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Energy and absorption/recombination spectra of up to two electron–

hole pairs confined in a spherical quantum dot are studied numerically as

a function of dot radius (i.e., confinement volume). The transition between

fermionic and bosonic behavior of the confined excitons is identified in coin-

cidence with enhancement of low-energy absorption strength.
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1. Introduction

Being bound states of two fermions, the excitons (X = e + h) can in some
situations behave like bosons [1, 2]. A spectacular example is their Bose-Einstein
condensation [3, 4], recently demonstrated [5] in a two-dimensional coupled quan-
tum well. However, when excitons are confined in small quantum dots [6], spatial
quantization of their e and h constituents exceeds excitonic binding. In conse-
quence, the multi-exciton ground states in such systems are determined by Pauli
exclusion principle applied to the individual fermionic constituents [7]. This can
be expressed in terms of effective Pauli blocking for the excitons themselves, ob-
served experimentally in photoluminescence studies showing population of consec-
utive excitonic shells as a function of increasing excitation power [8]. E.g., the
lowest (s-) shell of a spherical dot can only hold two excitons (including spin), the
next (p-) shell can hold six excitons, etc. In contrast, the allowed population of
the exciton ground state without confinement is macroscopic (proportional to the
real-space volume). Motivated by recent modulation reflectivity experiments [9],
in this paper we study transition between those two extremes, i.e., collapse of the
exciton Pauli blocking effect as a function of the dot size. In particular we seek
a signature of this collapse in enhancement of the ground-state oscillator strength
(i.e., low-energy absorption).

2. Model

We use a very simple model for a quantum dot with a variable volume
(or area): an ideal spherical surface of radius R. While we concentrate on a
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general effect, this model might be adequate to two-component semiconductor
nanocrystals (with material with a narrower band gap deposited in a form of a thin
layer around a spherical nanocrystal of a material with a larger band gap). The
dot radius R is to be compared with a characteristic dimension of an exciton, i.e.,
effective Bohr radius aB = εh̄2/µe2. Here, µ = (m−1

e + m−1
h )−1 = me/(1 + r−1)

is the exciton reduced mass for a given mass ratio r = mh/me. This leads to
a dimensionless dot size, s = R/aB. The characteristic quantization energies
εl = h̄2l(l + 1)/2mαR2 (α = e or h) must be compared to the effective excitonic
Rydberg, Ry = e2/2εaB, yielding, e.g. ε

(e)
1 /Ry = 2s−2/(1 + r−1).

The one- and two-exciton spectra are obtained from exact diagonalization of
e + h or 2e + 2h Coulomb Hamiltonians in the configuration–interaction (CI) basis.
The single-particle states are standard spherical harmonics Y m

l (θ, φ), labeled by
angular momentum quantum numbers l and m, allowing for analytical expression
of the two-body matrix elements. The X and 2X eigenstates are labeled by total
angular momentum L, related to the wave vector k = L/R. In such numerical
calculation the major source of error is the restriction of single-particle basis to a
number of lowest shells (l ≤ lmax), accurate only for sufficiently small s.

3. Results and discussion

3.1. One exciton

We begin with one exciton. The energy spectra for r = 1 and different values
of s are shown in Fig. 1. For s = 1

4 the low-energy spectrum can be predicted from
addition of e and h angular momenta, assuming both particles in their low-energy
shells (although due to the r = 1 symmetry, degeneracy of the e ↔ h symmetric
states is removed by interaction at arbitrarily small s). This is the small dot
regime. For s = 5 (vanishing confinement regime) the lowest-energy band is a
well-developed exciton dispersion. The intermediate frames show the transition.

Fig. 1. Energy spectra of one e–h pair in spherical quantum dots of different radii R,

calculated for the mass ratio mh/me = 1 and including single-particle angular momen-

tum shells with l ≤ 15. Ry is Rydberg; aB is Bohr radius. In (a) the lowest eigenstates

are connected into bands labeled by e and h angular momenta (lelh).
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In Fig. 2 we show similar spectra for r = 5. Broken e ↔ h symmetry
rearranges the energy spectrum of a small dot, but the familiar excitonic dispersion
of Fig. 1a is restored when the confinement is removed.

Fig. 2. The same as Fig. 1, but for the mass ratio mh/me = 5.

Fig. 3. (a) Ground state energy E of an e–h pair as a function of inverse dot radius

R−1, calculated for mh = me and for different numbers of included angular momentum

shells. (b) Size dependence of different energy levels obtained for l ≤ 15.

The continuous size-dependence of the energy levels is shown in Fig. 3. For
s−1 → 0 the ground state energy must converge to −4Ry of a free 2D exciton.
Figure 3a gives an idea about the number of shells that must be included in a
CI calculation at a given s. Clearly, while the overall structure of the spectra in
Figs. 1d and 2d appear correct, their absolute energy positions are very inaccurate.
Figure 3b shows the development of excitonic s and p states when confinement
weakens (within each band, different L’s refer to the center-of-mass motion).

The excitonic oscillator strengths ω are shown in Fig. 4. Only the L = 0
states are optically active. In small dots, the distribution of ω among different
L = 0 states (i.e., among the shells) is determined by overlaps of the relevant single-
-particle e and h orbitals. When confinement weakens, the excitonic correlation
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Fig. 4. (a,b) Absorption spectra (oscillator strength ω vs. energy E) of one e–h pair in

spherical dots of different radii R. (c) Dependence of oscillator strengths for the three

lowest optically active (L = 0) states on dot radius R.

emerges in the L = 0 ground state, to which also most of the oscillator strength
is continuously transferred from the higher states. This also leads to the strong
enhancement of the ground state.

3.2. Two excitons

The 2e + 2h energy spectra for different dot sizes s are shown in Fig. 5 (r = 1,
symmetric case) and Fig. 6 (r = 5, more realistic case). As for a single exciton,
only in small dots the spectra are very sensitive to the mass ratio r (and they
can be understood by addition of angular momenta of four constituent fermions).
However, in contrast to a single-exciton, recombination in a coupled two-exciton
system can now occur also from L 6= 0 states. The oscillator strengths ω are
indicated in Figs. 5 and 6 by diameters of circles drawn around each energy level.

Fig. 5. Energy spectra of two e–h pairs in spherical quantum dots of different radii R,

calculated for mh = me and including angular momentum shells with l ≤ 6. Oscillator

strength ω of each state is proportional to circle diameter. In (a), lowest eigenstates are

labeled by e and h angular momenta (lelh/l′el′h).
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Fig. 6. The same as Fig. 5, but for the mass ratio mh/me = 5.

Fig. 7. (a) Lowest energy levels E at different angular momenta L of two e–h pairs as

a function of dot radius R, calculated for mh = me and l ≤ 6. (b) Two-pair energies

E measured from two one-pair ground state energies EX for l ≤ 4 and l ≤ 6. (c) Size

dependence of oscillator strength ω of the two-pair ground state.

The continuous size-dependences extracted from those spectra is presented
in Fig. 7. Frame (a) shows the size-evolution of the lowest energy levels at a
few different angular momenta. Competition of kinetic energy and e–h attraction
leads to a minimum in ground state energy EXX at s ≈ 0.65. Frame (b) shows
δXX = EXX − 2EX to compare one- and two-exciton ground states. This quantity
is also compared with the excitation gap of a single exciton, ∆X = E∗

X−EX (here,
E∗

X is the energy of the exciton’s first excited state). Coincidentally, the value of
s ≈ 0.65 determines the dot size beyond which δXX < ∆X, i.e., EXX < EX + E∗

X.
This marks onset of effective attraction between excitons filling two lowest single-
-exciton states. Alternatively, this can be interpreted as crossover into the regime
in which excitons no longer obey the effective Pauli exclusion principle and begin to
populate single-exciton states like (weakly interacting) bosons. Frame (c) shows an
increase of the ground-state oscillator strength ω with disappearing confinement,
similar to the excitonic dependence in Fig. 4c.
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4. Conclusion

In a very simple model, we studied numerically the transition of one- and
two-exciton energy and recombination spectra as a function of confinement volume
(or area). The crossover is identified from the small-dot regime (with the excitons
filling single-exciton states in accordance with effective Pauli exclusion principle
inherited from constituent fermions) to the unconfined regime (with many excitons
at falling into the same energy state).
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