo-
in the thermodynamic limit, but valid nondegenerate ( tentials for different values diyp by numerical diagonaliza-
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@ QE's in v=1/3 (b) QH's in v=1/3 the filled shell of Laughlin QE’s. On the other hand, the FQH
0.15+ 0.0 effect at v=2/7 is a fractional effect also on the level of
QH’s in the parentv=1/3 state, and its excitation gap is
governed byWq (1), thelargest pseudopotential parameter
for the QH-QH interaction.

The electron pseudopotenth}(R) is not strictly a short-
range ondfor which V(1)>V(3)> - - -] and the associated

ON=11 @ N=10
0.10 = ONa 9 ON=8 = 0.00 hidden symmetry responsible for occurrence of eigensub-
hog O CESIMS ON-7 BN-6]  (@QHsinw=15 spacesH, and incompressible Laughlin states is only ap-
- o.02 proximate. Actually, a fairly small reduction &f,(1) com-
g ] pared toV(3) that can be achieved in a wide quantum well
f I leads to a breakdown of the Laughlin=1/3 state*’ While
] | 0.00 the hidden symmetry makes the low-lying states near Laugh-

lin fillings virtually insensitive to the details o¥(R) as
— long as it has short rangée. increases more quickly than
L T Vy as a function ot.), it is interesting to ask to what extent
the form of V(R) affects the QP pseudopotentials, and thus

FIG. 2. EnergieE=2¢+V(R) of a pair of quasielectrongeft) the incompressibility of related daughter states. We have
and quasiholegight) in Laughlin »= 1/3 (top) and v= 1/5 (bottom) compared the pseudopotentials in Fig. 2 with the ones ob-
states, as a function of relative pair angular momerRinobtained  tained for “exponential” interaction, Ve (R+2)
in diagonalization ofN electrons. =VexdR)/10, and for “selective” interactionyV/se( R<m)

=0, Vgo(m)=1, andV¢(R>m) =0, and found that all the
tion of appropriate many-electron Hamiltonians on thefeatures in Fig. 2 remain unchanged. This means that the
Haldane sphere and identification of the lowest bands in obshort-range character of interaction between particles in the
tained energy spectra. The total many-electron energigsarent state does not imply the same for interaction between
within those bands contain the enerfgy of the parent state, [aughlin QP’s in the daughter state. This observation, essen-
single-particle energiessyp of the pair of appropriate QP’s, tial for understanding why incompressible states do not oc-
and the QP-QP interaction ener§fpp(L). In Fig. 2 we cur at all odd denominator fractions, might appear somewhat
show the results for QE’s and QH's in Laughii= 1/3 (data  surprising since the QP’s af@ractionally) charged objects
for N=<8 was published before in Ref. 4#éndv=1/5 states. and hence their interaction has a similar nature to that of
The plotted energfE(R) =2eqpt V(L) is given in units  electrons. However, it must be kept in mind that it is the
of €?/\, where\ is the magnetic length in the parent state.combination of interaction potentiaV(r) and available
Different symbols mark pseudopotentials obtained in diagosingle particle Hilbert space that gives pseudopotetidt)
nalization of N-electron systems with differeid and thus and, in turn, determines if Laughlin states ocpeug., for the
with different |op; see Eq.(3). Clearly, the QE and QH same Coulomb potentia¥(r)=e?%r, the Laughliny=1/3
pseudopotentials are quite different and neither one destate occurs in the lowest LL but does not occur in the ex-
creases monotonically with increasify On the other hand, cited one&>*.
the corresponding pseudopotentialsvis 1/3 and 1/5 states Once the Laughlin-like states on a given hierarchy level
look similar, only the energy scale is different. The conver-are found, the QP pseudopotentials must be calculated for
gence of energies at small obtained for largeN suggests these states to determine if they in turn can have any incom-
that the maxima aiR=3 for QE’s and atkR=1 and 5 for  pressible daughter states. As an example of this procedure, in
QH's, as well as the minima &=1 and 5 for QE’s and at Fig. 3 we present a few pseudopotentials calculated for the
R=3 and 7 for QH’s, persist in the limit of large (i.e., for ~ v=2/5, 2/7, and 2/9 parent states. As in Fig. 2, the energy
an infinite system on a planeConsequently, the only incom- E(R)=2eqpt V(L) is given in units ofe?/\, with \ ap-
pressible daughter states of Laughlir-1/3 and 1/5 states propriate for the parent state, ahdis the number of elec-
are those withvge=1 or vqy=1/3 (asterisks in Fig. land  trons in the system that was diagonalized to obtain a particu-
(maybe vqe=1/5 andvqy=1/7 (question marks in Fig.)L  lar pseudopotential.
It is also clear that no incompressible daughter states will The pseudopotentials plotted in Fig. 3 show two types of
form at, e.g.,»,=4/11 or 4/13. behavior at smalR. The ones in Figs.(®,c,) have a maxi-

Let us note that the incompressibility of daughter statesnum atR=3, similarly as those in Figs.(2,0, while the
with completely filled QE shelle.g., atv=2/5 or 2/9 does ones in Figs. &,d,e increase wherR increases between 1
not require any special form of the QE-QE interaction, ex-and 5. Similar behavior of different pseudopotentials is a
cept that it must be weaker than the single-particle energiesonsequence of the particle-hole symmetry between QE’s of
eoe andeqy responsible for the gap. In this sense, the FQHa parent state and QH's of its daughter state with filled QE
effect at Jain fillingy=2/5 can be viewed as an IQH effect shell (voe=1; see Fig. L For example, vacancies in an
of QE’s in the Laughlinv=1/3 state, except that the degen- almost completely filled shell of QE’s in the=1/3 state are
erate single-particle shell available to QE’s is due to a speciaH’s of the v=2/5 state; vacancies in an almost completely
form of elementary excitations of the parent Laughlin statefilled shell of QE’s in they=2/5 state are QH’s of the
rather than due to an effective magnetic field. Similarly, the=3/7 state, etc. The relation between QH'’s in the parent
excitation gap at the= 2/5 filling is not a cyclotron gap but state and QE'’s in the daughter state witg,=1 is equiva-
the energy needed to create a QE-QH pairlike excitation ihent, as the latter is simply the grandparent state. The
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FIG. 4. Few electron energids as a function of total angular
momentumL, obtained in exact diagonalization in terms of indi-
vidual electrons interacting through the Coulomb pseudopotential.
Dashed lines mark gaps separating energy bands.

FIG. 3. EnergieE=2¢+V(R) of a pair of quasielectrondeft)
and quasiholegright) in the second-level hierarchy states mat
=2/5 (top), v=2/7 (centej, and v=2/9 (bottom), as a function of
relative pair angular momentufR, obtained in diagonalization of
N electron systems.

understood in terms of the QP-QP interaction. Figufa 4
particle-hole symmetry discussed above is only approximatshows the spectrum of eight electrons &=218. The low-
because the single particle gaps are not infinitely large comlying band contains states of three QE’s in Laughii 1/3
pared to single particle gags ande, and the QP number is state, each withoe=3 (L=0, 2, 3, 4, and § As marked
not strictly conserved. However, the appropriate pseudopowith a dashed line, there is a gap separating the low-energy
tentials are to a good approximation equal, and, e.g., by conband from higher states. Due to the QE-QE interaction, the
paring our data for QE's inn=1/3 and QH’s inv=2/5 we lowest band is not degenerate and has a certain width. Be-
were able to extract energiesy, of a single QH in thev  cause this width is small compared to the gap to higher states
=2/5 state as a function of the system sieThe linear (i.e., to energy to create additional QE-QH pajrghe three
extrapolation to M—0 gives 8QH:0,009&2/)\, and the QE’s interact with one another in the presence of a rigid
limiting value of the “proper” QH energy® (including  background(Laughlin fluid at»=1/3), and the low-lying
additional fractional charge/5 in the backgroundis zoy  States are determined by the pseudopotenfigi(R) ob-
=0.01222/\. tained for the samége=3 [N=7 in Fig. 2a@)]. If Voe(R)

It is apparent from Fig. 3 that the incompressible daughtepad short range, the multiplet at=0 would be an incom-
states derived from=2/5, 2/7, or 2/9 must either have a Pressible GS corresponding to the Laughiige=1/3 state
completely filled QE shel{Jain fractionsy=3/7, 3/11, and @and total electron filling factor ob=4/11. However, as dis-
3/13, respectively or (possibly the 1/5 filling of QH's (v cussed in the previous sectioige(R) has a minimum at
=9/23, 9/31, and 9/41, respectivelyncompressible daugh- R=1 and the system is compressilgie this small system,
ter states at any other fractions, including the 1/3 filling ofthe Laughlinvge=1/3 state is an eigenstate as it is the only

QE’s or QH’s(giving such fractions as=5/13 or 7/17; see State of three QE’s in the=0 subspace; in larger systems, it
Fig. 1) do not occur. will mix with other L=0 states and fall into the continugm

A similar spectrum is displayed in Fig.(l9). Here, the
low-lying states contain three QH'’s in the Laughlis=1/3
state, each withy,=5. As expected from the discussion of

In order to test the predictions of low-lying states in termsVqy, the states witiR=3 (L=0, 2, 3, 4, and Fhave the
of Laughlin QP’s interacting through appropriate pseudopolowest energy within this band, but the Laughlig,= 1/5
tentials, we have calculated numerically exact energy spectrgtate withR=5 in not the GS and the system =&t 4/13 is
of up to twelve electrons on the Haldane sphere at differentompressible.
values of the monopole strengthS2i.e., different filling Since the GS's av=4/11 or 4/13 are not valid parent
factors. As demonstrated on the examples presented in Figtates(QP Laughlin states the analysis of states at near
4, the resultgin all cases we looked atan be very well 4/11 or 4/13 in terms of their daughter QP’s is not possible.

V. NUMERICAL TESTS FOR FINITE SYSTEMS
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This is demonstrated in Figs(cid), where the states that . S s s I I S S TR
would contain two QE’s in ther=4/11 each withl og=3/2 | +*+Hiﬁii HT i+j+i¢++ /o poro
(L=0 and 2 and two QE's in thev=4/13 each withl o¢ = PEESE T 1/3+3GH .
=2 (L=1 and 3, do not have lowest energy. Sy 13+30E +

The low-lying states in each of the spectra in Fige,# o tamn b 4 *ﬁ’rﬂ% i
contain three QP’s each willjp=3 in a valid incompress- 1 ét--t* -t RN %3
ible higher-level hierarchy statd 0, 2, 3,4, and 6 The | B e A i
interaction of QE’s in thev=2/5 state and of QH’s in the () N-11, 25-27 . ®) N=9, 25271 6.0
v=23/7 state is similar, as those particles are connecteg | . . ‘.I.;. ‘. -0-05
through the particle-hole symmetry. Also, since the appropri-  {1/3+5QE AR N .
ate pseudopotential in Fig(&® (for N=10) increases with 2 { « _**« « Lottt et
increasingR, we expect the standard atomic Hund rule to @ R ::::- vo umsanl
hold, i.e., the lowest energy state should have maximum alw {1 « ¢ +,, ¢ ° R :
lowed L within the lowest-energy band of three QP’s. In- 1 e ot . 2/7+2QE |- 0.00
deed, theL=6 state is the GS of both systems, while the °?°7 4114208 (¢ N=14, 25-34|| * * (d)N=10, 2532}
states al.=0 predicted by the hierarchy picture/€7/17 . 006
and 8/19 have higher energy. 0197 . . SR

Numerical tests of other fractions become difficult due to {777, 1/3+43QH ) .
increasing size of the system. However, one can diagonaliz::? . 1’3+3°E =l
the Hamiltonian of interacting QP’s in a given parent states > ] M R e I
using their known single-particle energiege (the values for ' | B P3| N AL S S .
QP’s in Laughliny=1/3 and 1/5 states can be found in Refs. __ |®®" ®6ts #5|
25 and 3% and pseudopotentialdox(R), and obtain ap- —(ON=12,28=80}|  (IN=12,25-36| ,

proximate lowest-energy levels of an underlyifi@rgen 0 5 10 B0 5 10 15
electron systentwith respect to the enerdy, of the parent L L
incompressible statd° The error made in such an approxi-  FIG. 5. Few electron energigs measured from the energy of
mate calculation is due to neglected scattering processes ithe parentv=1/3 state as a function of total angular momentum
volving objects other than the specified QResg., polariza-  obtained in exact diagonalization in terms of Laughlin quasiparti-
tion of the parent state through creation of additional QE-QHcles (left) or quasiholes(right) of the »=1/3 state interacting
pairs, etc). At least for states with largestyp (compared to  through appropriate pseudopotentials plotted in Fig. 2. Dashed lines
the strength of QP interactionghis error is expected to be mark energy bands predicted by the hierarchy picture assuming
small, which validates the tests of incompressibility of theirshort range of all involved quasiparticle interactions. Pluses in
daughter states. frames(a) and (b) mark exact energies obtained by diagonalizing

The results of such tests for a few different systems ar&lectron-electron interaction, as in Fig. 4.
shown in Fig. 5. In all frames, the energy is measured from
the energy of the parenvE 1/3) state and. is the magnetic  this is the QE pseudopotential like those fo=6 and 8 in
length in the parent state. In Figs(aSh), the approximate Fig. 3(c)], Fig. 5€) shows no band ofLaughlin v=1/3) QE
spectra(full dots) are overlaid with exact energiépluses  states withR=3 (these would be states lat=0, 2, 3, 4, and
obtained by diagonalization of the full electron Hamiltonian. 6), and an incompressible=6/17 state of twelve electrons
Clearly, both for interacting QE’s and QH’s, the approximatecorresponding tavge=1/5, and Fig. &) shows a band of
calculation gives the lowest-lying states with negligible error(Laughlin »=1/3) QH states witiR=3, no band withR
(most of which is due to different magnetic lengths in the=5 (these would be states ht=0, 2, 3, 4, and § and an
daughter and parent states and can be corrected; error dueit@ompressibler=6/19 state of twelve electrons correspond-
neglected scattering processes is hardly vigiblais agree- ing to voe=1/7.
ment proves that the low-lying states in FQH systems indeed The »=6/17 and 6/19 states of twelve electrons in Figs.
contain QP’s characterized by certain level degeneracy anfle,f) are the only non-Jain hierarchy states we have tested
interaction(weakly dependent on the QP numpend vali-  numerically that are predicted to f@mcompressibleL =0
dates use of the approximate calculation for larger system&S’s based on pseudopotentials in Figs. 2 and 3 and that
The data in Fig. &) are by itself another example, showing contain at least three QP’s. However, because of the particle-
that QE’s in Laughliny=1/3 state do not form a separate hole symmetry and the similarity of different QP pseudopo-
band of states wittk=3 (these would be states with tentials(see Figs. 2 and)3the numerical evidence for valid
=3/2, 5/2, and 9/ Similarly, Fig. §b) shows that QH's L=0 hierarchy ground states at=6/17 and 6/19(in a
form a band withR=3 (L=3/2, 5/2, 7/2, 9/2, 11/2, and twelve-electron systejrsuggests stability of some other hi-
15/2), but do not form a band witiR=5 (here, one multiplet erarchy states, e.g. at=6/29, 6/31, 9/23, and 11/3xll
with L=3/2 that would correspond to a QE in the=4/13  states with question marks in Fig), &t least in finite systems
statg. with appropriate electron numbésee next section

Figures %c,d,e,j show approximate spectra of larger sys-
tems. Figure &) shows no band corresponding to two QE’s
in the v=4/11 state of 14 electror{these would be states at
L=1 and 3, Fig. 5d) shows a band corresponding to two  The extrapolation of our numerical results in order to pre-
QE’s in the v=2/7 state of ten electrond.=1, 3, and 5; dict stability of different hierarchical states in infinite sys-

VI. PREDICTIONS FOR INFINITE SYSTEMS
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0.00 T R v=6/17 or 6/19 might be experiment. However, since
] L Vop(R) for a large(infinite) system should be virtually zero
for all R's above a certain critical value, it is unlikely that
these GS’s will be incompressible in the thermodynamic
limit. This would explain why(to our knowledgg no such
states have been observed.
The above arguments most likely eliminate all daughter
L g.21 states derived from Laughlin=1/m parents withvge=1/5
andvqy=1/7 as possible incompressible GS’s, leaving only
L 0.21 those withvge=1 andvgy=1/3. The latter ones are incom-
m pressible, because they either correspond to a filled shell
-, (voe=1) or avoid the(only) repulsive pseudopotential pa-
< rameter Vo (1)>0 (vou=1/3). A quick look at the
pseudopotentials in Fig. 3 is enough to find that the incom-
-0.02] (¢} N=2, 21-25 (d) N=6, 21-25 pressible states on higher levels of hierarchy can only have
Tt 4 13 17 21 250 10 20 30 40 50 60 voe=1. It is easy to checksee also Fig. Llthat fractions
R L generated in this way belong to the Jain sequence obtained
from Eq. (1) for integerv*. This explains why the hierarchy
fractions from outside this sequence have not been observed
experimentally:>~*® even though numerical results for finite

energyeqe (for v=1/3 state ofN=11 electron} and interacting systems presented here might suggest that states like

through pseudopotentials on the left, as a function of total angulaPZB/l? or 6/19 are incompressible. . . .
momenturL.. Let us stress that the fact that valid hierarchy stétes,

states with Laughlin-like correlations of appropriate Laugh-

lin QP’s) occur only at the Jain sequence of filling factors

pbviously does not contradict occurrence of FQH effect at

other fractions. However, the correlations in other possible
: - : FQH states, the origin of their incompressibility, and their

by subtraction of two appropriate QP energi from R . '

y bprop Q giasor elementary excitations must be different. Examples of

energiesE(R) in Figs. 2 and 3. For example, for the X .
=1/3 parent state, the only positive pseudopotential paramc_)bserveﬂf nonhierarchy FQH states include onesvat7/3

eter is Vou(1), and all others [Vou(R) for R=3 and (calculations sho@w*® that it is not a Laughlin-likev=1/3

Voe(R) for all R] are negative. Sinc¥qR) at largeR state in the first excited LLand v=5/2.
(large distanceis expected to vanish, it must also increase

V (e
t¢/z0) 3

-0.02 (a) N=2, 21=25
0.004

V (e2/A)

0.2

(=1

FIG. 6. Left: Model pseudopotential¢(R), equal toVge in
Fig. 2(@) (N=11) for R<9 and increasing to zero f&® increasing
to 25. Right: Energie€ of six particles each with single-particle

tems must be done very carefully. The calculatfSrshow
that the interaction of QP’s in a Laughlin parent state is no
generally repulsive. The pseudopotentigJ(R) is obtained

above all the values at smaRt except forVqy(1). This VIl. COMPARISON WITH CF PICTURE
brings out the question if our prediction of incompressible ) . .
states at, e.gy=6/17 (voe=1/5) or v="6/19 (voy=1/7), The mean-field CF picture correctly predicts not only the

incompressible states at the Jain sequence of filling factors,
but also the low-lying bands of states at any valuéNaind

2S. However, neither its original justification based on can-
cellation between Coulomb and CS interactions beyond the
mean field nor the use of higher LL’s in construction of CF
wave functions can be accepted as complete understanding

verified numerically for twelve electrond=igs. He,f)] re-
mains valid for an infinite system. We have calculated en
ergy spectra of six particles at filling= 1/5 (21 = 25), inter-
acting through pseudopotentials that =9 were equal to
Voe(R) for N=11 in Fig. Za), vanished atR=25, and
behaved in a number of different ways foK®R<25. As ;

of this success.

shown in Fig. 6, theL.=0 hierarchy state is always the If the effective CF magnetic field is non-negative(2

lowest-energy state in the lo-part of the spectrum, but _ : - .

s —1.=0) and the effective CF filling factor is less or equal than
whether it is an absol_ute_ GS d_epends on how qkaIyone) (¥*<1) the CF picture segllects out of the tote?l Hilbert
Vor(R) goes to zero with increasing. This is a conse-

; ; 24,25 spaceH the subspace(,, where 2 is the number of bound
quence of the following operator identity: (attached flux quanta2.3825From Eq.(4) and Fig. 1 itis clear
that the entire sequence of Jain fractions corresponds to valid

> |:i2; =L2+N(N-2) 12, 7 hierarchy states, obtained by the QE fillingigfe=0 or 1 on
i< any level of hierarchy and/or the QH filling ofy,=1/3 on
R the first level(QH’s in the principal Laughlinv=1/m state.
which relates tota(L) and pair (;;) angular momenta of a Note that CF states obtained witp Dound flux quanta for
system ofN particles in a shell of angular momentunThe  which 2S* is positive are derived from thege=1 daughter
states with largeL have(on the averagdarger values ot of the Laughlinv=(2p+1)~?! state, while those for which
and thus, ifV(R) increases with increasirig, lower energy.  2S* is negative come from theqo,=1/3 daughter of the
The exact numerical calculation 8foe(R) for R>9,  Laughlin v=(2p—1)"?! state. The explicit hierarchy wave
i.e., for |gp>5, seems impossiblécalculations forN=11  functions can also be constructeéd without introducing
with [oe=5 andlo,=6 already required diagonalization of higher LL’s excitations. As demonstrated for few-electron
matrices with dimensions of about®@nd 3x 1P, respec- systems? the (valid) hierarchy and CF wave functions are
tively), and thus the only valid test of stability of states like nearly identical. Another qualitative success of the CF pic-
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0,07 ture are equivalent because they both use correct degeneracy
- of excitations,goe andgqy, for the chosertfermionic) sta-
tistics. The CF picture makes no use of the form of single
particle wavefunctions in excited LL’s; an effective magnetic
field is just another way to obtain correghe and goy-
However, the authors believe that the understanding of in-
compressible states at Jain filling factors in terms of hierar-
chy of Laughlin excitations and involved QP pseudopoten-
tials has a number of advantages over the CF picture. It does
not use such puzzling concepts as flux binding, depends ex-
plicitly and in a known way on the form of electron-electron

| /@:’5 interaction, which enables predicting its applicability to sys-
R Y --F3-- 29 tems with modified interactionghigher LL’s, finite well
12 <D 377 width, etc), and predicts correct energy gaps in terms of

interaction parameters rather than arbitrary effective cyclo-

tron energy. The hierarchy picture is also more physically

intuitive and makes the origin of incompressibility of Jain

states more clear. Moreover, it gives better understanding of

why no other fractions are experimentally observed, even

though somée.g.,v="6/17 and 6/19are found in finite size
FIG. 7. Excitation gaps\ of a few valid hierarchy states cal- numerical calculations.

culated in numerical diagonalization Nfelectrons and plotted as a

function of 1N. Inset: limiting values\ ., as a function of effective

composite Fermion magnetic fieB¥*.

0.00 T . ; . , . ,

0.10 0.15 0.20 0.25
1/N

ture, the description of higher bands in the energy spectrum VIIl. CONCLUSION
in terms of excitations between CF LL'’s, in the hierarchy
picture corresponds to the creation of additional QE-QH
pairs in the parent stafé.

One of the main results used as a direct experiment
evidence for the existence of CF's—the observafianof

geometric resonances and divergence of the CF cyclotro})". ) ; ;
radius atB* —0—does not contradict the hierarchy picture illing factors v from outside the Jain sequence occur in an

where the fractionally charg&irelevant QP's move in a INfinite system, and thus why none have been observed ex-

bare external field so that the cyclotron radius coincides Perimentally. Compressibility op=4/11 and 4/13 states is

with the one of the CF’s moving in an effective fieR¥ . demonstrated. Laughlin-like hierarchy states other than Jain

Reaé7 and Pasquier and Ha'deﬁ%d‘]a\/e Shown that these states are found at= 6/17 and 6/19 in ﬁnite'size numerical

QP’s are electric dipoles whose charge vanishes=at/2.  calculations. However, it is argued that the system at these

The relation between the descriptions of the half-filled statdractions(and other non-Jain fractions with question marks

in terms of CF's and dipoles is discussed in Ref. 59. in Fig. 1) will undergo a transition into a compressible phase
Another resuf® seemingly proving the formation of CF When its size is increased.

LL's is the linear dependence of the excitation gap of Jain The descriptions of FQH states in terms of mean-field

states on the effective magnetic fiedd . In Fig. 7 we plot CF's and hierarchy of Laughlin excitations are compared. It

the gaps\ calculated numerically for a few most prominent is €xplained why, despite no rigorous justification of the CF

hierarchy/Jain states as a function of the inverse electropssumption of fluxor vorte¥ binding, the CF predictions

number, 1. The limiting valuesh.. are plotted in the inset and the valid predictions of the hierarchy picture eyeali-

as a function oB*/B=1—2pv. The gaps of states obtained tgu_vely) equwa_lent: In our analysis we used fermlo_mc sta-

from Eq.(1) for p=1 (v=1/3,2/5,3/7, ..) fall on a straight  tistics of quaS|part|qu§. However, our resm_JIts are |_ndepen—

line versusB* /B (as first observed by Det al;?° note, how- d_ent of these stat!stlcs and remain valid for hierarchy

ever, that the linear extrapolation & =0 gives negative Pictures formulated in terms of bosons or anyons.

gaps, also in agreement with experiment of Bual®).

However, it is not so for Jaip=2 states av=1/5, 2/7, and

2/9. In particular, the gap of the=2/7 state seems to be

larger than that of the= 1/5 state. While this result may be

difficult to accept in the CF picture, it is by no means sur- ACKNOWLEDGMENTS
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