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The photoluminescence (PL) of a two-dimensional electron gas (2DEG) in a high magnetic field is
studied as a function of the filling factor and the separation d between the electron layer and the
valence hole. Depending on the magnitude of d relative to the magnetic length l, two distinct re-
gimes in the response of the 2DEG to the valence hole occur, with different elementary emission
processes contributing to the PL spectrum. At d < l (‘‘strong coupling” regime), the hole binds one
or two electrons to form an exciton (X) or one of three possible charged exciton (X�) states, a spin-
singlet or one of two spin-triplets. At d > l (‘‘weak coupling” regime), the hole decouples or binds
one or two Laughlin quasi-electrons to form fractionally charged excitons (FCXs). The binding en-
ergies as well as the emission energies and intensities of all X� and FCX states are calculated.

1. Introduction

The magneto-optical properties of two-dimensional electron gas (2DEG) systems have
been intensively studied experimentally [1–13] and theoretically [14–24]. It is known
that in a dilute system confined in a so-called symmetric quantum well (QW), the
photoluminescence (PL) spectrum is determined by a charged-exciton complex X�

(bound state of two electrons e and a valence hole h) and its interaction with the
remaining electrons. The existence of X� in bulk semiconductors was predicted by
Lampert [25], but only in 2D quantum wells (QWs) does its binding energy turn out
sufficiently large [17] for the experimental detection [4–13]. The observation of the X�

stimulated theoretical work [16–24], and it is now established that the only bound X�

state at zero magnetic field is the singlet state (X�
s ) with the total electron spin J ¼ 0.

Accordingly, the PL spectrum usually shows two peaks, due to the X (neutral exciton)
and/or X�

s recombination, split by the X�
s binding energy Ds.

The situation is more complicated in a magnetic field B. At very high B, the optically
active X states decouple from the electrons due to the ‘‘hidden symmetry” [14–16] and
the X�

s unbinds. Interestingly, a different X� state binds in high fields [18]. It is a triplet
(X�

t ) with J ¼ 1 and finite total angular momentum. It has infinite radiative lifetime tt

[19] because of (independently) the ‘‘hidden” and 2D translational symmetry, and thus
will be further called X�

td (d for ‘‘dark”). Although both symmetries are broken in ex-
perimental systems by mixing of Landau levels (LLs), valence band mixing effects,
asymmetry of the QW, and disorder, the X�

td recombination is expected to be weak and
disappears at very large B.

The fact that X�
td unbinds at B ¼ 0 while X�

s unbinds at high B implies a singlet–
triplet crossing, which in a GaAs QW of width w ¼ 10 nm was predicted at B � 30 T
[20]. Surprisingly, the following PL experiment [10] showed no such transition up to
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B � 50 T. This puzzle was resolved by the identification of another bound state, a radia-
tive excited spin-triplet X�

tb (b for ‘‘bright”) [23]. The emission spectrum from both tri-
plets was eventually measured [13], and agrees well with the theoretical prediction [23].

The fact that the PL spectrum of a 2DEG in a symmetric QW only measures the X
and/or X� emission means that it is not a useful probe for electron correlations. The
effect of surrounding 2DEG on the X� emission is specially weak in dilute systems due
to the Laughlin correlations effectively isolating an X� from the electrons [21–23]. In-
deed, the measured PL spectra are remarkably insensitive to the electron density
[9, 13], and only at filling factors n approaching 1/3 does the relative position of PL
peaks change with density.

The PL spectra containing more information about the original (Laughlin) electron
correlations of the 2DEG are obtained in asymmetrically doped wide QWs. In such
structures, the spatial separation d of e and h layers weakens the e–h interaction [15],
and the PL spectra show discontinuities [1–3] at the filling factor n ¼ 1=3 at which
Laughlin incompressible liquid state [26] is formed and the fractional quantum Hall
(FQH) effect [27] is observed in transport experiments. The reason for these discontinu-
ities is that at d exceeding the magnetic length l, the effective Coulomb potential of the
hole seen by the electrons is too weak and its resolution is too low, and a hole can no
longer bind ‘‘whole” electrons to form X� states. Instead, the hole interacts with charge
excitations that are already present in the 2DEG and which near n ¼ 1=3 happen to be
a small number of Laughlin quasi-particles (QPs). At n < 1=3, the hole repels positively
charged quasi-holes (QHs) and thus remains in the locally undisturbed incompressible
electron state (such state can be called a ‘‘decoupled hole” and denoted by h) [38]. The
situation is quite different at n > 1=3, when the hole attracts negatively charged quasi-
electrons (QEs) and binds one or two of them to form a fractionally charged exciton
(FCX), hQE or hQE2 [38].

In this paper, we discuss the results of numerical calculations of various radiative e–h
complexes that contribute to the PL spectrum of a 2DEG depending on d and n. The
energy and PL spectra are obtained from exact diagonalization in Haldane spherical
geometry [28, 29]. The presented unified description of the PL from the 2DEG at high
B given in terms of emission from well defined bound states (X, X�, and hQEn) re-
duces the problem of a very complicated interaction between a hole and the 2DEG to
a simpler one, of determining the single-particle properties of the bound ‘‘quasi-parti-
cles”. In particular, the optical selection rules for these states are formulated, following
from the translational invariance.

2. Model

Preserving the 2D translational symmetry of an infinite 2DEG in a finite-size calcula-
tion turns out to be essential for the identification of the optical selection rules of
bound e–h states and the degeneracies in their energy spectrum. For any system of
electrons and/or holes, this symmetry causes conservation of two orbital quantum num-
bers. For systems with total electric charge, Q 6¼ 0 (such as X�), they are the total
angular momentum M and an additional angular momentum quantum number K asso-
ciated with a partial decoupling of the CM motion in a homogeneous magnetic field
[30, 31]. The energy levels of a charged system fall into degenerate LLs labeled by
L ¼ MþK, and the states within each LL have K ¼ 0, 1, 2, . . . . Since both M and K
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commute with the PL operator P, the following selection rule governs the recombina-
tion of isolated charged e–h complexes: DM ¼ DK ¼ 0.

In order to confine electrons to a finite area (in order to achieve finite degeneracy of
electron and hole LLs) without breaking the 2D symmetry, Haldane [28] proposed to
put electrons and holes on a sphere of radius R. The magnetic field B perpendicular to
the surface is due to a monopole placed in the center. The monopole strength 2S is
defined in the units of elementary flux f0 ¼ hc=e, so that 4pR2B ¼ 2Sf0 and the mag-
netic length is l ¼ R=

ffiffiffi
S

p
. The single-particle states are the eigenstates of angular mo-

mentum l and its projection m and are called monopole harmonics [28, 29]. The ener-
gies e fall into ð2l þ 1Þ-fold degenerate angular momentum shells separated by the
cyclotron energy �hwc. The n-th (n � 0) shell (LL) has l ¼ Sþ n and thus 2S is a mea-
sure of the system size through the LL degeneracy. Due to the spin degeneracy, each
shell is further split by the Zeeman gap, EZ.

As a result of 2D rotational invariance, a many-body e–h system on a sphere has
two good quantum numbers, length L and projection Lz of the total angular momen-
tum L. The mapping between quantum numbers M and K on a plane and the 2D
algebra of L on a sphere allows conversion of the results between the two geometries
[29]. In particular, LLs of a charged e–h complex are represented on a sphere by L
multiplets, states within each LL are labeled by Lz, and the optical selection rule is
DL ¼ DLz ¼ 0. The price paid for closing the many-body Hilbert space without break-
ing the 2D symmetry is the surface curvature affecting interaction matrix elements.
However, if the correlations modeled have short range x, the effects of curvature
(scaled by a small parameter x=R) can be eliminated by extrapolation to R ! 1.

Using a composite index i ¼ ½nms� (s is the spin projection), the e–h Hamiltonian
can be written as H ¼

P
cyiaciaeia þ

P
cyiac

y
jbckbclaV

ab
ijkl, where cyia and cia create and anni-

hilate particle a (e or h) in state i, and Vab
ijkl are the Coulomb matrix elements. The

Hamiltonian H is diagonalized numerically in the basis of Ne–1h Slater determinants.
Small density of holes is assumed which allows ignoring h–h interaction effects and
inclusion of only one valence hole in the basis. The Ne–1h eigenstates are labeled by
L, Lz, and J.

The most important factors that determine the dimension of the Hamiltonian matrix
that must be diagonalized are the number of electrons N, the LL degeneracy controlled
by 2S, the number of excited LLs included, and the inclusion of spin-unpolarized states.
Using modified Lanczos algorithms we diagonalized Hamiltonians of dimensions up to
about 5 � 106. In the X� problem, the number of particles is small and the inclusion of
reversed spins and LLs is possible. The numerical results for X� states agree well with
recent experiments [10, 12, 13]. However, when studying FCX, as many electrons as
possible need be included in the calculation, and the model must be simplified by as-
suming maximum spin polarization (J ¼ N=2), neglecting excited LLs, and setting zero
QW width, w ¼ 0. This allowed for calculation for N � 9 at n � 1=3, but the results are
largely qualitative.

3. Coulomb Potential of the Hole as a Perturbation:
Strong and Weak Coupling Regimes

The potential VUDðrÞ seen by the electrons due to the positive charge of the optically
injected valence hole h can be described by two effective parameters, strength U and
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spatial resolution D�1. The response of the 2DEG to the perturbation VUDðrÞ depends
on the relation between U and D and the characteristic energies and lengths of the
unperturbed system. The pair of perturbation parameters U and D�1 in principle can
be varied independently, but in experimental samples they are predominantly con-
trolled through the effective spatial separation d of the hole from the 2DEG layer. The
magnitude of d depends on the electric field oriented across the 2DEG plane and re-
sulting from asymmetric doping. In symmetrically doped QWs, the hole moves in the
same physical layer as the electrons (d ¼ 0). However, in the asymmetrically (one-
sided) doped QWs the displacement d can be a non-negligible fraction of the QW
width w.

Clearly, at d ¼ 0 both U and D�1 are the largest, and the strongest response of the
2DEG to the hole can be expected. The actual magnitudes of U and D�1 at d ¼ 0
depend on the details of hole wave function, which to some extent depend on the
magnetic field. In the extreme case of B ¼ 1 (lowest LL approximation), the e and h
wave functions are identical and the interaction Hamiltonian is particle–hole symmetric
[14–16]. This ‘‘hidden” symmetry causes vanishing of all electric moments in the opti-
cally active ground state of a bound e–h pair (X), which in turn causes the decoupling
of X states from the 2DEG. As a result, the X is the most strongly bound optically
active e–h state that can form in the 2DEG. In the opposite case, the (infinitely heavy)
hole acts as a point charge and its attraction to an electron is larger by a factor of
�

ffiffiffi
2

p
. In an intermediate situation, the enhanced e–h attraction always breaks the hid-

den symmetry and causes coupling of an X to electrons. As a result, radiative X� states
occur, and the X� rather than X should be regarded as the most stable bound state
formed by a hole injected into the 2DEG [23]. This can be rephrased as that at finite B
and d ¼ 0 the 2DEG responds to VUDðrÞ by binding two electrons to the hole to form
an X� and screen the positive charge of the hole.

In the other limit of large d, both U and D�1 are too small to cause a strong
response of an incompressible electron liquid. A hole is no longer able to pick out
and bind a single electron from the 2DEG, which can be understood by noticing that
the elementary charge excitations of an unperturbed 2DEG (QEs and QHs) have
finite energy (eQE and eQH), and that the electron wave function in the vicinity of the
hole that corresponds to an X� can be expanded in the basis of these QE and QH
excitations. On the other hand, too large d implies too large D and the size of an
isolated X� (2e–1h ground state) that would exceed the characteristic e–e distance
ffiffiffi
r

p
(r means density) and make such an X� unstable when inserted into the 2DEG

(independently of the preceding energetic argument). The only allowed response of
the 2DEG to the hole in this (‘‘weak”) coupling regime is to screen the hole positive
charges with the negatively charged QEs that are already present in the 2DEG. The
fact that only the existing QEs can bind to the hole makes the response critically
depend on the filling factor n. For example, near the Laughlin filling of n ¼ 1=3, the
hole repels the QHs and moves in the locally incompressible n ¼ 1=3 liquid, causing
no local response of the 2DEG. Conversely, the binding of one or more QEs to the
hole is expected at n > 1=3, and the resulting bound FCX states hQEn are the most
stable bound states at large d. Since the ‘‘uncoupled” state h has different emission
energy �hw and oscillator strength t�1 than the hQEn states, discontinuity in the PL
spectrum is expected at n ¼ 1=3, in agreement with the experimental PL data for
asymmetric structures [1–3].
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4. Strong Coupling Regime: Neutral and Charged Excitons

4.1 Isolated charged exciton: energy spectrum

An isolated neutral (X) or charged (X�) exciton consists of only two or three particles.
In the numerical calculation of the energy and PL spectra of this relatively simple quan-
tum mechanical system we were able to include the effects of the finite magnetic field
B that causes LL mixing (by including up to five electron and hole LLs, n � 4, with the
lowest LL degeneracy of 2Sþ 1 ¼ 21) and of the finite QW width w (by using the
values of the two-body Coulomb matrix elements appropriate for the lowest subband of
the QW rather than for an ideal 2D system). It should be stressed that due to different
electron and hole effective masses and due to a different height of the electron and
hole confinement potential at the well/barrier interface, the electron and hole wave
functions in the z-direction are different even in the symmetric structures with d ¼ 0.
To a first approximation, this is included by introducing a pair of effective widths of the
electron and hole layers, we* and w*h, obtained by fitting the actual density profile rðzÞ
of each carrier with cos2ðpz=w*Þ. For a w ¼ 10 nm GaAs/Al0:33Ga0:67As QW the effec-
tive widths are we* ¼ wþ 3:3 nm and wh* ¼ wþ 1:5 nm. Following Cole et al. [34], we
have also took into account the nonlinear dependence of the hole cyclotron mass on
both B and w.

The Zeeman energy EZ ¼ g*mBB (g* is the effective gyromagnetic factor and mB is
the Bohr magneton) enters the problem of an X� in two ways. (i) Because of the
complete spin polarization of the 2DEG, binding of an X� state may or may not re-
quire a spin flip, depending on the total spin J of two electrons in the bound X� state.
Therefore, the binding energy D of each spin triplet (J ¼ 1) X� state with the minimum
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Fig. 1. Energy spectra (energy E vs. angular momentum L) of two electrons and one valence hole
confined in a symmetric GaAs quantum well of width w ¼ 11:5 nm at magnetic fields a) B ¼ 13,
b) 30, and c) 68 T, calculated on a Haldane sphere with the Landau level degeneracy 2Sþ 1 ¼ 21.
EX is the exciton energy



Zeeman energy (Jz ¼ J) is insensitive to the Zeeman energy, but for spin singlet
(J ¼ 0) states D is reduced by EZe compared to the pure Coulomb binding energy. For
GaAs, EZe is roughly a linear function of energy through both cyclotron energy
�hwc / B and confinement energy / 1=w2. After Snelling et al. [32], for w � 10 nm at
B ¼ 0, we have ge* ¼ ðw0=wÞ2 þ g0 with w0 ¼ 9:4 nm and g0 ¼ �0:29. After Seck et al.
[33] we find dge*=dB ¼ 0:0052 T�1. (ii) The recombination of an X or X� state can
occur through relaxation of a conduction electron with either spin to the valence band.
Since the angular momentum of the photon (�1) depends on the spin of the relaxing
electron, and the emission energy �hw includes the Zeeman energy of the recombining
e–h pair, EZe þ EZh, each PL peak associated with the emission from an X or X� state
is split into two circularly polarized peaks by EZe þ EZh. The splitting is most evident
for X�

s because of the large population of both electron spin levels even at a very low
temperature.

In Fig. 1 we show the 2e–1h energy spectra calculated for a w ¼ 11:5 nm GaAs QW at
B ¼ 13, 30, and 68 T. In each frame, the energy E is measured from the exciton energy
EX, so that for the bound X� states it is opposite to the binding energy D. Open and full
symbols denote singlet and triplet electron spin configurations, respectively, and only the
state with the lowest Zeeman energy (Jz ¼ J) is marked for each triplet. Similarly, each
state with L > 0 represents a degenerate multiplet with jLzj � L. The angular momentum
L calculated in the spherical geometry and given on the horizontal axes under each graph
translates into the angular momentum on a plane L in such way [30, 31] that the L ¼ S
and S� 1 multiplets correspond to the planar LLs with L ¼ 0 and �1, respectively.

4.2 Isolated charged exciton: radiative recombination

Due to the conservation of L in the PL process, only those 2e–1h states from the
L ¼ S channel are radiative. This is because [16, 21–23] an annihilated e–h pair has
lX ¼ 0, and the electron left over in the lowest LL has le ¼ S. Recombination of other,
non-radiative states requires breaking the rotational symmetry (e.g., by interaction with
other charges). This result is independent of chosen spherical geometry; on a plane the
2D translational symmetry leads to the conservation of both M and K, and the corre-
sponding PL selection rule for 2e–1h states is L ¼ 0 [31].

Three X� states in Fig. 1 are of particular importance. The X�
s and X�

tb, the lowest
singlet and triplet states at L ¼ S, are the only strongly bound radiative states, while
X�

td has by far the lowest energy of all non-radiative (L 6¼ S) states. In agreement with
earlier predictions [20], the transition from X�

s to X�
td ground state is found at B � 30 T,

and a new, radiative excited triplet state X�
tb is identified in all frames. The binding

energy D of each of these three X� states, extrapolated to the R=l ¼
ffiffiffi
S

p
¼ 1) limit, is

plotted as a function of B in Fig. 2a. Clearly, Dtd increases most quickly of all curves
with increasing B, Ds remains almost constant (especially its Coulomb part drawn with
the thin line), and Dtb remains smaller than both Dtd and Ds at any value of B.

The extrapolated values of the oscillator strength t�1 of the X and two radiative X�

states are shown in Fig. 2b. The ratio t�1
tb � 2t�1

s remains almost independent of B, and
the resulting three PL peaks (X, X�

s , and X�
tb) are precisely those observed in experi-

ments [6–13]. Above, we assumed that both electrons and holes are completely spin-
polarized (Jz ¼ J), but typically, all electron spins and only a fraction of hole spins ch

are aligned with the field. As a result, the X�
tb PL has definite circular polarization (sþ)
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and its intensity is reduced by ch, while the X�
s PL peak splits into a s� doublet (sepa-

rated by the appropriate Zeeman energy) with the intensity of the two transitions
weighted by ch and 1 � ch. An increase of ch from 1/2 to 1 with increasing B may explain
the observed [10] increase of t�1

tb by up to a factor of two, while t�1
s remains constant.

4.3 Interaction of charged excitons with electrons

Even in dilute systems, recombination of bound e–h complexes can in principle be
affected by their interaction with each other or with excess electrons. Especially the
recombination of a X�

td might become allowed in a collision assisted process in which
the translational symmetry of an isolated X�

td is broken. The critical question is if the
e–X� correlations are of the Laughlin type [22, 26], meaning that the many-body e–X�

wave function contains a Jastrow prefactor
Q
ðxi � yjÞm (where x and y are complex

coordinates of e and X�, and m is an integer). If it is so, then a number m of the highest
energy e–X� pair eigenstates are avoided in the low-energy many-body states [35, 36]
(just as the p leading e–e pair eigenstates are avoided in the Laughlin n ¼ ð2pþ 1Þ�1

state of electrons). This means lack of high-energy e–X� collisions, and thus an effec-
tive isolation of the X� states from the 2DEG and insensitivity of the X� binding or
recombination to the electron density. In particular, Laughlin e–X�

td correlations would
eliminate the possibility of collision-assisted recombination of the X�

td.
To determine if the Laughlin correlations occur in a mixed e–X� liquid, one must

calculate the e–X� interaction pseudopotential VðLÞ, defined as the dependence of the
pair interaction energy V on the pair angular momentum L [35]. The general criterion
for the occurrence of Laughlin correlations in a many-body system confined to a degen-
erate LL and interacting through VðLÞ is that V must have short range, i.e. decrease
sufficiently quickly with increasing L [36]. On a sphere, V must be a superlinear func-
tion of LðLþ 1Þ. It turns out that this criterion is satisfied by the e–X� repulsion in
narrow QWs [23]. This implies a simple connection between n and the maximum al-
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Fig. 2. a) Binding energies D and b) oscillator strengths t�1 of different charged exciton states X�

in a symmetric GaAs quantum well of width w ¼ 11:5 nm, plotted as a function of the magnetic
field B



lowed L (i.e., minimum average separation) for a e–X� pair: Lþ m � le þ lX� for
n � m�1, and allows the calculation of the effect of the e–X� interaction on the X�

recombination as a function of n.
In Figs. 3 and 4 we plot the PL oscillator strength t�1 and energy �hw (measured from

the exciton energy EX) for the 3e–1h eigenstates corresponding to an X� interacting
with another electron, respectively. We assume that the Zeeman energy will polarize all
electron spins prior to recombination, except for those two in the X�

s , and concentrate
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Fig. 3. Oscillator strengths t�1 of different charged excitons X� interacting with an electron in a
symmetric GaAs quantum well of width w ¼ 11:5 nm at magnetic fields a) B ¼ 13 T, b) 30 T, and
c) 68 T, calculated on a Haldane sphere with the Landau level degeneracy 2Sþ 1 ¼ 21, and plotted
as a function of the e–X� pair angular momentum L

Fig. 4. Same as in Fig. 3 but the graphs show the recombination energy �hw as a function of L. EX

is the exciton energy



on the following three initial configurations: e–X�
s with Jz ¼ J ¼ 1=2 and e–X�

tb and
e–X�

td with Jz ¼ J ¼ 3=2. For each of the three configurations, t�1 and E are plotted as
a function of L (i.e. of n).

For X�
tb and X�

td, only an e"–h# pair can be annihilated, and an emitted photon has a
definite circular polarization sþ. Two indistinguishable electrons left in the final state
have J ¼ 1, so their L must be odd (2le minus an odd integer). For X�

s , both sþ and s�
PL are possible, with the energy of the latter transition shifted by EZe þ EZh. For sþ,
the two electrons in the final state can have either J ¼ 0 and L even, or J ¼ 1 and L
odd; while for sþ they can only have J ¼ 1 and L must be odd.

As expected, for L ! 0 (i.e., n ! 0) both �hw and t�1 converge to the values appro-
priate for single X� states plotted in Fig. 2 (the energies shown in Fig. 4 correspond to
the sþ transitions given by EX plus Coulomb binding energy; if present in the PL spec-
trum, additional s� transitions will appear at the energy higher by EZe þ EZh). There is
no significant effect of the e–X� interactions on the X� recombination at small L. This
justifies a simple picture of PL in dilute e–h plasmas, according to which, recombina-
tion occurs from a single isolated bound complex and hence is virtually insensitive [9]
to n. Somewhat surprisingly, the Laughlin correlations prevent increase of the X�

td oscil-
lator strength through interaction with other charges (t�1

td remains ten times longer than
ts even at n ¼ 1=3). This explains the absence of an X�

td peak even in the PL spectra
[6–10] showing strong recombination of a higher-energy triplet state X�

tb (except at very
low temperatures [13]). An interesting feature in Fig. 4 is the merging of �hwtb and �hwtd

which actually has been observed [13].

5. Weak Coupling Regime: Fractionally Charged Excitons

The fractionally charged excitons (FCXs) hQEn formed in strongly asymmetric QW
structures (d > l) consist of n QEs bound to a valence hole h. Since QEs are collective
excitations of a many-electron system, as many electrons as possible must be included
in the computation. This was only possible by a severe limitation of the single-particle
Hilbert space to the lowest LL. Although the inter-LL e–h scattering was quite impor-
tant at d ¼ 0 (where it caused binding of X�

s and X�
tb states), it is greatly reduced at

larger d and, unlike at d ¼ 0, the lowest-LL approximation is expected to be more
justified. Nevertheless, the model studied is necessarily a very ideal one and, conse-
quently, such realistic elements as the finite QW width have also been excluded. There-
fore, the numerical results obtained in this section are not meant to describe experi-
ments as accurately as those for X� states, although the fact of the FCX binding or the
optical selection rules for different FCX states are expected to be valid for experimen-
tal systems.

The binding of FCX states relies on the attractive interaction between the (oppositely
charged) h and QE, and the weak QE–QE interaction at short range [37]. On the
other hand, the stability of the FCX states at sufficiently large d against the formation
of X or X� excitons results from the h–QE attraction being sufficiently small compared
to the Laughlin gap eL ¼ eQE þ eQH. The comparison of the h–QE attraction energy
(the largest h–QE pseudopotential parameter) to eL shows that the FCXs rather than
X or X� states should be the most stable bound states formed by a hole injected into
the 2DEG at d larger than about a magnetic length l [38].
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5.1 Numerical energy spectra

The series of 9e–1h energy spectra calculated for d ¼ l and 2l are presented in Figs. 5
and 6, respectively. The three spectra shown for each d are obtained for different val-
ues of 2S, corresponding to NQE ¼ 1, 2, and 3 QEs in the Laughlin n ¼ 1=3 state of 9e
system (without interaction with the valence hole). In Fig. 5 (d ¼ l, intermediate-cou-
pling regime), new low-energy bands of states emerge in addition to those characteristic
of strong coupling and containing an X or X�. These new states contain various FCXs
interacting with the remaining QPs of the 9e liquid. In some cases the FCX states occur
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Fig. 5. Energy spectra (energy E vs. angular momentum L) of nine electrons and one valence hole
on a Haldane sphere with the Landau level degeneracy 2Sþ 1 ¼ 24, 23, and 22, corresponding to
NQE ¼ 1, 2, and 3 quasi-electrons in the Laughlin n ¼ 1=3 state of nine electrons. The separation
between electron and hole planes is d ¼ l. l is the magnetic length

Fig. 6. The same as in Fig. 5 but for d ¼ 2l



in the same spectrum with the X or X� states. For example, the hQE2 –QE band in
Fig. 5c coexists with the X state (meaning X weakly coupled to the Laughlin n ¼ 1=3
state of the remaining 8e) and the X�–QH band (meaning X�

td Laughlin-correlated
with the remaining 7e; QH denotes a quasi-hole in the two-component, e–X� Laughlin
liquid [22]). In other cases, low-lying X or X� states of the strong-coupling regime
occur at the same L as a low-lying FCX of the weak-coupling regime, and the transi-
tion between the two states (which occurs at d � l) is continuous. For example, hQE2

is mixed with X�QH2 in Fig. 5b, and hQE is mixed with X�QH3 in Fig. 5a.
In Fig. 6 (d ¼ 2l, weak-coupling regime), well developed FCX bands occur. The iso-

lated hQE, hQE2, and hQE3 states are the ground states in the spectra corresponding
to NQE ¼ 1, 2, and 3, respectively. Their angular momenta lFCX are obtained by adding
lh ¼ S and lQE ¼ S* þ 1, where 2S* ¼ 2S� 2ðN � 1Þ is the effective monopole strength
in the composite fermion picture [16, 36] and 2S ¼ 3ðN � 1Þ �NQE. Similarly, the angu-
lar momenta of states containing an FCX and excess QPs result from adding lFCX and
lQP.

5.2 Selection rules and photoluminescence

Similarly as it was for X� states, the translational symmetry of an isolated FCX leads to
the conservation of L and Lz in the emission process. This leads to the strict optical
selection rules that can only be broken by collisions or disorder. The recombination of
an FCX state hQEn formed in a Laughlin n ¼ ð2pþ 1Þ�1 electron liquid occurs through
annihilation of a well defined number of QEs and creation of an appropriate number
of QHs. It turns out that the processes involving more than the minimum number of
QPs all have negligible intensity, which for p ¼ 1 (n ¼ 1=3) leaves only the following
four possible recombination events: hþ nQE ! ð3 � nÞQH þ g, where n ¼ 0, 1, 2, or 3,
and g denotes the photon. Let us apply the angular momentum conservation law,
DL ¼ DLz ¼ 0, to the above recombination events. In the fermionic picture [37], the
angular momenta of QE and h in the initial Ne–1h state at a given monopole strength
2S are lQE ¼ S�N þ 2 and lh ¼ S. By adding lQE and lh, the following values are ob-
tained for the angular momenta of FCX complexes [38]: lhQE ¼ N � 2,
lhQE2 ¼ ðN � 1Þ=2, and lhQE3 ¼ 3. The angular momentum of QH in the final ðN � 1Þ e
state at the same 2S is lQH ¼ S�N þ 2. By comparing the values of lhQEn with the
angular momenta allowed for ð3 � nÞ identical QHs in the final state, we obtain that (i)
the ‘‘decoupled hole” state h is radiative and can recombine to create a QH3 molecule
with the maximum L ¼ 3lQH � 3 allowed for three QHs, (ii) lhQE is different from any
L allowed for two QHs and thus hQE is non-radiative; however, the first excited state,
hQE* at l

hQE* ¼ lhQE þ 1 is radiative and recombines to create a QH2 molecule with

L ¼ 2lQH � 1; (iii) lhQE2 is radiative and its recombination leaves behind a single QH;
(iv) neither lhQE3 nor its excitations are radiative.

The above analysis leaves h, hQE*, and hQE2 as the only radiative FCX states, while
hQE and hQE3 are found dark. It is expected that a valence hole introduced into the
2DEG at n < 1=3 (in the absence of free QEs) and at d > l will decouple and recom-
bine from the initial state h (local filling factor n ¼ 1=3). On the other hand, at n > 1=3
the valence hole will bind one or more free QEs and recombine from either hQE* or
hQE2 initial state, depending on d, temperature, and the QE density. Since the initial
state from which the hole recombines changes at n ¼ 1=3, and since different FCX
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states have different emission energy and intensity [38], the PL spectrum of a 2DEG
created in a strongly asymmetric structure is expected to change discontinuously at the
corresponding magnetic field.

6. Conclusions

The PL spectrum of a 2DEG was studied as a function of the separation d between e
and h layers. Two types of response of the 2DEG to the optically injected hole were
identified. In the strong-coupling regime (d � l) the most strongly bound states are X
and X�, and the PL spectrum measures their optical properties rather than the original
correlations of the 2DEG. In particular, the dark triplet X�

td remains virtually non-radia-
tive for n < 1=3. In the weak-coupling regime (d > l), the X� states unbind and, de-
pending on n, the hole either decouples from the 2DEG or binds one or more QEs to
form a FCX state hQEn. The most stable radiative bound state for n � 1=3 is found to
be the ‘‘decoupled hole,” while for n > 1=3 it is either hQE2 or hQE* (excited state of
hQE). Since different FCX states have different optical properties, discontinuities are
expected in the PL spectrum for n ¼ 1=3.
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