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Quasiparticle interactions in fractional quantum Hall systems:
Justification of different hierarchy schemes
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The pseudopotentials describing the interactions of quasiparticles in fractional quantum Hall~FQH! states
are studied. Rules for the identification of incompressible quantum fluid ground states are found, based upon
the form of the pseudopotentials. States belonging to the Jain sequencen5n(112pn)21, wheren andp are
integers, appear to be the only incompressible states in the thermodynamic limit, although other FQH hierarchy
states occur for finite size systems. This explains the success of the composite Fermion picture.
ro
a

th
on
Q
n
e

y
ls

e
ec
As

,
he
-
aj
a
th

te
er
an

h

ed
er

ng

uc-
CS
ond

of
n-

d.
en-

ted
al
in

hy
en
ut
-

QH

nec-

,

lly
of

lso
s
ain
tify
pic-
med
I. INTRODUCTION

The fractional quantum Hall~FQH! effect,1–4 i.e., quanti-
zation of the Hall conductance of a two-dimensional elect
gas~2DEG! at certain densities in high magnetic fields, is
consequence of finite excitation gaps that open above~in-
compressible! nondegenerate ground states~GS’s! at certain
fractional fillings of the lowest Landau level~LL !, n
51/3,2/5, etc. Because of the LL degeneracy, it is clear
those incompressible GS’s must originate from electr
electron interactions. This makes the physics of the F
effect very different from that underlying the integer qua
tum Hall ~IQH! effect,5,6 despite similar manifestation of th
two in transport experiments.

While the origin of most prominent FQH states atn
51/m (m is an odd integer! has been explained b
Laughlin,2 our understanding of why such states are a
formed at some other filling factors~independent of the
sample, density, etc.! or what conditions must in general b
satisfied for an interacting system to exhibit the FQH eff
at different fractions, is not yet completely satisfactory.
an extension of Laughlin’s idea, Haldane7 and others8–11pro-
posed different, although equivalent,12–14hierarchy schemes
in which the elementary quasiparticlelike excitations of t
Laughlin fluid form Laughlin-like states of their own. How
ever, the original hierarchy approaches all share a m
problem: they predict too many fractions and give no app
ent connection between the stability of a given state and
hierarchy level at which it occurs. It is known1,15–18that the
FQH effect does not occur at some simple fractions predic
at low levels of hierarchy, while explanation of some oth
experimentally observed ones requires introducing m
generations of excitations.

A different approach, introduced by Jain19 and developed
by Lopez and Fradkin20 and by Halperin, Lee, and Read,21

involves the concept of composite fermions~CF’s!. As for-
mally described by the mean-field Chern-Simons~CS! trans-
formation, the CF’s are constructed by binding part of t
external magnetic fieldB to electrons in form of infinitely
PRB 610163-1829/2000/61~4!/2846~9!/$15.00
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thin solenoids, each carrying an even number 2p of flux
quanta. The resulting CF’s move in an effective, reduc
field B* . Smaller LL degeneracy of CF’s leads to a low
effective filling factorn* given by

~n* !215n2122p. ~1!

It was found that the sequence of fractional electron filli
factorsn corresponding to integer CF fillingsn* agrees with
the values at which FQH states occur. The qualitative s
cess of the CF picture led to the conjecture that the
charge-flux and Coulomb charge-charge interactions bey
the mean field largely cancel one another, and the system
strongly interacting electrons in a high magnetic field is co
verted to one of weakly interacting CF’s in a lower fiel
However, this cannot possibly be correct, since the CS
ergy (}B) and Coulomb energy (}AB) scale differently
with the magnetic fieldB. Also, higher LL’s used in the
procedure to obtain the wave functions are later elimina
by projection, which puts in doubt their role in the fin
result and most likely does not allow for interpretation
terms of an additional, effective magnetic field.

In this paper we attempt to justify Haldane’s hierarc
picture in terms of the behavior of the interaction betwe
quasiparticles~QP’s!, which he considered of importance b
totally unknown. We derive simple rules for identifying frac
tions that do or do not correspond to incompressible F
states by analyzing pseudopotentials22–25 of the QP interac-
tions on successive levels of hierarchy. Based on the con
tion between the form of pseudopotential~pair energy versus
pair angular momentum! and the nature of low-lying states
we explain why QP’s do not form Laughlin states at all 1/m
fillings. Our results validate understanding of experimenta
observed FQH states in intuitive terms of the hierarchy
Laughlin excitations, established in Refs. 7–11. We a
show that~in large systems! valid incompressible FQH state
obtained in this hierarchy picture are equivalent to J
states, despite the different underlying physics used to jus
the two approaches. This explains the success of the CF
ture when applied to FQH systems better than the assu
2846 ©2000 The American Physical Society
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cancellation between CS and Coulomb interactions. It a
defines limitations of the CF picture when applied to syste
with general interactions~e.g., recently studied FQH system
of charged excitonic complexes formed in an electron-h
gas in a high magnetic field26–28!. The discussion is illus-
trated with results of exact numerical diagonalization cal
lations on a Haldane sphere7 carried out for up to twelve
electrons atn'1/3 ~Hamiltonians with dimensions of up t
33106) using a modified Lanczos29 algorithm.

II. HALDANE SPHERE

Because in the absence of electron-electron interact
all many-body states in the lowest LL (n<1) are degenerate
those interactions cannot be treated perturbatively. Th
fore, numerical diagonalization techniques are commo
used to study FQH systems, which, however, limit their s
to a finite ~small! number of electrons. In order to model
finite density 2DEG, motion ofN electrons must be restricte
to a finite area. This can be accomplished by imposing lat
confinement,30 periodic boundary conditions~PBC!,31 or
confining electrons on a closed surface~Haldane sphere!.7

The last approach is particularly useful as it natura
avoids edge effects and preserves full two-dimensional~2D!
translational symmetry of a planar 2DEG in the form of t
rotational symmetry of a sphere. A pair of good quantu
numbers on a plane, the center of mass~CM!, and relative
momenta, correspond to the total angular momentumL and
its projectionLz on a sphere.32 The degeneracies associat
with CM excitations on a plane correspond to those oL
multiplets on a sphere, and the nondegenerate GS’s of a
nar 2DEG haveL50 in their spherical models.

The magnetic fieldB perpendicular to the surface of th
Haldane sphere of radiusR is an isotropic radial field pro-
duced by a magnetic monopole placed at the origin. T
monopole strength 2S, defined as the number of flux quan
piercing the sphere, is an integer, as required by Dira
condition.33 In the extrapolation of finite-size results to th
thermodynamic limit, the magnetic lengthl5R/AS is used
as the length scale. The single-particle states on the Hald
sphere are labeled by angular momentuml>S and its pro-
jection l z and are called monopole harmonics.7,34,35The en-
ergies form (2l 11)-fold degenerate angular momentu
shells, or LL’s, labeled byn5 l 2S and separated by cyclo
tron gaps. For the FQH states atn,1, only the lowest (n
50) spin-polarized angular momentum shell ofl 5S need be
considered. TheN-electron Laughlinn51/m states in a 2l
11 degenerate shell occur at 2l 5m(N21).

III. HIERARCHY OF LAUGHLIN EXCITATIONS

Haldane’s hierarchy of FQH states is constructed in
following way. At certain filling factors,n51/m (m is an
odd integer!, electrons form Laughlin incompressible state
At n slightly different from a Laughlin 1/m filling, the low-
lying states must contain a number of quasipartic
~QP’s!—quasielectrons~QE’s! at n.1/m or quasiholes
~QH’s! at n,1/m—in the Laughlinn51/m state. States in-
volving more than the minimum number of QP’s required
the difference betweenn and 1/m contain additional QE-QH
pairs36 and are separated from the lowest band by a gapD.
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The QP’s in the underlying~parent! Laughlin state have a
certain single-particle energy«QP, statistics, number of
available single-particle statesgQP ~in analogy to LL degen-
eracy for electrons! and interact with one another. Provide
their interaction is small compared toD and«QP, QP’s can,
in principle, form Laughlin incompressible~daughter! states
of their own. If n is not exactly equal to the value at whic
QP’s would form a daughter Laughlin state, low-lying Q
states will contain their own QP-like excitations in th
nearest-daughter Laughlin state, which can in turn form
incompressible granddaughter Laughlin state, etc.

Since the QE or QH statistics enters the hierarchy of fr
tions only through the counting of many-body states, diff
ent statistics give equivalent results as long as the sin
particle degeneraciesgQE andgQH are chosen correctly. The
mean-field CS transformation can be used to formally c
vert bosons into fermions by attaching one flux quantum
each boson.37–39 For example, in the spherical geometr
where gQP52l QP11 is related to QP angular momentu
l QP, systems ofN bosons each with angular momentumk
and N fermions each with angular momentuml are equiva-
lent and contain the sameL multiplets if

l 5k1~N21!/2. ~2!

As shown by Haldane7 ~and can be understood from a simp
picture of excitations created between electrons on a lin!,
QE’s and QH’s in anN-electron Laughlin state can b
viewed as bosons withkQE5kQH5N/2. However, this com-
bination of statistics and degeneracy gives proper coun
of many-body states only if an additional hard core is int
duced that forbids two QE’s to be in a pair state withL
5N.40 Such a hard core can be accounted for by a me
field fermion-to-fermion CS transformation that replaceskQE

by kQE* 5kQE2(NQE21),23–25whereNQP is the QP number.
In order to stress the connection with Jain’s CF pictu

and the recently proposed11 hierarchy of CF excitations, we
use here a fermionic description of QP’s. The appropriate
angular momenta obtained from Eq.~2! are

l QP5
N6~nQP21!

2
, ~3!

with 2 for l QE and1 for l QH. Note thatl QE and l QH given
by Eq. ~3! are equal to angular momenta of holes in high
filled and particles in lowest empty CF LL’s used in the C
picture.

The expression for the filling factorn of a daughter state
is very similar to Eq.~1! and reads11

n2152p1~16nQP!
21, ~4!

wherenQP is the filling factor of QE’s (1) or QH’s (2) in
the Laughlin (2p11)21 parent state. Iteration of Eq.~4!
with nQP substituted byn gives a continuous fraction, termi
nated when an incompressible state~without QP’s,nQP50)
is reached. For example, for the state containingn51/5 fill-
ing of QH’s in then51 filling of QE’s in the Laughlinn
51/3 state of electrons, this procedure gives
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n5
1

2311
1

11
1

2301
1

12
1

2321
1

110

5
9

23
. ~5!

In Fig. 1 we display more filling factors obtained in the h
erarchy scheme. The lines connect parent states with
daughter states obtained for QP fillingsnQP shown in boxes.
Note that holes created in a parent state of holes are part
in the grandparent state~in a sense that their presence i
creases overalln, i.e. their number increases when the ma
netic field is decreased!. For example, holes created in th
n51/3 filling of holes in then51/3 Laughlin state of elec
trons will be referred to as QE’s in then52/7 state.

As first stated by Haldane,7 whether a given fraction ob
tained in the hierarchy scheme corresponds to a stable
compressible GS depends on the stability of the parent s
and on the interaction between QP’s in the daughter state
will be shown in the following sections, these criteria elim
nate most of all odd denominator fractions that can be c
structed by an iteration of Eq.~4!. The relatively small num-
ber of possible candidates left include the Jain seque
obtained from Eq.~1! for integern* . These states~and their
electron-hole conjugates! have been marked with asterisks
Fig. 1. As will be shown in the following sections, these a
all the incompressible states predicted by the ‘‘correct’’
erarchy picture in the thermodynamic limit, and all of the
have been confirmed experimentally.1,15–18 The fractions
with a question mark in Fig. 1 are most likely compressib
in the thermodynamic limit, but valid nondegenerateL

FIG. 1. Diagram of filling factors obtained in the hierarchy
Laughlin excitations. Lines connect parent and daughter states
quasiparticle filling factors shown in boxes. Asterisks, incompre
ible states; question marks, hierarchy ground states observed on
finite systems; other fractions, compressible states.
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50) hierarchy GS’s can occur at these fillings in finite sy
tems. Those finite size valid hierarchy GS’s~Laughlin states
of Laughlin QP’s! should be distinguished from otherL50
GS’s that can occur at different combinations ofN and 2S
@e.g., forN512 and 2S529 in Fig. 3~c! of Ref. 11#, but do
not have Laughlin-like QP correlations and thus cannot
associated with a filling factor. At the remaining filling fac
tors, unmarked in Fig. 1, the hierarchy picture fails as e
pected and the system is compressible.

IV. PSEUDOPOTENTIALS

The two-body interaction of identical particles in an a
gular momentum shell of degeneracy 2l 11 can be written in
terms of the pseudopotential22 V(R), i.e. the pair interaction
energyV as a function of relative pair angular momentum

R52l 2L, ~6!

whereL is the total angular momentum of the pair.41 R is an
odd integer and increases with increasing aver
separation.25 Plotting V as a function ofR rather than ofL
allows for meaningful comparison of pseudopotentials
shells of different degeneracy; forl→`, the pseudopoten
tials calculated on the sphere converge to the pseudopote
on a plane~on a plane,R is defined32 as the usual relative
angular momentum!.

Whether a system of interacting fermions will form
Laughlin state at the 1/m filling of their angular momentum
shell depends on the short range of repulsive interact
Precisely, the Laughlinn51/m incompressible state~in
which R>m for all pairs! is formed if,25 in the vicinity of
R5m, the interaction pseudopotential increases m
quickly than linearly as a function ofL(L11), i.e., more
quickly than that of harmonic repulsion,VH(L)5a1bL(L
11), wherea and b are constants. More generally, if th
condition is satisfied in the vicinity ofR52p11 for certain
p, the total many-body Hilbert spaceH contains an~approxi-
mate! eigensubspace25 Hp holding states withR>2p11 for
all pairs ~i.e., avoidingp pair states of largest repulsion!. A
corresponding low-energy band occurs in the spectru
separated from higher states by a gap associated withV(R).
At Laughlin fillings of n5(2p11)21, the subspaceHp con-
tains a single nondegenerate (L50) multiplet with R>2p
11, and the lowest band consists of the Laughlin GS.

The mathematical formalism derived to quantitative
treat the ability of electrons to avoid certain pair states
volves the concept of fractional~grand! parentage,42,43 well
known in atomic and nuclear physics and used recently23–25

to describe FQH systems. It is worth noting that avoidi
highest-energy states of three or more particles was rece
proposed44 to explain incompressible GS’s at other filling
than Laughlin’sn51/m.

The electron~Coulomb! pseudopotential in the lowest LL
Ve(R) satisfies23–25 the ‘‘short-range’’ criterion ~i.e., in-
creases more quickly thanVH as a function ofL) in entire
range of R, which is the reason for incompressibility o
principal Laughlin n51/m states. However, this does no
generally hold for the QP pseudopotentials45,46on higher lev-
els of hierarchy. We have obtained some of those pseudo
tentials for different values ofl QP by numerical diagonaliza-
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tion of appropriate many-electron Hamiltonians on t
Haldane sphere and identification of the lowest bands in
tained energy spectra. The total many-electron ener
within those bands contain the energyE0 of the parent state
single-particle energies 2«QP of the pair of appropriate QP’s
and the QP-QP interaction energyVQP(L). In Fig. 2 we
show the results for QE’s and QH’s in Laughlinn51/3 ~data
for N<8 was published before in Ref. 46! andn51/5 states.
The plotted energyE(R)52«QP1VQP(L) is given in units
of e2/l, wherel is the magnetic length in the parent sta
Different symbols mark pseudopotentials obtained in dia
nalization of N-electron systems with differentN and thus
with different l QP; see Eq.~3!. Clearly, the QE and QH
pseudopotentials are quite different and neither one
creases monotonically with increasingR. On the other hand
the corresponding pseudopotentials inn51/3 and 1/5 states
look similar, only the energy scale is different. The conv
gence of energies at smallR obtained for largerN suggests
that the maxima atR53 for QE’s and atR51 and 5 for
QH’s, as well as the minima atR51 and 5 for QE’s and a
R53 and 7 for QH’s, persist in the limit of largeN ~i.e., for
an infinite system on a plane!. Consequently, the only incom
pressible daughter states of Laughlinn51/3 and 1/5 states
are those withnQE51 or nQH51/3 ~asterisks in Fig. 1! and
~maybe! nQE51/5 andnQH51/7 ~question marks in Fig. 1!.
It is also clear that no incompressible daughter states
form at, e.g.,n54/11 or 4/13.

Let us note that the incompressibility of daughter sta
with completely filled QE shell~e.g., atn52/5 or 2/9! does
not require any special form of the QE-QE interaction, e
cept that it must be weaker than the single-particle ener
«QE and«QH responsible for the gap. In this sense, the FQ
effect at Jain fillingn52/5 can be viewed as an IQH effe
of QE’s in the Laughlinn51/3 state, except that the dege
erate single-particle shell available to QE’s is due to a spe
form of elementary excitations of the parent Laughlin st
rather than due to an effective magnetic field. Similarly,
excitation gap at then52/5 filling is not a cyclotron gap bu
the energy needed to create a QE-QH pairlike excitation

FIG. 2. EnergiesE52«1V(R) of a pair of quasielectrons~left!
and quasiholes~right! in Laughlinn51/3 ~top! andn51/5 ~bottom!
states, as a function of relative pair angular momentumR, obtained
in diagonalization ofN electrons.
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the filled shell of Laughlin QE’s. On the other hand, the FQ
effect at n52/7 is a fractional effect also on the level o
QH’s in the parentn51/3 state, and its excitation gap
governed byVQH(1), the largest pseudopotential paramet
for the QH-QH interaction.

The electron pseudopotentialVe(R) is not strictly a short-
range one@for which V(1)@V(3)@•••] and the associated
hidden symmetry responsible for occurrence of eigens
spacesHp and incompressible Laughlin states is only a
proximate. Actually, a fairly small reduction ofVe(1) com-
pared toVe(3) that can be achieved in a wide quantum w
leads to a breakdown of the Laughlinn51/3 state.47 While
the hidden symmetry makes the low-lying states near Lau
lin fillings virtually insensitive to the details ofVe(R) as
long as it has short range~i.e. increases more quickly tha
VH as a function ofL), it is interesting to ask to what exten
the form ofVe(R) affects the QP pseudopotentials, and th
the incompressibility of related daughter states. We h
compared the pseudopotentials in Fig. 2 with the ones
tained for ‘‘exponential’’ interaction, Vexp(R12)
5Vexp(R)/10, and for ‘‘selective’’ interaction,Vsel(R,m)
5`, Vsel(m)51, andVsel(R.m)50, and found that all the
features in Fig. 2 remain unchanged. This means that
short-range character of interaction between particles in
parent state does not imply the same for interaction betw
Laughlin QP’s in the daughter state. This observation, ess
tial for understanding why incompressible states do not
cur at all odd denominator fractions, might appear somew
surprising since the QP’s are~fractionally! charged objects
and hence their interaction has a similar nature to tha
electrons. However, it must be kept in mind that it is t
combination of interaction potentialV(r ) and available
single particle Hilbert space that gives pseudopotentialV(R)
and, in turn, determines if Laughlin states occur@e.g., for the
same Coulomb potentialV(r )5e2/r , the Laughlinn51/3
state occurs in the lowest LL but does not occur in the
cited ones25,48#.

Once the Laughlin-like states on a given hierarchy le
are found, the QP pseudopotentials must be calculated
these states to determine if they in turn can have any inc
pressible daughter states. As an example of this procedur
Fig. 3 we present a few pseudopotentials calculated for
n52/5, 2/7, and 2/9 parent states. As in Fig. 2, the ene
E(R)52«QP1VQP(L) is given in units ofe2/l, with l ap-
propriate for the parent state, andN is the number of elec-
trons in the system that was diagonalized to obtain a part
lar pseudopotential.

The pseudopotentials plotted in Fig. 3 show two types
behavior at smallR. The ones in Figs. 3~b,c,f! have a maxi-
mum atR53, similarly as those in Figs. 2~a,c!, while the
ones in Figs. 3~a,d,e! increase whenR increases between
and 5. Similar behavior of different pseudopotentials is
consequence of the particle-hole symmetry between QE’
a parent state and QH’s of its daughter state with filled
shell (nQE51; see Fig. 1!. For example, vacancies in a
almost completely filled shell of QE’s in then51/3 state are
QH’s of then52/5 state; vacancies in an almost complete
filled shell of QE’s in then52/5 state are QH’s of then
53/7 state, etc. The relation between QH’s in the par
state and QE’s in the daughter state withnQH51 is equiva-
lent, as the latter is simply the grandparent state. T
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particle-hole symmetry discussed above is only approxim
because the single particle gaps are not infinitely large c
pared to single particle gapsD and«, and the QP number is
not strictly conserved. However, the appropriate pseudo
tentials are to a good approximation equal, and, e.g., by c
paring our data for QE’s inn51/3 and QH’s inn52/5 we
were able to extract energies«QH of a single QH in then
52/5 state as a function of the system sizeN. The linear
extrapolation to 1/N→0 gives «QH50.0098e2/l, and the
limiting value of the ‘‘proper’’ QH energy35,49 ~including
additional fractional chargee/5 in the background! is «̃QH
50.0123e2/l.

It is apparent from Fig. 3 that the incompressible daugh
states derived fromn52/5, 2/7, or 2/9 must either have
completely filled QE shell~Jain fractionsn53/7, 3/11, and
3/13, respectively!, or ~possibly! the 1/5 filling of QH’s (n
59/23, 9/31, and 9/41, respectively!. Incompressible daugh
ter states at any other fractions, including the 1/3 filling
QE’s or QH’s~giving such fractions asn55/13 or 7/17; see
Fig. 1! do not occur.

V. NUMERICAL TESTS FOR FINITE SYSTEMS

In order to test the predictions of low-lying states in term
of Laughlin QP’s interacting through appropriate pseudo
tentials, we have calculated numerically exact energy spe
of up to twelve electrons on the Haldane sphere at differ
values of the monopole strength 2S, i.e., different filling
factors. As demonstrated on the examples presented in
4, the results~in all cases we looked at! can be very well

FIG. 3. EnergiesE52«1V(R) of a pair of quasielectrons~left!
and quasiholes~right! in the second-level hierarchy states atn
52/5 ~top!, n52/7 ~center!, andn52/9 ~bottom!, as a function of
relative pair angular momentumR, obtained in diagonalization o
N electron systems.
te
-

o-
-

r

f

-
tra
nt

ig.

understood in terms of the QP-QP interaction. Figure 4~a!
shows the spectrum of eight electrons at 2S518. The low-
lying band contains states of three QE’s in Laughlinn51/3
state, each withl QE53 (L50, 2, 3, 4, and 6!. As marked
with a dashed line, there is a gap separating the low-ene
band from higher states. Due to the QE-QE interaction,
lowest band is not degenerate and has a certain width.
cause this width is small compared to the gap to higher st
~i.e., to energyD to create additional QE-QH pairs!, the three
QE’s interact with one another in the presence of a ri
background~Laughlin fluid at n51/3), and the low-lying
states are determined by the pseudopotentialVQE(R) ob-
tained for the samel QE53 @N57 in Fig. 2~a!#. If VQE(R)
had short range, the multiplet atL50 would be an incom-
pressible GS corresponding to the LaughlinnQE51/3 state
and total electron filling factor ofn54/11. However, as dis-
cussed in the previous section,VQE(R) has a minimum at
R51 and the system is compressible~in this small system,
the LaughlinnQE51/3 state is an eigenstate as it is the on
state of three QE’s in theL50 subspace; in larger systems,
will mix with other L50 states and fall into the continuum!.

A similar spectrum is displayed in Fig. 4~b!. Here, the
low-lying states contain three QH’s in the Laughlinn51/3
state, each withl QH55. As expected from the discussion o
VQH, the states withR>3 (L50, 2, 3, 4, and 6! have the
lowest energy within this band, but the LaughlinnQH51/5
state withR>5 in not the GS and the system atn54/13 is
compressible.

Since the GS’s atn54/11 or 4/13 are not valid paren
states~QP Laughlin states!, the analysis of states atn near
4/11 or 4/13 in terms of their daughter QP’s is not possib

FIG. 4. Few electron energiesE as a function of total angula
momentumL, obtained in exact diagonalization in terms of ind
vidual electrons interacting through the Coulomb pseudopoten
Dashed lines mark gaps separating energy bands.
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This is demonstrated in Figs. 4~c,d!, where the states tha
would contain two QE’s in then54/11 each withl QE53/2
(L50 and 2! and two QE’s in then54/13 each withl QE
52 (L51 and 3!, do not have lowest energy.

The low-lying states in each of the spectra in Figs. 4~e,f!
contain three QP’s each withl QP53 in a valid incompress-
ible higher-level hierarchy state (L50, 2, 3, 4, and 6!. The
interaction of QE’s in then52/5 state and of QH’s in the
n53/7 state is similar, as those particles are connec
through the particle-hole symmetry. Also, since the appro
ate pseudopotential in Fig. 3~a! ~for N510) increases with
increasingR, we expect the standard atomic Hund rule
hold, i.e., the lowest energy state should have maximum
lowed L within the lowest-energy band of three QP’s. I
deed, theL56 state is the GS of both systems, while t
states atL50 predicted by the hierarchy picture (n57/17
and 8/19! have higher energy.

Numerical tests of other fractions become difficult due
increasing size of the system. However, one can diagona
the Hamiltonian of interacting QP’s in a given parent sta
using their known single-particle energies«QP ~the values for
QP’s in Laughlinn51/3 and 1/5 states can be found in Re
25 and 35! and pseudopotentialsVQP(R), and obtain ap-
proximate lowest-energy levels of an underlying~larger!
electron system~with respect to the energyE0 of the parent
incompressible state!.50 The error made in such an approx
mate calculation is due to neglected scattering processe
volving objects other than the specified QP’s~e.g., polariza-
tion of the parent state through creation of additional QE-Q
pairs, etc.!. At least for states with largest«QP ~compared to
the strength of QP interactions!, this error is expected to b
small, which validates the tests of incompressibility of th
daughter states.

The results of such tests for a few different systems
shown in Fig. 5. In all frames, the energy is measured fr
the energy of the parent (n51/3) state andl is the magnetic
length in the parent state. In Figs. 5~a,b!, the approximate
spectra~full dots! are overlaid with exact energies~pluses!
obtained by diagonalization of the full electron Hamiltonia
Clearly, both for interacting QE’s and QH’s, the approxima
calculation gives the lowest-lying states with negligible er
~most of which is due to different magnetic lengths in t
daughter and parent states and can be corrected; error d
neglected scattering processes is hardly visible!. This agree-
ment proves that the low-lying states in FQH systems ind
contain QP’s characterized by certain level degeneracy
interaction~weakly dependent on the QP number!, and vali-
dates use of the approximate calculation for larger syste
The data in Fig. 5~a! are by itself another example, showin
that QE’s in Laughlinn51/3 state do not form a separa
band of states withR>3 ~these would be states withL
53/2, 5/2, and 9/2!. Similarly, Fig. 5~b! shows that QH’s
form a band withR>3 (L53/2, 5/2, 7/2, 9/2, 11/2, and
15/2!, but do not form a band withR>5 ~here, one multiplet
with L53/2 that would correspond to a QE in then54/13
state!.

Figures 5~c,d,e,f! show approximate spectra of larger sy
tems. Figure 5~c! shows no band corresponding to two QE
in then54/11 state of 14 electrons~these would be states a
L51 and 3!, Fig. 5~d! shows a band corresponding to tw
QE’s in then52/7 state of ten electrons@L51, 3, and 5;
d
i-

l-

ze
s

.

in-

r

e

.

r

to

d
nd

s.

this is the QE pseudopotential like those forN56 and 8 in
Fig. 3~c!#, Fig. 5~e! shows no band of~Laughlinn51/3) QE
states withR>3 ~these would be states atL50, 2, 3, 4, and
6!, and an incompressiblen56/17 state of twelve electron
corresponding tonQE51/5, and Fig. 5~f! shows a band of
~Laughlin n51/3) QH states withR>3, no band withR
>5 ~these would be states atL50, 2, 3, 4, and 6!, and an
incompressiblen56/19 state of twelve electrons correspon
ing to nQE51/7.

The n56/17 and 6/19 states of twelve electrons in Fig
5~e,f! are the only non-Jain hierarchy states we have tes
numerically that are predicted to be~incompressible! L50
GS’s based on pseudopotentials in Figs. 2 and 3 and
contain at least three QP’s. However, because of the part
hole symmetry and the similarity of different QP pseudop
tentials~see Figs. 2 and 3!, the numerical evidence for valid
L50 hierarchy ground states atn56/17 and 6/19~in a
twelve-electron system! suggests stability of some other h
erarchy states, e.g. atn56/29, 6/31, 9/23, and 11/39~all
states with question marks in Fig. 1!, at least in finite systems
with appropriate electron number~see next section!.

VI. PREDICTIONS FOR INFINITE SYSTEMS

The extrapolation of our numerical results in order to p
dict stability of different hierarchical states in infinite sy

FIG. 5. Few electron energiesE measured from the energy o
the parentn51/3 state as a function of total angular momentumL,
obtained in exact diagonalization in terms of Laughlin quasipa
cles ~left! or quasiholes~right! of the n51/3 state interacting
through appropriate pseudopotentials plotted in Fig. 2. Dashed l
mark energy bands predicted by the hierarchy picture assum
short range of all involved quasiparticle interactions. Pluses
frames~a! and ~b! mark exact energies obtained by diagonalizi
electron-electron interaction, as in Fig. 4.
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tems must be done very carefully. The calculations46 show
that the interaction of QP’s in a Laughlin parent state is
generally repulsive. The pseudopotentialVQP(R) is obtained
by subtraction of two appropriate QP energies 2«QP from
energiesE(R) in Figs. 2 and 3. For example, for then
51/3 parent state, the only positive pseudopotential par
eter is VQH(1), and all others @VQH(R) for R>3 and
VQE(R) for all R] are negative. SinceVQP(R) at largeR
~large distance! is expected to vanish, it must also increa
above all the values at smallR except forVQH(1). This
brings out the question if our prediction of incompressib
states at, e.g.,n56/17 (nQE51/5) or n56/19 (nQH51/7),
verified numerically for twelve electrons@Figs. 5~e,f!# re-
mains valid for an infinite system. We have calculated
ergy spectra of six particles at fillingn51/5 (2l 525), inter-
acting through pseudopotentials that forR<9 were equal to
VQE(R) for N511 in Fig. 2~a!, vanished atR525, and
behaved in a number of different ways for 9,R,25. As
shown in Fig. 6, theL50 hierarchy state is always th
lowest-energy state in the low-L part of the spectrum, bu
whether it is an absolute GS depends on how quic
VQP(R) goes to zero with increasingR. This is a conse-
quence of the following operator identity:24,25

(
i , j

L̂ i j
2 5L̂21N~N22! l̂ 2, ~7!

which relates total~L! and pair (L̂ i j ) angular momenta of a
system ofN particles in a shell of angular momentuml. The
states with largerL have~on the average! larger values ofLi j
and thus, ifV(R) increases with increasingR, lower energy.

The exact numerical calculation ofVQP(R) for R@9,
i.e., for l QP@5, seems impossible~calculations forN511
with l QE55 and l QH56 already required diagonalization o
matrices with dimensions of about 106 and 33106, respec-
tively!, and thus the only valid test of stability of states lik

FIG. 6. Left: Model pseudopotentialsV(R), equal toVQE in
Fig. 2~a! (N511) for R<9 and increasing to zero forR increasing
to 25. Right: EnergiesE of six particles each with single-particl
energy«QE ~for n51/3 state ofN511 electrons! and interacting
through pseudopotentials on the left, as a function of total ang
momentumL.
t
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n56/17 or 6/19 might be experiment. However, sin
VQP(R) for a large~infinite! system should be virtually zero
for all R’s above a certain critical value, it is unlikely tha
these GS’s will be incompressible in the thermodynam
limit. This would explain why~to our knowledge!, no such
states have been observed.

The above arguments most likely eliminate all daugh
states derived from Laughlinn51/m parents withnQE51/5
andnQH51/7 as possible incompressible GS’s, leaving on
those withnQE51 andnQH51/3. The latter ones are incom
pressible, because they either correspond to a filled s
(nQE51) or avoid the~only! repulsive pseudopotential pa
rameter VQH(1).0 (nQH51/3). A quick look at the
pseudopotentials in Fig. 3 is enough to find that the inco
pressible states on higher levels of hierarchy can only h
nQE51. It is easy to check~see also Fig. 1! that fractions
generated in this way belong to the Jain sequence obta
from Eq.~1! for integern* . This explains why the hierarchy
fractions from outside this sequence have not been obse
experimentally,15–18 even though numerical results for finit
systems presented here might suggest that states
n56/17 or 6/19 are incompressible.

Let us stress that the fact that valid hierarchy states~i.e.,
states with Laughlin-like correlations of appropriate Laug
lin QP’s! occur only at the Jain sequence of filling facto
obviously does not contradict occurrence of FQH effect
other fractions. However, the correlations in other possi
FQH states, the origin of their incompressibility, and th
elementary excitations must be different. Examples
observed15 nonhierarchy FQH states include ones atn57/3
~calculations show25,48 that it is not a Laughlin-liken51/3
state in the first excited LL! andn55/2.

VII. COMPARISON WITH CF PICTURE

The mean-field CF picture correctly predicts not only t
incompressible states at the Jain sequence of filling fact
but also the low-lying bands of states at any value ofN and
2S. However, neither its original justification based on ca
cellation between Coulomb and CS interactions beyond
mean field nor the use of higher LL’s in construction of C
wave functions can be accepted as complete understan
of this success.

If the effective CF magnetic field is non-negative (2S*
>0) and the effective CF filling factor is less or equal th
one (n* <1) the CF picture selects out of the total Hilbe
spaceH the subspaceHp , where 2p is the number of bound
~attached! flux quanta.23–25From Eq.~4! and Fig. 1 it is clear
that the entire sequence of Jain fractions corresponds to v
hierarchy states, obtained by the QE filling ofnQE50 or 1 on
any level of hierarchy and/or the QH filling ofnQH51/3 on
the first level~QH’s in the principal Laughlinn51/m state!.
Note that CF states obtained with 2p bound flux quanta for
which 2S* is positive are derived from thenQE51 daughter
of the Laughlinn5(2p11)21 state, while those for which
2S* is negative come from thenQH51/3 daughter of the
Laughlin n5(2p21)21 state. The explicit hierarchy wav
functions can also be constructed51,52 without introducing
higher LL’s excitations. As demonstrated for few-electr
systems,53 the ~valid! hierarchy and CF wave functions ar
nearly identical. Another qualitative success of the CF p

ar
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ture, the description of higher bands in the energy spect
in terms of excitations between CF LL’s, in the hierarc
picture corresponds to the creation of additional QE-Q
pairs in the parent state.11

One of the main results used as a direct experime
evidence for the existence of CF’s—the observation54,55 of
geometric resonances and divergence of the CF cyclo
radius atB* →0—does not contradict the hierarchy pictu
where the fractionally charged56 relevant QP’s move in a
bare external fieldB so that the cyclotron radius coincide
with the one of the CF’s moving in an effective fieldB* .
Read57 and Pasquier and Haldane58 have shown that thes
QP’s are electric dipoles whose charge vanishes atn51/2.
The relation between the descriptions of the half-filled st
in terms of CF’s and dipoles is discussed in Ref. 59.

Another result60 seemingly proving the formation of CF
LL’s is the linear dependence of the excitation gap of J
states on the effective magnetic fieldB* . In Fig. 7 we plot
the gapsDN calculated numerically for a few most promine
hierarchy/Jain states as a function of the inverse elec
number, 1/N. The limiting valuesD` are plotted in the inse
as a function ofB* /B5122pn. The gaps of states obtaine
from Eq.~1! for p51 (n51/3,2/5,3/7,. . . ) fall on a straight
line versusB* /B ~as first observed by Duet al.;60 note, how-
ever, that the linear extrapolation toB* 50 gives negative
gaps, also in agreement with experiment of Duet al.60!.
However, it is not so for Jainp52 states atn51/5, 2/7, and
2/9. In particular, the gap of then52/7 state seems to b
larger than that of then51/5 state. While this result may b
difficult to accept in the CF picture, it is by no means su
prising in the hierarchy picture where the relevant QP’s
the two states are different and interact through differ
pseudopotentials~see Figs. 1–3!.

The mean-field CF picture and the present hierarchy

FIG. 7. Excitation gapsDN of a few valid hierarchy states ca
culated in numerical diagonalization ofN electrons and plotted as
function of 1/N. Inset: limiting valuesD` as a function of effective
composite Fermion magnetic fieldB* .
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ture are equivalent because they both use correct degene
of excitations,gQE andgQH, for the chosen~fermionic! sta-
tistics. The CF picture makes no use of the form of sin
particle wavefunctions in excited LL’s; an effective magne
field is just another way to obtain correctgQE and gQH.
However, the authors believe that the understanding of
compressible states at Jain filling factors in terms of hier
chy of Laughlin excitations and involved QP pseudopote
tials has a number of advantages over the CF picture. It d
not use such puzzling concepts as flux binding, depends
plicitly and in a known way on the form of electron-electro
interaction, which enables predicting its applicability to sy
tems with modified interactions~higher LL’s, finite well
width, etc.!, and predicts correct energy gaps in terms
interaction parameters rather than arbitrary effective cyc
tron energy. The hierarchy picture is also more physica
intuitive and makes the origin of incompressibility of Ja
states more clear. Moreover, it gives better understandin
why no other fractions are experimentally observed, ev
though some~e.g.,n56/17 and 6/19! are found in finite size
numerical calculations.

VIII. CONCLUSION

We have calculated pseudopotentials of the interac
between quasiparticles, arising in the hierarchy picture
incompressible FQH states. Based on the analysis of th
pseudopotentials, it is explained why no hierarchy states w
filling factors n from outside the Jain sequence occur in
infinite system, and thus why none have been observed
perimentally. Compressibility ofn54/11 and 4/13 states i
demonstrated. Laughlin-like hierarchy states other than J
states are found atn56/17 and 6/19 in finite-size numerica
calculations. However, it is argued that the system at th
fractions ~and other non-Jain fractions with question mar
in Fig. 1! will undergo a transition into a compressible pha
when its size is increased.

The descriptions of FQH states in terms of mean-fi
CF’s and hierarchy of Laughlin excitations are compared
is explained why, despite no rigorous justification of the C
assumption of flux~or vortex! binding, the CF predictions
and the valid predictions of the hierarchy picture are~quali-
tatively! equivalent. In our analysis we used fermionic s
tistics of quasiparticles. However, our results are indep
dent of these statistics and remain valid for hierarc
pictures formulated in terms of bosons or anyons.
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