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The electronic properties of quasi two-dimensional multicomponent systems are

investigated in the presence of a perpendicular magnetic field. The effects of the

presence of a few valence band holes on the properties of quantum Hall systems

are examined by analyzing the results of exact numerical diagonalization of small

electron-hole systems confined to the spherical surface. The novel type of elementary

excitations, the angular momenta, binding energies, interaction pseudopotentials,

and effects on the photoluminescence spectrum are presented.
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I. INTRODUCTION

In semiconducting inversion layers and heterostructures, electrons can be confined to a

very thin layer in one direction, but they are able to move freely in the plane perpendicular

to the direction of confinement. These effectively two-dimensional electron systems (2DES)

have been of great interest for more than three decades [1, 2]. Because the electron concen-

tration can be varied over a wide range of values within a single sample, these 2D systems

are ideal testing grounds for studying many body interactions.

The application of a large dc magnetic field perpendicular to the 2D layer results in some

notable novel physics. The single electron states coalesce into highly degenerate Landau

levels whose energy is given by εn = h̄ωc(n+1/2) where ωc is equal to the electron cyclotron

frequency eB/mc, and n is a non-negative integer. Each Landau level can hold Nφ = BA/φ0

electrons of a given spin, where A is the area of the sample and φ0 = hc/e is the quantum

of flux. The integral quantum Hall effect [3] occurs when N electrons exactly fill an integral

number of Landau levels resulting in an integral value of the filling factor ν = N/Nφ. In

that case the ground state is incompressible because an infinitesimal decrease in the area A,

which decreases Nφ, requires a finite energy h̄ωc to promote an electron to the next Landau

level.

It is more difficult to understand why fractional quantum Hall states [4, 5] are incompress-

ible [6, 7, 8]. When Nφ is larger than N , no gap occurs in the absence of electron–electron

interactions. At very high values of the applied magnetic field, there is only one relevant

energy scale in the problem, the Coulomb scale e2/λ, where λ = (h̄c/eB)1/2 is the mag-

netic length. In that case standard many body perturbation theory is inapplicable. With

remarkable insight, Laughlin proposed a ground state wavefunction and the form of the ele-

mentary excitations that contained the essential correlations responsible for the energy gap

[5]. Exact diagonalization of the interaction Hamiltonian within the Hilbert subspace of the

lowest Landau level is a very good approximation at large values of B (where h̄ωc ≫ e2/λ).

Although it can be carried out only for relatively small systems, it gives beautiful confir-

mation of Laughlin’s picture of the essential correlations. The numerical diagonalization

studies are usually carried out on a spherical surface of radius R on which the electrons are

confined [9, 10]. A magnetic monopole of strength 2Qφ0, where 2Q is an integer, is located

at the origin. It produces a radial magnetic field ~B = (2Qφ0/4πR2) r̂. The single particle
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eigenstates are denoted by |Q, l, m〉 and are called monopole harmonics [10]. They are eigen-

functions of l̂2, lz, and the single particle Hamiltonian H , with eigenvalues l(l + 1), m, and

(h̄ωc/2Q)[l(l + 1) − Q2] respectively [11]. Because the energy eigenvalue must be positive,

the allowed values of l are given by ln = Q + n, where n = 0, 1, 2, . . .. The lowest Landau

level or angular momentum shell has l0 = Q and the allowed values of m have |m| ≤ Q. An

N -electron eigenfunction can be written

|m1, m2, . . . , mN〉 = C†
mN

. . . C†
m2

C†
m1

|0〉 . (1)

Here C†
m creates an electron in state |l0, m〉. There are GNQ = Nφ!/N !/(Nφ − N)! of N -

electron states in the Hilbert space of the lowest Landau level (with degeneracy Nφ = 2Q+1).

The numerical problem is to diagonalize the interaction Hamiltonian in this GNQ dimensional

space. Typical numerical results are shown in Fig. 1 for a system of 10 electrons with value

of 2Q between 24 and 29 [12].

It is well-known in quantum field theory that the presence of a Chern–Simons gauge field,

obtained by attaching to each electron an infinitesimally thin flux tube carrying magnetic

flux αφ0, has no effect on the classical equations of motion [13]. The reason for this is that

the Chern–Simons magnetic field is given by~b(~r) = αφ0
∑

i δ(~r−~ri)ẑ, where ~ri is the position

of the ith electron and ẑ is a unit vector parallel to the applied ~B field. Because two electrons

cannot occupy the same position, a given electron never senses the Chern–Simons magnetic

field due to any other electron. However, it does experience the vector potential

~a(~r) = αφ0

∫

d2r1
ẑ × (~r − ~r1)

|~r − ~r1|2
Ψ†(~r1)Ψ(~r1), (2)

where Ψ†(~r1)Ψ(~r1) is the density operator for the electron fluid. Adding ~a(~r) to ~a(~r) =

1
2
B(ẑ × ~r), the vector potential of the dc magnetic field, gives a very complex many body

Hamiltonian for a quantum mechanical system. It is usually treated by starting with a mean

field approximation in which Ψ†(r)Ψ(r) is replaced by its ground state expectation value nS,

the uniform equilibrium density, in Eq. (2). Then, the mean field Hamiltonian becomes a

sum of one-particle Hamiltonians in the presence of the mean magnetic field B∗ = B+αφ0nS.

Despite the lack of a small parameter, fluctuations beyond the mean field have been treated

by standard many body perturbation theory with qualitative success [14, 15].

Jain introduced the idea of a composite Fermion (CF) to represent an electron with an

attached flux tube which carries an even number α (= 2p) of flux quanta [16]. In the mean
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FIG. 1: The energy spectra of 10 electrons in the lowest Landau level calculated on a Haldane

sphere with 2Q between 24 and 29. The open circles and solid lines mark the lowest energy bands

with the fewest composite Fermion quasiparticles [12].

field approximation the CF filling factor ν∗ is given by ν∗−1 = ν−1 − α, i.e. the number of

flux quanta per electron of the dc field less the CF flux per electron. When ν∗ is equal to an

integer n = ±1,±2, . . ., then ν = n(1 + αn)−1 generates (for α = 2) quantum Hall states at

ν = 1/3, 2/5, 3/7, . . . and ν = 1, 2/3, 3/5, . . .. These are the most pronounced FQH states

observed.

In the spherical geometry one can introduce an effective monopole strength seen by one

CF [17]. It is given by 2Q∗ = 2Q − α(N − 1) since the α flux quanta attached to every
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other CF must be subtracted from the original monopole strength 2Q. Then |Q∗| = l∗0 plays

the role of the angular momentum of the lowest CF shell just as Q = l0 was the angular

momentum of the lowest electron shell. When 2Q is equal to an odd integer (1 + α) times

(N − 1), the CF shell l∗0 is completely filled, and an L = 0 incompressible Laughlin state at

filling factor ν = (1+α)−1 results. When 2|Q∗|+1 is smaller or larger than N , quasielectrons

(QE’s) or quasiholes (QH’s) appear in the shell with lQE = l∗0 + 1 or lQH = l∗0, respectively.

The low energy sector of the energy spectrum consists of the states with the minimum

number of quasiparticle excitations required by the value of 2Q∗ and N . The first excited

band of states will contain one additional QE–QH pair. The total angular momentum of

these states in the lowest energy sector can be predicted by addition of the angular momenta

(lQH or lQE) of the nQH or nQE quasiparticles (QE’s or QH’s) treated as identical Fermions.

In Tab. I we demonstrated how these allowed L values are found for a 10-electron system

with 2Q in the range 29 ≥ 2Q ≥ 21. By comparing with numerical results [12] presented

in Fig. 1, we readily observe that the total angular momentum multiplets appearing in the

lowest energy sector are always correctly predicted by this simple mean field Chern–Simons

picture.

It is quite surprising that this mean field Chern–Simons picture works so well. Fluctu-

ations beyond the mean field interact via both Coulomb and Chern–Simons gauge interac-

tions. The mean field Chern–Simons picture introduces a new energy scale h̄ω∗
c proportional

to the effective magnetic field B∗, in addition to the Coulomb scale e2/λ. For large values of

the applied magnetic field, this new energy scale is very large compared with the Coulomb

scale, but it is totally irrelevant to the determination of the low energy spectrum.

The reason for the success of the mean field Chern–Simons picture has been discussed

in detail in terms of the behavior of the electron pseudopotential V (L′), the interaction

energy of a pair of electrons as a function of the total angular momentum L′ of the pair

[6, 7, 18, 19, 20, 21]. If V (L′) is of the form VH(L′) = A + BL′(L′ + 1), which we refer to

as a “harmonic” pseudopotential, then every angular momentum multiplet which has the

same value of the total angular momentum L has the same energy. In other words, the

interactions, which couple only states with the same total angular momentum, introduce no

correlations. Any linear combination of eigenstates with the same total angular momentum

has the same energy. If V (L′) increases more quickly with increasing L′ than VH(L′), then

Laughlin correlations, maximum possible avoidance of pair amplitudes for the largest values
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TABLE I: The effective CF monopole strength 2Q∗, the CF quasiparticle numbers nQH and nQE,

the quasiparticle angular momenta lQE and lQH, and the angular momenta L of the lowest lying

band of multiplets for a 10-electron system at 2Q between 29 and 21.

2Q 29 28 27 26 25 24 23 22 21

2Q∗ 11 10 9 8 7 6 5 4 3

nQH 2 1 0 0 0 0 0 0 0

nQE 0 0 0 1 2 3 4 5 6

lQH 5.5 5 4.5 4 3.5 3 2.5 2 1.5

lQE 6.5 6 5.5 5 4.5 4 3.5 3 2.5

L 10,8,6,4,2,0 5 0 5 8, 6, 4, 2, 0 9, 7, 6, 5, 4, 32 , 1 8, 6, 5, 42, 22, 0 5,3,1 0

of L′, give the lowest energy states. We call such pseudopotentials superharmonic. For

harmonic and subharmonic pseudopotentials, Laughlin correlations do not occur.

Properties of 2D electron systems are most frequently studied by transport measurements,

or by optical measurements [1, 2]. The latter include infrared absorption and reflection,

inelastic light scattering, and photoluminescence. In all of these processes, valence band

holes are either created or destroyed. Therefore, it is important to include the valence band

holes in the theoretical investigations of the many body correlations.

In this review we investigate how the properties of quantum Hall systems are affected by

the presence of a few valence band holes, either confined to the same 2D surface as the 2DES,

or separated from it by a finite distance d [6]. When d is equal to zero, the strengths of the

electron–electron and electron–hole interactions are equal in magnitude. Then a “hidden

symmetry” results from the fact that the commutator of the Hamiltonian with the operator

d†(0), which creates an exciton of momentum zero, satisfies the relation [22, 23, 24]

[Ĥ, d†(0)] = EX(0)d†(0). (3)

Here d†(~k) creates an exciton of wavevector ~k and EX(0) is the binding energy of a single

exciton. The operator d†(0) can be written

d†(0) = N
−1/2
φ

∑

k′

c†k′b
†
−k′, (4)

where Nφ = 2Q + 1 and c†k′ (or b†k′) creates an electron (or hole) in the lowest Landau level

with wavenumber in the y-direction (in the Landau gauge) given by k′. Because of Eq. (3), if
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|φ〉 is an eigenfunction of Ĥ with eigenvalue Eφ, then d†(0) |φ〉 is an eigenfunction of Ĥ with

energy Eφ + EX . In other words, neutral excitons affect the energy of the electron system

only by adding the energy of the bare exciton to the total electron energy. The neutral

exciton is essentially uncoupled from the electron system, and states containing only NX

neutral excitons and Ne free unbound electrons are called “multiplicative states”. Although

in some circumstances they can be the lowest energy states, multiplicative states are not

necessarily the ground states [25, 26].

This paper is organized as follows: In Section II, we present results of exact numerical

diagonalization of small electron–hole systems confined to the same spherical surface under

the assumption that h̄ωc ≫ e2/λ. In Section III, states containing neutral excitons (X),

negatively charged excitons (X−), and larger excitonic complexes (X−
n =an electron bound

to n neutral excitons) are found. From the analysis of their energy spectra we can deter-

mine the binding energy of the excitonic complexes. In Section IV, the pseudopotential

describing the energy of interaction VAB(L′) of a pair (A and B can represent any of these

charged Fermions: e, X−, X−
2 , . . . ) as a function of the angular momentum of the pair is ex-

tracted from the numerical results. In Section V, a generalized composite particle model for

a multicomponent quantum liquid is introduced. Because the pseudopotentials VAB(L′) are

“superharmonic”, i.e., increase faster than L′(L′+1)with increasing L′, Laughlin correlations

among the constituents can occur. In Section VI, for a system containing only negatively

charged excitons (X−), Laughlin condensed states of these X− Fermions are found at par-

ticular values of the X− filling factor νX−. However, other charge configurations can also

exist. For example, one X− can break up into an electron and a neutral X. Knowledge of the

pseudopotentials VAB(L′) allows us to evaluate the low lying energy spectra for each charge

configuration. This is presented in Section VII.

The main connection of our theoretical work with experiment is through the analysis of

photoluminescence (PL). In this experimental technique, commonly used in studying the

2DES, a small number of conduction electron–valence hole pairs are excited in a quantum

well containing 1011 to 1012 electrons/cm2. Because Ne ≫ Nh, the separation between

valence band holes is very large, and it is only necessary to study the radiative electron–hole

recombination of a single hole interacting with the conduction electrons. The luminescence

energy depends on the energy of the Ne-electron–one-hole initial state and that of the Ne−1

electron final state. The energy spectra of a system of nine electrons and one valence hole
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as a function of the separation d between the layer containing the 2DES and that containing

the hole is presented in Section VIII A. Several different values of the monopole strength 2Q

are considered, and the interpretation of prominent bands of states is given. In Section VIII

B, selection rules for the radiative recombination of the hole with an electron are discussed,

and a few simple examples are given. In these sections it was assumed that the electrons

and hole were confined to 2D planes, and that h̄ωc ≫ e2/λ, so that only the states in the

lowest Landau level had to be considered. For more realistic experimental systems, the ratio

of h̄ωc to e2/λ need not be large. Then, the Hilbert subspace in which the diagonalization

is performed must contain an admixture of higher Landau levels. In addition, the effect of

finite quantum well widths must be included. This is done for very small systems (two or

three electrons and one hole) in Section VIII C. The total electron spin must be specified,

because the negatively charged excitons can form in singlet (Je = 0) or triplet (Je = 1) spin

states. The diagonalization gives us the eigenfunctions as well as the eigenvalues of all the

eigenstates. The former can be used to study the oscillator strength for PL. In Section VIII

D, we consider the spin flip excitations of a Landau level at filling factor of unity. These

excitations are spin waves, and their dispersion relation and interactions can be obtained

from the numerical results. When the filling factor ν differs from unity due to the presence

of one hole (h) in the ν = 1 level (or one spin reversed electron (eR) in the higher spin level)

additional pairs of holes and spin reversed electrons are spontaneously formed and bound to

the hole (or to the spin reversed electron). The number of such h–eR pairs depends on the

Zeeman energy, and the resulting “spin textures” are called antiskyrmions (or skyrmions)

[27, 28, 29, 30]. They are very much analogous to the X−
n excitonic complexes. When

a valence band hole is introduced into an electron system at a filling factor of unity, it

should create and bind h− eR pairs to form “skyrmion excitons.” It seems quite likely that

skyrmion excitons play an important role in PL near filling factor ν = 1. The final section

is a summary of results on electron–hole systems in 2D.

II. EXACT DIAGONALIZATION OF SMALL SYSTEMS

In the presence of a strong applied magnetic field, neutral excitons X and spin-polarized

charged excitonic complexes X−
k can occur. These X−

k complexes consist of k neutral exci-

tons bound to an electron and must be distinguished from spin-unpolarized ones (e.g. the
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singlet X−) that occur at lower magnetic fields but unbind when h̄ωc ≫ e2/λ. The X−
k

complexes are long lived Fermions whose spectra display Landau level structure. Here we

perform exact numerical diagonalization (within the subspace of the lowest Landau level)

for small systems containing Ne electrons and Nh holes (Ne > Nh).

The numerical diagonalization for the electron–hole system is a simple extension of that

for electrons alone. One can select states that have a definite value of M , the z-component

of the total angular momentum. The holes are Fermions, but distinguishable from the

electrons. Therefore, we can construct states in which the Ne electrons occupy states with

distinct values of m, the z-component of the single electron angular momentum, and the

Nh holes occupy states with distinct values of m′, the z-component of the hole angular

momentum. Because the electrons and holes are distinguishable, the values of m and m′

selected from the range between −l and l need not be different for the two types of Fermions.

When the interaction Hamiltonian is diagonalized within the subspace of the lowest Landau

level, the eigenvalues E(L) are obtained.

III. EXCITONS AND EXCITONIC COMPLEXES

In Fig. 2, we show the energy spectrum (in magnetic units) of a system of two electrons

and one hole at 2Q = 10 as a function of the total angular momentum L [31]. The lowest

energy state at L = Q is the multiplicative state with one neutral exciton in its lX = 0

ground state and one electron of angular momentum le = Q. Only one state of lower energy

occurs in the spectrum. It appears at L = Q−1 and corresponds to the only bound state of

the negatively charged exciton X−. The value of the X− angular momentum, lX− = Q− 1,

can be understood by noticing that the lowest energy single particle configuration of the

two electrons and one hole is the “compact droplet”, in which the two electrons have z-

component of angular momentum m = Q and m = Q− 1, and the hole has m = −Q giving

M = Q − 1.

As marked with lines in Fig. 2, unbound states above the multiplicative state form bands,

which arise from the e–h interaction and are separated by gaps associated with the char-

acteristic excitation energies of an e–h pair. (The e–h pseudopotential, i.e., the energy

spectrum of an exciton, is shown in the inset). These bands are rather well approximated

by the expectation values of the total (e–e and e–h) interaction energy, calculated in the
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FIG. 2: Energy spectrum of two electrons and one hole at 2Q = 10. Inset: energy spectrum of an

electron-hole pair [31].

eigenstates of the e–h interaction alone without e–e interaction.

In Fig. 3, we display the energy spectrum obtained by numerical diagonalization of the

Coulomb interaction of a system of four electrons and two holes at 2Q = 15 [31]. The states

marked by open and solid circles are multiplicative (containing one or more decoupled X’s)

and non-multiplicative states, respectively. For L ≤ 10 there are four rather well defined

low lying bands. Two of them begin at L = 0. The lower of these consists of two X−

ions interacting through a pseudopotential VX−−X−(L′). The upper band consists of states

containing two decoupled X’s plus two electrons interacting through Ve−−e−(L′). The band

that begins at L = 1 consists of one X plus an X− and an electron interacting through

Ve−−X−(L′), while the band which starts at L = 2 consists of an X−
2 interacting with a free

electron.

Knowing that the angular momentum of an electron is le− = Q, we can see that lX−

k

=

Q− k, and that decoupled excitons do not carry angular momentum (lX = 0). For a pair of

identical Fermions of angular momentum l the allowed values of the pair angular momentum

are L′ = 2l − j, where j is an odd integer. For a pair of distinguishable particles with

angular momentum lA and lB, the total angular momentum satisfies |lA− lB| ≤ L′ ≤ lA + lB.

The states containing two free electrons and two decoupled neutral excitons fit exactly the



11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Angular momentum

0.2

0.3

0.4

0.5

0.6

E
ne

rg
y 

− 
2 

G
S

E
(X

− )  
 (e

2 /
λ)

2Q=15

e−-e−    (i)

e−-X−   (ii)

e−-X−
2   (iii)

X−-X−  (iv)

non-multipl.

multiplicat.
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pseudopotential for a pair of electrons at 2Q = 15; the maximum pair angular momentum

is L′MAX = 14 as expected. By comparing this band of states with the band containing two

X−’s, we can obtain the binding energy of the neutral exciton to the electron to form the

X−. The other binding energy, that of a neutral exciton to an X− to form an X−
2 can be

obtained in a similar way.

We define ε0 as the binding energy of a neutral exciton, ε1 as the binding energy of an

X to an electron to form an X−, and εk as the binding energy of an X to an X−
k−1 to form

an X−
k . An estimate of these binding energies (in magnetic energy units e2/λ where λ is

the magnetic length) as a function of 2Q are given in Tab. II [32]. We note clearly that

ε0 > ε1 > ε2 > ε3.

IV. PSEUDOPOTENTIALS

In Fig. 3, the band of states containing two X−’s terminates at L′ = 10. Since the X−’s

are Fermions, one would have expected a state at L′MAX = 2lX− − 1 = 12. This state is

missing in Fig. 3. We surmise that the state with L′ = L′MAX does not occur because of
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TABLE II: Binding energies ε0, ε1, ε2, ε3 of X,X−,X−
2 , and X−

3 , respectively, in units of e2/λ

[32].

2Q ε0 ε1 ε2 ε3

10 1.3295043 0.0728357 0.0411069 0.0252268

15 1.3045679 0.0677108 0.0395282 0.0262927

20 1.2919313 0.0647886 0.0381324 0.0260328

the finite size of the X−. Large pair angular momentum corresponds to the small average

separation, and two X−’s in the state with L′MAX would be too close to one another for

the bound X−’s to remain stable. We can think of this as a “hard core” repulsion for

L′ = L′MAX . Effectively, the corresponding pseudopotential parameter, VX−−X−(L′MAX) is

infinite. In a similar way, Ve−−X−(L′) is infinite for L′ = L′MAX = 14, and Ve−−X−

2

(L′) is

infinite for L′ = L′MAX = 13.

Once the maximum allowed angular momenta for all four pairings AB are established,

all four bands in Fig. 3 can be roughly approximated by the pseudopotentials of a pair

of point charges with angular momentum lA and lB, shifted by the binding energies of

appropriate composite particles. For example, the X− − X− band is approximated by the

e− − e− pseudopotential for l = lX− = Q − 1 plus twice the X− energy. The agreement is

demonstrated in Fig. 3, where the squares, diamonds, and two kinds of triangles approximate

the four bands in the four-electron–two-hole spectrum. The fit of the diamonds to the actual

X− − X− spectrum is quite good for L′ < 10. The fit of the e− − X− squares to the open

circle multiplicative states is reasonably good for L′ < 12, and the e−−X−
2 triangles fit their

solid circle non-multiplicative states rather well for L′ < 11. At sufficiently large separation

(low L′), the repulsion between ions is weaker than their binding and the bands for distinct

charge configurations do not overlap.

There are two important differences between the pseudopotentials VAB(L′) involving com-

posite particles and those involving point particles. The main difference is the hard core

discussed above. If we define the relative angular momentum R = lA + lB − L′ for a pair

of particles with angular momentum lA and lB, then the minimum allowed relative angular

momentum (which avoids the hard core) is found to be given by

Rmin
AB = 2min(kA, kB) + 1, (5)
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where A = X−
kA

and B = X−
kB

. The other difference involves polarization of the composite

particle. A dipole moment is induced on the composite particle by the electric field of

the charged particles with which it is interacting. By associating an “ionic polarizability”

with the excitonic ion X−
k , the polarization contribution to the pseudopotential can easily

be estimated. When a number of charges interact with a given composite particle, the

polarization effect is reduced from that caused by a single charge, because the total electric

field at the position of the excitonic ion is the vector sum of contributions from all the other

charges, and there is usually some cancellation. We will ignore this effect in the present work

and simply use the pseudopotential VAB(L′) obtained from Fig. 3 to describe the effective

interaction.

V. GENERALIZED COMPOSITE FERMION MODEL

When the pseudopotential describing the interaction of a pair of identical Fermions as a

function of the pair angular momentum is “superharmonic”, the low energy states are those

with Laughlin–Jastrow correlations. By this we mean that these low energy states avoid to

the maximum possible extent having pairs with pair angular momentum L′ = 2l − 1, its

maximum value. If Chern–Simons flux is added adiabatically to the interacting Fermions,

Laughlin correlations automatically results. The Laughlin correlations allow us to describe

the interacting Fermions in terms of an effective angular momentum l∗ = l−p(N −1) where

N is the number of identical Fermions, and p is an integer. The value of l∗ can be thought of

in terms of a composite Fermion (CF) transformation in which the monopole strength 2Q is

replaced by 2Q∗ = 2Q−2p(N −1), i.e., the original monopole strength seen by one electron

minus the Chern–Simons flux on every other electron (to which 2p Chern–Simons flux quanta

oppositely oriented to the applied magnetic field have been added). This “effective” angular

momentum l∗ results in the electrons having as a largest possible pair angular momentum

of L′∗ = 2l∗− 1 = 2l− 1− 2p(N − 1). By forbidding states with the largest allowed electron

pair angular momenta, we do not allow pair states with the smallest spatial size and the

largest repulsion.

We know from our numerical calculations that we can obtain states with neutral excitons,

electrons, charged triplet excitons X− and higher spin polarized excitonic complexes X−
k .

The charged particles are all Fermions with Landau levels. Clearly, the low energy sector of
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the energy spectrum can contain different types of charged Fermions: electrons, X−, X−
2 , . . ..

It is straightforward to construct a generalized CF picture for a multicomponent Fermion

plasma. Let’s define the effective monopole strength 2Q∗
a seen by a CF of type a as

2Q∗
a = 2Q −

∑

b

(mab − δab)(Nb − δab). (6)

What we have done here is to attach to all type a Fermions (maa−1) flux quanta that couple

only to the charges on all other type a Fermions and mab flux quanta sensed only by charges

on the type b Fermions. This is a straightforward generalization of what we did in making

the CF transformation for a one component (electron) plasma. The coefficients mab are the

powers that occur in the generalized Laughlin wavefunction,
∏

〈i,j〉(z
(a)
i − z

(b)
j )mab where z

(a)
i

is the complex coordinate of the ith Fermion of type a and the product is over all pairs

〈i, j〉. For different multicomponent systems generalized Laughlin incompressible states are

expected to occur when (i) all the hard-core pseudopotentials are avoided and (ii) each

type of CF’s (i.e., CFa’s, CFb’s, . . . ) completely fills an integral number of their angular

momentum shells. In other cases, low lying multiplets are expected to contain different

kinds of CF quasiparticles (QEa’s, QEb’s, . . . , or QHa’s, QHb’s, . . . ) of the incompressible

generalized Laughlin states.

VI. CONDENSED STATES OF CHARGED EXCITONS

Consider for a moment a system containing 12 electrons and six holes on a Haldane

spherical surface at monopole strength 2Q = 17. The charge configuration with the largest

binding energy is that containing six X− charged excitons. We will refer to it as (i); its total

binding energy εi is equal to 6(ε0 + ε1). If we make a CF transformation on this system

of NX− = 6 negatively charged excitons, we obtain 2Q∗
X− = 2Q − 2(NX− − 1) = 7. The

angular momentum of the X− is given by lX− = Q − 1 = 15/2 and that of the CF X− by

l∗X− = Q∗
X− − 1 = 5/2. This means that the six CF X−’s completely fill the l∗X− = 5/2 shell

giving a Laughlin L = 0 incompressible state at νX− = 1/3. Note that 2l = ν−1(N − 1)

holds for the quantum liquid of X−’s just as it did in the case of electrons.

Although the X− particles have relatively long lifetimes for radiative recombination of

an electron–hole pair, it seems unlikely that the Laughlin condensed state of negatively

charged excitons can be observed by the standard experimental techniques used in the case
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of condensed states of an electron liquid. One point worth noting is that the generalized CF

picture of a multicomponent plasma can be thought of in terms of fictitious CF fluxes and CF

charges that have different “colors”. For example, electrons could have a red Chern–Simons

charge and X−’s a green charge. Then (mee − 1) red and meX− green Chern–Simons fluxes

would be attached to each electron, while (mX−X− − 1) green and mX−e red Chern–Simons

fluxes would be attached to each X−.

VII. OTHER CHARGE CONFIGURATIONS

For the 12-electron–6-hole system, other charge configurations besides the six X−’s can

occur as excited states. Among these are (ii) e− + 5X− + X with total binding energy

εii = 6ε0 + 5ε1, and (iii) e− + 4X− + X−
2 with total energy εiii = 6ε0 + 5ε1 + ε2. The total

energy of any state depends on the interaction energy of the constituent charged particles

as well as the binding energy.

The system of eighteen particles (12 electrons and 6 holes) at 2Q = 17 is too large for

us to diagonalize in terms of the electrons and holes and their interactions. However, we

can obtain a reasonable approximation to the low lying energy spectrum by considering the

different charge configurations denoted by (i) through (iii) each of which contains only six

charged Fermions. We make use of our knowledge of the binding energies, angular momenta,

and pseudopotentials VAB(L′) where A and B can be e−, X−, or X−
2 . The results of this

simpler numerical calculation are presented in Fig. 4 [32]. There is only one low lying state

of the six X− configuration, the L = 0 Laughlin νX− = 1/3 state. There are two bands of

states in each of the charge configurations (ii) and (iii).

The results presented in Fig. 4 can be understood from the generalized CF model. The

CF predictions are: (i) For the system of NX− = 6, we take mX−X− = 3 and obtain the

Laughlin νX− = 1/3 state as discussed earlier. Because of the hard core of the X− − X−

pseudopotential, this is the only state of this charge configuration. (ii) For the e−+5X−+X

configuration, we can take mX−X− = 3 and meX− = 1, 2, or 3. For meX− = 1, we obtain

L = 1, 2, 32, 42, 53, 63, 73, 82, 92, 10, and 11. For meX− = 2, we obtain L = 1, 2, 3, 4, 5,

and 6. For meX− = 3, we obtain L = 1. (iii) For the grouping e− + 4X− + X−
2 , we set

mX−X− = 3, meX−

2

= 1, mX−X−

2

= 3, and meX− = 1, 2, or 3. For meX− = 1, we obtain the

multiplets L = 2, 3, 42, 52, 63, 72, 82, 9, and 10. For meX− = 2, we obtain L = 2, 3, 4, 5, and
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FIG. 4: Low energy spectra of different charge configurations of the 12e+6h system on a Haldane

sphere at 2Q = 17: 6X− (diamonds), e− + 5X− + X (solid circles), and e− + 4X− + X−
2 (open

circles) [32].

6, and for meX− = 3, we obtain L = 2. In the groupings (ii) and (iii) the sets of multiplets

obtained for higher values of meX− are subsets of those obtained for lower values of meX−.

We would expect them to form lower energy bands since they avoid additional small values

of ReX−. However, note that the (ii) and (iii) states predicted for meX− = 3 (at L = 1 and 2,

respectively) do not form separate bands in Fig. 4. This is because the VeX− pseudopotential

increases more slowly than linearly as a function of L′(L′ + 1) in the vicinity of ReX− = 3.

In such case the CF picture fails [7].

The agreement of our CF predictions with the data in Fig. 4 is really quite remarkable

and strongly indicates that our multicomponent CF picture is correct. We were indeed able

to confirm predicted Jastrow type correlations in the low lying states by calculating their

coefficients of fractional parentage [7, 33]. We have also verified the CF predictions for other

systems that we were able to treat numerically. If exponents mab are chosen correctly, the

CF picture works well in all cases.

VIII. PHOTOLUMINESCENCE

In photoluminescence (PL) experiments the absorption of light creates a small number of

electron–hole pairs in a quantum well that already contains a concentration of conduction
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electrons. The valence band holes interact with the system of electrons. The ultimate e–h

recombination results in an emitted photon whose energy is equal to the energy difference

between the initial state of N electrons and one valence hole and the final state containing

N − 1 electrons. The initial state depends on the e–h interaction, which in turn depends on

the reparation between the plane containing the N electrons and the plane of the valence

hole. Such separation, which occurs, for example, in asymmetrically doped quantum wells,

breaks the hidden symmetry. This allows for a rich PL spectrum which can be used as a

probe of the low lying e–h states even at very high magnetic field, where only states within

the lowest Landau level are of importance. Because the number of valence band holes excited

optically is so small, it is sufficient to study the eigenstates of a single hole interacting with

the N electrons in the quantum well.

A. N-Electron–One-Hole Systems

We start by considering the eigenstates of a system consisting of N electrons confined

to a plane z = 0 and interacting with one another and with a valence hole confined to

a plane z = d, where d is measured in units of the magnetic length λ. The cyclotron

energy h̄ωc is assumed to be much larger than the Coulomb energy e2/λ, so that only the

lowest Landau level enters our calculation. In Fig. 5 we present the energy spectra for a

system of nine electrons and one valence band hole at different values of the separation

between electron and hole layers, and at different values of the monopole strength 2Q [34].

For d ≪ 1 we have strong coupling between the electrons and the hole. Neutral (X) and

charged triplet excitons (X−) are found. The multiplicative states at d = 0 are shown as

solid dots surrounded by a small circle. Non-multiplicative states at d = 0 can have an X−
t

exciton interacting with the remaining N −2 electrons. For d ≫ 1 the valence hole interacts

very weakly with the N -electron system, and the spectra can be described in terms of the

eigenstates of the N -electron system multiplied by the eigenfunction of the hole with angular

momentum L̂ = L̂e + l̂h. For intermediate values of d (d ≃ 2) the e–h interaction is not a

weak perturbation on the electronic eigenstates, but it is not strong enough to bind a full

electron to form an exciton.

For d = 0, X and X− bound states occur. Due to the “hidden symmetry”, the multiplica-

tive states containing an X have the same spectrum as the eight electron system shifted by
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[34].
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the X binding energy. The CF model [16, 17] tells us that the effective monopole strength

seen by one CF in a system of N ′ = N−1 = 8 electrons near ν = 1/3 is 2Q∗ = 2Q−2(N ′−1).

Q∗ plays the role of the angular momentum of the lowest CF shell (Landau level), therefore

Q∗ = 3.5, 4, 4.5, and 5 for the multiplicative states in frames (a), (b), (c), and (d) of Fig. 5,

respectively. Since the lowest shell can accommodate 2Q∗ + 1 CF’s, it is exactly filled in

Fig. 5(a), but there are 1, 2, and 3 excess CF’s for Fig. 5(b), (c), and (d), respectively. The

excess CF’s go into the next shell as Laughlin QE’s with lQE = Q∗ + 1, giving one QE with

lQE = 4(b), two QE’s each with lQE = 4.5(c), and three QE’s each with lQE = 5(d). The

angular momentum of the lowest band of multiplicative states are obtained by the addi-

tion of the angular momentum of the QE excitations, remembering that they are identical

Fermions. These states are shown as points surrounded by a small circle in all frames for

d = 0. In the absence of QE–QE interactions (i.e., for mean field CF’s) all the states in the

lowest CF band of each spectrum would degenerate, but QE–QE interactions remove this

degeneracy. Higher energy multiplicative states that appear in the figure contain additional

QE–QH pairs.

For the non-multiplicative states we have one X− and Ne = N − 2 remaining electrons.

The generalized CF picture [32] allows us to predict the lowest energy band in the spectrum

in the following way. The effective monopole strength seen by the electrons is 2Q∗ =

2Q − 2(Ne − 1) − 2NX−, while that seen by the X− is 2Q∗
X− = 2Q − 2Ne. Here, we

have attached to each Fermion (electron and X−) two fictitious flux quanta and used the

mean field approximation to describe the effective monopole strength seen by each particle

(note that a CF does not see its own flux). The angular momentum of the lowest CF

electron shell is l∗0 = Q∗
e, while that of the CF X− shell is l∗X− = Q∗

X− − 1 [31, 35]. For

the system with Ne = 7 and NX− = 1 at 2Q = 21, 22, 23, and 24, the generalized CF

picture leads to: one QH with lQH = 3.5 and one X− with l∗X− = 2.5, giving a band

at 1 ≤ L ≤ 6 for Fig. 5(a); two QH’s with lQH = 4 and one X− with l∗X− = 3 giving

L = 0⊕ 1⊕ 23 ⊕ 33 ⊕ 44 ⊕ 53 ⊕ 63 ⊕ 72 ⊕ 82 ⊕ 9⊕ 10 for Fig. 5(b); three QH’s with lQH = 4.5

and one X− with l∗X− = 3.5 for Fig. 5(c); and four QH’s with lQH = 5 plus one X− with

l∗X− = 4 for Fig. 5(d). In the figure, we have restricted the values of L and of E, so that not

all the states are shown.

For d ≫ 1, the electron–hole interaction is a weak perturbation on the energies obtained

for the N -electron system [25, 36, 37]. The numerical results can be understood by adding
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the angular momentum of the hole, lh = Q, to the electron angular momentum obtained

from the simple CF model. The predictions are: for 2Q = 21 there are three QE’s each

with lQE = 3.5 and the hole has lh = 10.5; for 2Q = 22 two QE’s each with lQE = 4 and

lh = 11; for 2Q = 23 two QE’s each with lQE = 4.5 and lh = 11.5; and for 2Q = 24 no

QE and lh = 12. Adding the angular momenta of the identical Fermion QE’s gives Le, the

electron angular momenta of the lowest band; adding to Le the angular momentum lh gives

the set of allowed multiplets appearing in the low energy sector. For example, in Fig. 5(b′′)

the allowed values of Le are 1 ⊕ 3 ⊕ 5 ⊕ 7, and the multiplets at 7 and 3 have lower energy

than at 1 and 5. Four low energy bands appear at 4 ≤ L ≤ 18, 8 ≤ L ≤ 14, 6 ≤ L ≤ 16,

and 10 ≤ L ≤ 12, resulting from Le = 7, 3, 5, and 1, respectively.

For d ≈ 1, the electron–hole interaction results in formation of bound states of a hole

and one or more QE’s. In the two-electron–one-hole system, the X and X− unbind for

d ≈ 1, but interaction with the surrounding unbound electrons in a larger system can lead

to persistence of these excitonic states beyond d = 1. For example, the band of states at

d = 0 in Fig. 5(a) that we associated with an X− interaction with a QH persists at d = 1.5 in

Fig. 5(a′). However, it appears to cross another low energy band that extends from L = 3 to

8. This latter band can be interpreted in terms of three QE’s interacting with the hole as was

done in the weak coupling limit shown in Fig. 5(a′′). The other bands of the weak coupling

regime (those beginning at L = 5, 6, 7, 8, and 9) have disappeared into the continuum of

higher states as a result of the increase of Veh.

For 2Q = 22, the lowest band can be interpreted in terms of one X− interacting with two

QH’s of the generalized CF picture. The X− has l∗X− = 3 and the QH’s each have lQH = 4.

The allowed values of L2QH are 7, 5, 3, and 1, and the molecular state QH2 which has the

smallest average QH–QH distance would have lQH
2

= 7. This gives a band of X− + QH2

states going from L = lQH
2
− l∗X− = 4 to L = lQH

2
+ l∗X− = 10. A higher band beginning

at L = 2 might be associated with a 2QH state at L2QH = 5 interacting with an X−. The

origin of the other bands is less certain.

For 2Q = 23, there are two low lying bands. The first contains a hole with lQE = 4.5.

This gives rise to a band beginning at L = 7 of which only the lowest two members are

indicated. A second band appears to contain an additional QE–QH pair. The cost of energy

in creating this additional pair is comparable to the energy gained through the interaction

of the additional QE with the hole. The lowest hQE2 state occurs at lhQE
2

= lh − lQE
2

= 3.5
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(this results from choosing l2QE = 8, the largest value from the set of allowed L2QE = 8, 6,

4, 2, and 0) and adding lhQE
2

to lQH = 3.5 to obtain a band with 0 ≤ L ≤ 7. The state with

L = 7 is missing, probably due to the large QE–QH repulsion at lQE−QH = 1. The bands

occurring at 2Q = 25 are even more uncertain.

B. Photoluminescence Selection Rules at High Magnetic Fields

Exact numerical diagonalization gives both the eigenvalues and the eigenfunctions. The

low energy states |i〉 of the initial N -electron–one-hole system have just been discussed. The

final states |f〉 contain N ′ = N−1 electrons and no holes. The recombination of an electron–

hole pair is proportional to the square of the matrix element of the photoluminescence

operator L̂, where L̂ =
∫

d2rΨe(~r)Ψh(~r) and Ψe (or Ψh) annihilates an electron (or hole). We

have evaluated | < f |L̂ |i〉 |2 for all of the low-lying initial states and have found the following

results [38, 39]. (i) Conservation of the total angular momentum L is at most weakly violated

through the scattering of spectator particles (electrons and quasiparticles) which do not

participate directly in the recombination process if the filling factor ν is less approximately

1/3. (ii) In the strong coupling region, the neutral X line is the dominant feature of the PL

spectrum. The X−QH2 state has very small oscillator strength for radiative recombination.

(iii) For intermediate coupling, the hQE2 and an excited state of the hQE (which we denote

by hQE∗) are the only states with large oscillator strength for photoluminescence.

At zero temperature (T = 0), all initial states must be ground states of the N -electron–

one-hole system. At finite but low temperatures, excited initial states contribute to the PL

spectrum. The photoluminescence intensity is proportional to

wi→f =
2π

h̄
Z−1

∑

i,f

e−βEi |
〈

f |L̂|i
〉

|2 δ(Ei − Ef − h̄ω), (7)

where β = (kT )−1 and Z =
∑

i e
−βEi.

C. Singlet and Triplet Charged Excitons at Low Magnetic Fields

As mentioned in Section VIII B, only spin polarized charged excitons (with Je = 1) are

bound when the ratio (h̄ωc)/(e2/λ) tends to infinity. In real systems at finite values of this

parameter, both singlet (Je = 0) and triplet (Je = 1) charged excitons occur. According to
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the theory [40] the singlet X−
s is the ground state (GS) at low values of the magnetic field,

while the triplet X−
t is the GS at very high magnetic fields. Numerical calculations of the

ground states of both the singlet and triplet charged excitons [40] indicated a crossing at

roughly 30 Tesla for a symmetric GaAs quantum well, the width of which was about 10 nm.

Observation of PL by Hayne et al. [41] displaying three peaks that were interpreted as the

X, X−
t , and X−

s , showed no crossing of the X−
t and X−

s up to the fields of 50 Tesla. This

led the experimenters to question the validity of the variational calculations.

In this section we study very small systems (either two or three electrons and one valence

band hole) in narrow (∼ 11.5 nm) symmetric GaAs quantum wells. We include the effects

of Landau level mixing caused by the interactions, and the effect of finite well width on

the effective interaction. Only a single subband is used in the calculations, since the quan-

tum well is relatively narrow. Both electrons and holes are described in the effective mass

approximation, and interband coupling is partially accounted for by a magnetic field depen-

dence of the cyclotron mass of the hole (taken from experimental data) [42]. The Zeeman

energy depends on both the well width and the magnetic field B. Five Landau levels for

both the electrons and holes were included in the calculation in order to obtain satisfactory

convergence. The energies obtained for different values of the monopole strength 2Q were

extrapolated to the large Q limit to eliminate finite-size effects.

The energy spectra of the two-electron–one-hole system calculated for 2Q = 20 are shown

in Fig. 6 [43]. Open and solid symbols mark singlet and triplet states (Je is the total electron

spin), and each state with L > 0 represents a degenerate L multiplet. Since the PL process

(annihilation of an e–h pair and emission of a photon) occurs with conservation of angular

momentum, only states from the L = Q channel are radiative [31, 35]. Recombination of

other non-radiative states requires breaking rotational symmetry (e.g., by collisions with

electrons). This result is independent of the chosen spherical geometry and holds also for

a planar quantum well, except that the definition of the conserved momentum is different

[44].

The occurrence of a strict PL selection rule at finite B may seem surprising, since the

hidden symmetry [22, 23] that forbids the X−
td recombination in the lowest Landau level

does not hold when the mixing with higher Landau levels is included. (The “d” in X−
td

means “dark” and X−
td is called the dark triplet because it is forbidden to decay radiatively.)

However, it is both the hidden symmetry and the above-mentioned angular momentum
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FIG. 6: Energy spectra (binding energy vs. angular momentum) of the two-electron–one-hole

system on a Haldane sphere with the Landau level degeneracy of 2Q+1 = 21. Je denotes the total

electron spin. The parameters are appropriate for the 11.5 nm GaAs quantum well [43].

conservation that independently forbid the X−
td recombination, and the latter remains valid

at finite B. Although the hidden symmetry and resulting NX conservation law no longer hold

at finite B, the X−
td recombination remains strictly forbidden because of the independently

conserved L.

We expect breaking of both symmetries for real experimental situations. The presence of

impurities and defects, and e–X−
td scattering during recombination in the presence of excess

electrons can relax the strict conservation of the X− angular momentum in the radiative

decay. However, for narrow and symmetric quantum wells containing a relatively small

number of excess electrons, the symmetries may be only weakly broken and some remnant

of the strict conservation laws may survive.

Three states marked in Fig. 6 are of particular importance: X−
s and X−

tb (“b” stands

for “bright”) are the only strongly bound radiative states, while X−
td has by far the lowest

energy of all non-radiative states. The radiative triplet bound state X−
tb is identified for the

first time. The binding energies of all three X− states are extrapolated to λ/R → 0 and

plotted in Fig. 7(a) as a function of B [43]. For the X−
s , the binding energy differs from the
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PL energy (indicated by thin dotted line) by the Zeeman energy needed to flip one electron’s

spin, and the cusp at B ≈ 42 T is due to the change of sign of the electron g-factor. For the

triplet states, the PL and binding energies are equal. The energies of X−
s and X−

td behave

as expected: The binding of X−
s weakens at higher B and eventually leads to its unbinding

in the infinite field limit [24]; the binding energy of X−
td changes as e2/λ ∝

√
B; and the

predicted [40] transition from the X−
s to the X−

td GS at B ≈ 30 T is confirmed. The new X−
tb

state remains an excited triplet state at all values of B, and its binding energy is smaller

than that of X−
s by about 1.5 meV. The oscillator strengths τ−1 of a neutral exciton X and

the two radiative X− states are plotted in Fig. 7(b). In the two-electron–one hole spectrum,

the strongly bound X−
s and X−

tb states share a considerable fraction of the total oscillator

strength of one X, with τ−1
tb nearly twice larger than τ−1

s .

The comparison of calculated magnitude and magnetic field dependence of the X− binding

energies with the experimental PL spectra [41, 45, 46, 47], as well as high oscillator strength

of the X−
tb , lead to the conclusion that the three peaks observed in PL are the X, X−

s , and

X−
tb .

To understand why the X−
td state remains optically inactive even in the presence of col-
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lisions, the e–X− interaction must be studied in greater detail. Our numerical results for a

three electron–one hole system indicate that the lowest band of states consists of a triplet

X− and one unbound electron. Because the X−
t − e pseudopotential is superharmonic, in

real experimental systems at a low electron concentration (ν ≤ 1/3) Laughlin correlations

between the electron and X−
t will effectively isolate the X−

t from the surrounding 2DES.

This prevents close collisions of the X−
t and the spectator electron during the e–h recom-

bination. Although the X−
td is no longer forbidden to decay radiatively since the spectator

electron can change its angular momentum in the recombination process, this scattering

process is weak for ν < 1/3. The oscillator strength for radiative decay of the X−
td is found

to be more than an order of magnitude smaller than those of the X−
s and X−

tb . These results

support the interpretation that the three peaks observed in many experiments correspond

to the X, X−
s , and X−

tb . The X−
td is not observed because of its small oscillator strength.

The X−
td recombination line has been observed only recently, when special care (very low

temperatures and high quality samples) were taken to detect its weak signal [48]. Even more

convincing is the comparison with infrared absorption at very low temperature where only

the X−
td state is heavily occupied. Absorption spectra show only one strong peak in contrast

to PL spectra which shows three, because the higher population of the X−
td compensates for

its lower oscillator strength for radiative recombination compared to the X−
s and X−

tb .

D. Skyrmion Excitons

In order to understand the excitonic complexes that can be formed near filling factor

ν = 1, it is first necessary to study the kinds of elementary excitations than can occur in

the absence of valence band holes. For filling factor ν equal to unity, the lowest energy

excitations are spin flip excitations which create a reversed spin electron eR in the same

n = 0 Landau level leaving behind a spin hole h in the otherwise filled ν = 1 state. Even

when the Zeeman energy EZ is zero, the Coulomb exchange energy will spontaneously break

the spin (↑, ↓) symmetry giving a spin polarized ground state.

In Fig. 8(a) we show the low lying spin excitations of the ν = 1 state (with EZ taken to be

zero) for a system of N = 12 electrons [49]. The solid square at L = 0 is the spin polarized

ν = 1 ground state with spin S = 6. The symbol K = N/2 − S is the number of spin flips

away from the fully spin polarized state. The band of open squares connected by a dashed
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FIG. 8: Energy spectra (energy E vs. angular momentum L) of the spin unpolarized 12-electron

system in the lowest Landau level, calculated on a Haldane sphere for monopole strength 2Q = 11

(a) and 12 (b) [49].

line gives the spin wave (SW) dispersions εSW(L). The angular momentum L is related to

wavenumber k by L = kR, where R is the radius of the spherical surface to which the N

electrons are confined. The SW consists of a single eRh pair; its dispersion can be evaluated

analytically [50]. The solid circles, open circles, etc. represent states containing 2, 3, . . . spin

flips (i.e., 2, 3, . . . eRh pairs). Dot-dashed lines connect low lying states with equal numbers

of spin flips. It is interesting to note the almost straight line connecting the lowest energy

states at 0 ≤ L ≤ 6. This can be interpreted as band of K SW’s each with lSW = 1 with

L = K. The near linearity suggests that these K SW’s are very nearly noninteracting in

the state with L = K.

In Fig. 8(b) we present the lowest energy spectra for ν = 1− (i.e., a single spin hole in

the ν = 1 state). In both Fig. 8(a) and (b) only the lowest energy states at each L and S

are shown. Of particular interest in Fig. 8(b) is the band of states with L = S = Q−K and

negative energy. These are antiskyrmion states, S+
K = K eR + (K + 1)h, bound states of

one spin hole and K spin waves [49, 51]. They are analogous to interband charged excitons

[52, 53], but they can be equilibrium states not subject to radiative decay at the appropriate
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value of the Zeeman energy. Skyrmion states are S−
K = K h + (K + 1)eR. Electron–hole

symmetry requires their existence for ν > 1.

It has been demonstrated [49] that in the fractional quantum Hall regime analogous

excitations occur with QER and QH replacing eRh and h of the integral quantum Hall

case. Spin waves, skyrmions, and antiskyrmions made from Laughlin quasiparticles occur

for ν ≈ 1/3. The most stable skyrmion or antiskyrmion size depends weakly on the quantum

well width for the ν ≈ 1 state, but for ν ≈ 3, 5, . . . the well width w must be of the order

of a few times the magnetic length in order to obtain stable bound states of spin waves and

spin holes or reversed spin electrons [30, 49, 54].

The skyrmion and antiskyrmion states S±
K are quite analogous to the excitonic X±

K states

of valence band holes interacting with conduction band electrons. In the ideal theoretical

model, a valence hole has exactly the same interaction as a spin hole in the ν = 1 state

of the conduction band. In fact these two types of holes can probably be distinguished by

an pseudospin as is done for electrons on different layers of a bilayer system [55, 56, 57].

The spectrum and possible condensed states of a multicomponent Fermion liquid contain-

ing electrons, X−, X−
2 , etc., has been considered in Ref. [32]. Exactly the same ideas are

applicable to a liquid of electrons and skyrmions or antiskyrmions of different sizes. The

only difference is that the skyrmion S− = h(eR)2 is stable while the X− = ve2 has a finite

lifetime for radiative recombination of e–v pair.

When there are Nh spin holes in the ν = 1 level (or Ne reversed spin electrons in addition

to the filled ν = 1 level) and when Nh (or Ne) is much smaller than N ≈ 2Q + 1, the

degeneracy of the filled lowest Landau level, then the most stable configuration will consist

of Nh antiskyrmions (or Ne skyrmions) of the most stable size. These antiskyrmions (or

skyrmions) repel one another. They are positively (or negatively) charged Fermions with

standard Landau level structure, so it is not surprising that they would form either a Wigner

lattice or a Laughlin condensed state with ν for the antiskyrmion (or skyrmion) equal to an

odd denominator fraction as discussed in Refs. [27, 28, 29, 30, 31, 49].

In the ideal theoretical model, a valence hole acts exactly like a spin hole in the ν = 1

level of the conduction band. Therefore we would expect an excitonic complex consisting

of K spin waves bound to the valence hole to be the lowest energy state, in the same way

that the antiskyrmion consisting of K spin waves bound to a spin hole in the ν = 1 level

gives the lowest energy state when EZ is sufficiently small. For a small number of valence



28

holes, the X+
K = v(eRh)K excitonic complexes formed by each valence hole will repel one

another. If a small number of antiskyrmions are already present (for ν < 1), the positively

charged antiskyrmion–charged exciton repulsion will lead to Laughlin correlations or Wigner

crystallization of the multicomponent Fermion liquid. Just as for the charged excitons (X−)

in the dilute regime, the PL at low temperature will be dominated by the X+
K → S+

K ′ + γ

process, with K ′ = K or K − 1 depending on spin of the annihilated valence hole (i.e., on

the circular polarization of the emitted photon γ). This corresponds to the most stable X+
K

undergoing radiative ev or eRv recombination and leaving behind an antiskyrmion consisting

of K or K − 1 spin waves bound to a spin hole of the ν = 1 state. Because the valence

hole and the spin hole in the ν = 1 conduction level are distinguishable (or have different

pseudospin) even in the ideal theoretical model this PL is not forbidden. It will be very

interesting to see how realistic sample effects (finite well width, Landau level admixture,

finite separation between the electron and valence hole layers) alter the conclusions of the

ideal theoretical model.

For ν ≥ 1, negatively charged skyrmions are present before the introduction of the valence

holes. The skyrmions are attracted by the X+
K charged exciton, but how this interaction

affects the PL can only be guessed. It is possible that the interaction of the valence hole

with the skyrmions will lead to the formation of an X or an X−
td and spin waves. The X−

td

will be very weakly radiative (just as in the case of ν ≤ 1/3). However, the recombination

can occur with a majority spin electron. This case was considered in Ref. [58, 59] for the

case of a single X−
td.

We believe that numerical diagonalization for realistic models including Landau level

admixture and finite well width should explain the behavior of PL for electron filling factors

close to unity. Only qualitative behavior expected has been discussed in this work. Realistic

“numerical experiments” are being carried out to check whether the expected behavior is

correct.

IX. SUMMARY

This review contains a discussion of the energy spectra of a system of Ne electrons and Nh

holes. In photoluminescence, e–h recombination leads to peaks in the spectra that depend on

the initial and final states. For ideal systems, with h̄ωc ≫ e2/λ, very narrow quantum wells,
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and |Vee| = |Veh|, the spectra contain information only about the neutral exciton. For non-

ideal systems, where |Veh| ≪ |Vee|, spectra contain information about the electron–electron

correlations in the underlying electron gas.
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