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Possible Anti-Pfaffian Pairing of Composite Fermions at » = 3/8
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We predict that an incompressible fractional quantum Hall state is likely to form at » = 3/8 as a result
of a chiral p-wave pairing of fully spin polarized composite fermions carrying four quantized vortices, and
that the pairing is of the anti-Pfaffian kind. Experimental ramifications include quasiparticles with non-
Abelian braid statistics and upstream neutral edge modes.
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Many novel structures and ideas arising in the study of
quantum Hall effect, a topological state of matter, have
generated new developments in other contexts, for ex-
ample, topological insulators, Chern insulators, Majorana
fermions, and quantum computation. The topological
nature of the fractional quantum Hall effect (FQHE) mani-
fests through formation of composite fermions (CFs),
through Abelian and non-Abelian braid statistics, and
also through the structure of the gapless edge modes. A
focus of recent attention has been the 5/2 state, believed to
be a chiral p-wave paired state of composite fermions
supporting Majorana zero modes obeying non-Abelian
braid statistics [1-5]. In this Letter we propose that the
mechanism of CF pairing is likely to produce an incom-
pressible FQHE state also at filling factor 3/8 in the lowest
Landau level (LL) and enumerate many experimentally
testable consequences arising from this physics, including
non-Abelian braid statistics and the presence of upstream
neutral edge modes. The possibility of CF pairing at 3/8
was considered theoretically in several previous articles
[6-8], which are discussed at the end in the context of the
present work. While FQHE at 3/8 has not been established
conclusively, experimental indications for it have been
seen by Pan et al. [9] and Bellani et al. [10].

Our calculations below demonstrate that for fully polar-
ized electrons, the 3/8 state is accurately described as the
v* = 3/2 state of composite fermions carrying two vorti-
ces (?CFs), and thus represents a >CF analog of the half
filled second LL. We provide evidence that the composite
fermions in the half filled second CF LL (called AL)
capture two additional vortices to turn into higher order
composite fermions (*CFs) and condense into a paired
FQHE state. For the 5/2 FQHE there are two topologically
distinct candidates for the paired CF state: the Pfaffian (Pf)
[1] and its hole partner known as the anti-Pfaffian (APf)
[11-13]; a 3-body interaction term induced by LL mixing
breaks particle hole symmetry and selects one of these
states [14,15]. Two candidate states are obtained also at
3/8 by composite fermionizing the Pf and APf at 3/2. Our
calculations show that the Coulomb interaction favors the
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APf state at 3/8. Interestingly, LL mixing is not necessary
for discriminating between the Pf and the APf at 3/8—the
Coulomb interaction between electrons induces a complex
effective interaction between composite fermions that au-
tomatically contains 2-, 3-, and higher body terms.

The gap at 3/8, and the difference between the Pf and the
AP, is governed by extremely small energy scales, and a
theoretical resolution of these states requires a precise and
reliable quantitative treatment of the inter-CF interaction. We
will consider N electrons moving on the surface of a sphere,
subjected to a net magnetic flux of 2Q flux quanta [16]. We
will assume that the spin degree is frozen, and the magnetic
field is high enough that LL mixing is suppressed. The filling
factor is defined as v = limN_,oo%. Composite fermions
[17] experience an effective flux 2Q* = 2Q — 2(N — 1).
At half filled second AL, the composite fermions satisfy
20* + 2 = 2N, + A, where N, is the number of composite
fermions in the second AL and A is an integer “‘shift.”” This
leads to the following relations at » = 3/8:

8N + A — 10 ., 2N+A—4

S T
N—-A+1
Ny=——7—.

3

We refer to 20 given by the above relation as the “Pf flux”
for A = —3 and the “APf flux” for A = 1. (At this stage,
these terms should be taken only as convenient labels and
not to mean that the actual states at these fluxes are repre-
sented by the Pf and the APf wave functions.)

Exact diagonalization is possible for 14 (12) electrons at
Pf (APf) flux, but not for larger systems [18]. Further
progress, however, can be made within the CF theory. We
determine the energies and wave functions for low lying
states by the method of CF diagonalization (CFD) [19],
which proceeds along the following steps. We first perform
exact diagonalization of the Coulomb Hamiltonian at Q*
(v* = 3/2) keeping the lowest LL fully occupied, to obtain
a basis {(I)’;/g} where « labels the different basis func-

tions in the total angular momentum L sector. (Which
interaction is chosen is unimportant because our goal is
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to produce all basis states with the lowest kinetic energy.)
We then composite fermionize this basis through the
relation ‘I’é/‘é‘ = PLLL]_[j<k(ujv,.< - vjuk)z(l)é‘/g, where u =
cos(0/2)e” /2, v = sin(0/2)e!*/?, and Py, denotes pro-
jection of the wave function into the lowest LL, handled by

the method in Ref. [20]. The correlated states {‘I’é‘/g} give

us a basis for the low energy CF states at v = 3/8. All
these states would be degenerate if composite fermions
were noninteracting, but the degeneracy between them is
split because of the residual interaction between composite
fermions. We determine the low energy spectrum by di-
agonalizing the full Coulomb Hamiltonian in the CF basis
(which can be performed in each L sector separately). The
basis functions are very complex and nonorthogonal, but
efficient methods have been developed for a Gram-Schmid
orthogonalization and an evaluation of the Hamiltonian
matrix by Metropolis Monte Carlo calculations [19]. A
diagonalization of this matrix produces the low energy
spectra as well as eigenfunctions. These contain no adjust-
able parameters, and the Monte Carlo statistical uncertainty
can be reduced to the desired level by increasing the number
of iterations accordingly (which, for our calculations,
requires up to 10 Monte Carlo steps for each system). We
study systems with as many as 26 particles, which allows us
to draw what we believe to be reliable conclusions.

In Fig. 1 we compare the CFD spectra with those
obtained from an exact diagonalization of the Coulomb
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FIG. 1 (color online). Exact Coulomb spectra (dashes) at
[N,20] =[12,29] and [14,33], which correspond to APf and
Pf fluxes at 3/8. Spectra obtained from composite fermion
diagonalization are also shown (circles). The energies here and
in Fig. 2 are the total Coulomb energies, which do not include the
neutralizing background. The dimensions of the Hilbert space in
the individual L sectors are shown at the top and the bottom.

interaction in the full lowest LL space for N = 14 at the Pf
flux and N = 12 at the APf flux. These comparisons show
that (i) the physics of the 3/8 state is indeed described in
terms of composite fermions, and (ii) the CFD gives an
essentially exact account of the inter-CF interaction. It is
important for our purposes to note that the CF spectra not
only reproduce the exact Coulomb spectra accurately, but
also capture the very slight differences between the
Coulomb spectra at the Pf and the APf fluxes. (The pres-
ence of such differences indicates that the particle hole
symmetry is not exact for composite fermions.)

CF spectra for larger systems are shown in Fig. 2. A
necessary condition for incompressibility is a spatially
uniform L = 0 ground state. The fact that all of the APf
flux values produce L = 0 ground states (but not all of the
Pf flux values do) suggests that an incompressible state
occurs at 3/8 at the APf flux. The system sizes are still not
large enough to be able to estimate the gap reliably, but we
note that the gap to the lowest neutral excitation for the two
largest systems is ~0.002¢2/ €], which we take as a measure
of the energy scale associated with this state. For a given
density, this is roughly a factor of 5 smaller than the theo-
retical gap of the 5/2 state (~ 0.028¢? /€l [21]), taking into
account the different magnetic lengths at the two fractions.

For a further confirmation that the actual state is indeed
described by the APf wave function, we construct the
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FIG. 2 (color online). Energy spectra obtained from CF diag-
onalization at both Pf flux (left-hand panels) and APf flux (right-
hand panels) at » = 3/8, with N and 2Q values shown on the
figure. To avoid clutter, the typical estimated statistical uncer-
tainty from Metropolis Monte Carlo evaluation of integrals is
shown only on one point. Only states below certain energy are
shown.
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following trial wave functions, labeled 1 and 2, at the Pf
and the APf flux values:

trial-1 — 2 &, Pt/ APf
I = PLLLl_[(MjUk - Uj“k) ® )

3/8 3/2
j<k
\ptrial-2 — p l_[(uv —v.u )ZCI)Coulomb
3/8 LLL jYk J%k 3/2 :
J<k
Here, CDg;éAPf is the Pf or APf wave function at 3/2,

which refers to the state in which the lowest LL is fully
occupied and the electrons in the second LL form a Pf or
an APf state. [We produce the Pf state in the lowest LL
by diagonalizing the 3-body interaction Hamiltonian [2]

Vi = zi<j<kng,)<(3Q — 3), where PS,)((L) projects the
state of the three particles (i, j, k) into the subspace of
total orbital angular momentum L; the APf state is
obtained by its particle hole conjugation. We then elevate

the Pf/APf to the second LL and fill the lowest LL fully to
PP/ APE

3/2
Coulomb eigenstate at the relevant Q* at v* = 3/2.
Composite fermionization of these wave functions gives
two trial wave functions at 3/8. Tables I and II compare the
energies of these trial wave functions with the CFD ener-
gies, and also give the overlaps of these trial wave func-
tions with the CFD wave function. The APf state has higher
overlaps, again indicating that it is favored over the Pf. The
overlaps are not extremely high, but on the same order as
the overlaps of the 5/2 Coulomb ground state with the
Pf/APf wave function. Taking into account these facts, we
conclude that it is likely that the 3/8 state is incompressible
and described by a composite-fermionized APf state.

The principal consequences arising from our calcula-
tions above are that (i) FQHE is possible at 3/8 (Pan et al.
had observed [9] a resistance minimum at 3/8, but a well
quantized plateau has not been seen so far), (ii) it originates
due to p-wave pairing of composite fermions in the second

obtain .] The wave function @g}’éﬂomb is the exact

TABLE L. Comparing the CFD ground state W$) at the Pf
flux 20 = (8N — 13)/3, obtained by CF diagonalization, with
the trial wave functions, \1,13%1—1 and \Ifgr}‘"él'z, derived from the

composite fermionization of the Pf and the exact Coulomb states

at 3/2. (See text for definition.) Eg/?, Eg‘}“g'l, and Egj‘g‘z are the

energies per particle for these three states, quoted in units of
e?/el, where | = \/hc/eB is the magnetic length and € is the
dielectric constant of the background material; this energy
includes the interaction with the positively charged background.

The numbers O; = (‘Ifgr}zl_j |‘II§/F§3> are the overlaps of the two

trial wave functions with the CFD ground state (all properly
normalized). The asterisk indicates that for N = 20 the com-
parisons are given for the lowest energy state in the L = 0 sector;
the CFD ground state occurs at L = 6.

A level, and (iii) the pairing is of the APf type. We
obviously cannot rule out that the system sizes considered
here may not capture the true nature of the thermodynamic
phase, and the eventual confirmation will likely come from
experiments. We now list some experimental consequences
of the above physics. (i) The 3/8 FQHE state should be
fully spin polarized (as is also the case for the 5/2 state
[22]). (ii) The chiral p-wave pairing reflects through the
charge and non-Abelian braid statistics of the quasipar-
ticles (“‘composite non-Abelians’’). The excess charge
associated with an excitation is e/16, and its braid statistics
will have similar signatures as those predicted for 5/2
[23,24]. (iii) Proposals have been made for experimentally
distinguishing the Pf and the APf states at 5/2 through their
different edge structures [11,12,25,26], and these analyses
carry over to the 3/8 state with appropriate modifica-
tions. The Pf and AP states at 3/2 have edge structures
(disregarding the possibility of edge reconstruction)
3/2(Pf)-1-0 and 3/2(APf)-2-1-0, respectively, which trans-
late, upon composite fermionization, into 3/8(Pf)-1/3-0
and 3/8(APf)-2/5-1/3-0 at 3/8. An immediate conse-
quence is that the APf will necessarily contain counter-
propagating edge modes, including an upstream charge
neutral Majorana mode, which can have experimental
signatures, e.g., in noise measurements in an upstream
voltage contact [27]. Observation of such modes would
not constitute a proof of APf, because the Pf state can also
have backward moving modes due to edge reconstruction.
However, we expect that the physics of edge reconstruction
at 3/8 should not be too different from that at the nearby
fractions 1/3 or 2/5, so an observation of counterpropa-
gating modes at 3/8 concurrent with an absence of such
modes at 1/3 and 2/5 can be taken as a substantial evi-
dence for APf state at 3/8. The thermal Hall conductivity
Ky = dJy/dT, where J, is the thermal energy current and
oT is the “Hall” temperature difference, can also in prin-
ciple distinguish between the Pf and the APf [11]. In units
of (m?k%/3h)T, each chiral boson edge mode contributes
one unit and the Majorana fermion mode 1,/2 unit [28,29],
with the sign depending on the direction of propagation.
The boundary 3/8(Pf)-1/3 supports a chiral boson and a
Majorana mode; the boundary 3/8(APf)-2/5 also supports
a chiral boson and a Majorana mode, but moving in
the upstream direction. This produces thermal Hall

TABLE II. Comparing the CFD state at APf flux 20 = (8N —
9)/3 with two trial wave functions, \Ifgr}gg'] and ‘Ifgi/";;l'z, obtained
by composite fermionization of the APf and the exact Coulomb
states at 3/2. Other symbols have the same meaning as in

Table 1.

N o 0, Egia-! Egia-? ECTP N 0 0, Egi! Ei” ES)s

14 0726(1) 0973Q2) —0.44153(8) —0.44372(9) —0.44403(9) 12 0816(1) 0994(1) —0.43903(2) —0.44076(6) —0.44079(9)
204 0379(1) 0434(1) —0.43418(2) —043515(8) —0.43509(1) 18 0.587(2) 0622(2) —0.43168(9) —0.43225(7) —0.43310(8)
26 0271(1) 0526(1) —0.43021(9) —0.43146(6) —0.43248(4) 24 0.503(1) 0781(1) —0.42845(9) —0.42948(8) —0.42995(7)
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conductivity of 1 +1/2 + 1 = 5/2 for the Pf and —1 —
1/2+1+1=1/2 for the APf at 3/8. This result is
believed to be robust against interactions, disorder, or
edge reconstruction. One may also consider various tun-
neling exponents, following Wen [25,26]. The exponent
describing the long distance decay of the propagator of the
charge 1/16 non-Abelian quasiparticles can be shown [30]
to be g = 7/13 for the 3/8 Pf; this exponent appears in the
prediction [26], assuming absence of edge reconstruction,
that the current from one edge of the sample to the opposite
edge near a quantum point contact satisfies 7 ~ V?¢~! and
the tunnel conductance has a temperature dependence o ~
T?872. For the APf state, on the other hand, the presence of
upstream neutral modes renders the various exponents
nonuniversal even for an unreconstructed edge.

The earlier studies of the v = 3/8 considered composite
fermions interacting with a 2-body interaction, the form of
which is determined [6,14,31] by considering two compos-
ite fermions in the second AL. This method is less accurate
than the CFD used above, and, in particular, cannot dis-
criminate between the Pf and the APf states because, by
construction, it obeys particle-hole symmetry for compos-
ite fermions. Reference [6] evaluated the energies of varia-
tional wave functions for the Pf, stripe, Wigner crystal, and
Fermi sea states at 3/8, and concluded that the stripe phase
has the lowest energy; the conclusion, however, rests sen-
sitively on the quality of various trial wave functions used
in the study. Reference [8] investigated the 3/8 sate by a
numerical diagonalization of the same 2-body model in-
teraction, but did not find incompressible states at all even
N. Reference [7] considered composite fermions in the
spin reversed n = 0 AL, also using a 2-body interaction
model for composite fermions, and pointed toward a par-
tially spin polarized paired FQHE state; such a state is
unlikely to be relevant at very high magnetic fields, e.g., in
Ref. [9]. We finally note that we have not included in our
work the effect of finite thickness, LL mixing, and disor-
der; while these will surely make quantitative corrections,
we do not see any reason why they should change the
qualitative physics of the state.
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