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While the integer quantum Hall effect of composite fermions manifests as the prominent fractional quantum
Hall effect (FQHE) of electrons, the FQHE of composite fermions produces further, more delicate states, arising
from a weak residual interaction between composite fermions. We study the spin phase diagram of these states,
motivated by the recent experimental observation by Liu and co-workers [Phys. Rev. Lett. 113, 246803 (2014)
and private communication] of several spin-polarization transitions at 4/5, 5/7, 6/5, 9/7, 7/9, 8/11, and 10/13
in GaAs systems. We show that the FQHE of composite fermions is much more prevalent in multicomponent
systems, and consider the feasibility of such states for systems with N components for an SU(N ) symmetric
interaction. Our results apply to GaAs quantum wells, wherein electrons have two components, to AlAs quantum
wells and graphene, wherein electrons have four components (two spins and two valleys), and to an H-terminated
Si(111) surface, which can have six components. The aim of this paper is to provide a fairly comprehensive list
of possible incompressible fractional quantum Hall states of composite fermions, their SU(N ) spin content, their
energies, and their phase diagram as a function of the generalized “Zeeman” energy. We obtain results at three
levels of approximation: from ground-state wave functions of the composite fermion theory, from composite
fermion diagonalization, and, whenever possible, from exact diagonalization. Effects of finite quantum well
thickness and Landau-level mixing are neglected in this study. We compare our theoretical results with the
experiments of Liu and co-workers [Phys. Rev. Lett. 113, 246803 (2014) and private communication] as well as
of Yeh et al., [Phys. Rev. Lett. 82, 592 (1999)] for a two-component system.
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I. INTRODUCTION

The fractional quantum Hall effect [1] (FQHE) is one
of the most remarkable phenomena in condensed-matter
physics arising from interelectron interactions. It refers to the
observation, in two-dimensional electron systems exposed to
a strong magnetic field, of precisely quantized plateaus in the
Hall resistance at RH = h/f e2, and associated minima in the
longitudinal resistance at filling factors ν = f . A large number
of fractions have so far been observed: ∼70 in the lowest
Landau level (LL) and ∼15 in the second LL. The number
of FQHE states is even larger, because FQHE states with
different spin polarizations have been seen at many of these
fractions [2–9]. In recent years, FQHE has been observed in
systems with valley degeneracies, such as graphene [10–15],
AlAs quantum wells [16,17], and an H-terminated Si(111)
surface [18], further adding to the richness of the phenomenon.
These systems allow, in principle, the possibility of FQHE
states that involve more than two components. [We note
that four-component physics can also be accessed in wide
quantum wells of GaAs with high electron densities, where
LLs belonging to different subbands can cross one another.
This allows formation of four-component (two subbands and
two spins) FQHE states, as reported in Ref. [19]. However,
these systems do not satisfy the SU(N ) symmetry because the
interaction is not subband index independent. Therefore, our
results below, which assume SU(N ) symmetry, are not directly
applicable to these experiments.]

The prominent features of the FQHE are understood in
terms of weakly interacting composite fermions [20–34].
Composite fermions (CFs) are topological bound states of

electrons and an even number of quantized vortices. They
experience a reduced effective magnetic field, and form
Landau-like levels called � levels (�Ls). Composite fermions
carrying 2p vortices are denoted 2pCFs. The integer quantum
Hall effect (IQHE) of weakly interacting composite fermions
manifests as FQHE at fractions of the form ν = n/(2pn ± 1)
and their hole conjugates, which are the prominently observed
fractions. The CF theory also provides an account of the spin
physics of the FQHE. Specifically, it predicts the possible spin
polarizations at each fraction, and also the critical Zeeman
energies where transitions between differently spin polarized
states are expected to occur [35–40]. The measured spin
polarizations and the phase transitions as a function of the
Zeeman energy [2–8,13,14] or the valley splitting [16,17] are
in satisfactory agreement with theory. The values of critical
Zeeman energies depend on very small energy differences
between the competing states, and thus serve as a sensitive
test of the quantitative accuracy of the CF theory. The IQHE
states of composite fermions for an SU(4) system have also
been studied [41–45].

This paper deals with the physics beyond the IQHE of
composite fermions, namely the FQHE of composite fermions,
which arises as a result of the weak residual interaction
between composite fermions. The CF FQHE states are much
more delicate, and more readily obscured by disorder and
temperature, than the IQHE states of composite fermions.
This is analogous to the situation for electrons, where only the
IQHE states would be seen for noninteracting electrons, but
interelectron interactions cause further structure that appears
in the form of the FQHE. Many CF FQHE states in the
vicinity of ν = 1/3, e.g., at 4/11, 5/13, were observed by
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Pan et al. [46]. These motivated theoretical studies of FQHE
of fully spin polarized composite fermions [47,48] as well as
partially spin polarized FQHE of composite fermions [49–51].
The spin polarization of these states has not been measured
experimentally so far, however.

The primary motivation for our theoretical study presented
in this paper comes from the recent experiment of Liu et al.
[9], who have observed spin-polarization transitions for several
CF FQHE states in the filling factor region 2/3 < ν < 4/3,
specifically for the FQHE states at 4/5, 5/7, 6/5, 9/7, 7/9,
8/11, and 10/13, as a function of the Zeeman energy. [It is
worth clarifying a point here taking the example of ν = 4/5.
The fully spin polarized FQHE state at this fraction can
be understood either as the ν∗ = 4/3 FQHE state of 2CFs
or as the ν∗ = 1 IQHE state of 4CFs made of holes in
the lowest LL (LLL)—these interpretations are equivalent,
in the sense that the states occur at the same quantum
numbers and the actual wave functions obtained from the two
interpretations are practically identical. However, the nonfully
spin polarized states at ν = 4/5 can only be understood in
terms of ν∗ = 4/3 FQHE of 2CFs. This is discussed in more
detail in Ref. [9] and below.] With this understanding, certain
spin-polarization transitions observed previously by Yeh et al.
[8], whose origin was not understood at the time, can also be
explained in terms of FQHE of composite fermions. Given
ongoing improvements in experimental conditions as well
as availability of new two-dimensional electron systems that
exhibit FQHE, we have undertaken an exhaustive study of
FQHE of composite fermions in multicomponent systems.

Specifically, this paper reports on the following:
(1) A fairly exhaustive enumeration of FQHE states of

composite fermions for multicomponent systems.
(2) Thermodynamic energies of many prominent states.
(3) Critical values of the “Zeeman” energies where transi-

tions between different states are predicted to take place (i.e.,
the phase diagram of the CF FQHE states).

(The term Zeeman energy is used in a general sense here
as an energy that introduces a preference for one of the
components.) We have also included, for completeness, some
previously known results.

Interestingly, the FQHE of composite fermions is more
prevalent for multicomponent systems, for reasons that can
be understood as follows. For a single-component system, the
FQHE of composite fermions occurs, typically, in the second
or higher � levels, where very few states can be stabilized.
(The FQHE of 2CFs in the lowest � level can generally be
understood as IQHE of 4CFs.) With multiple components, it
becomes possible to consider states in which 2CFs form an
IQHE state in one or more components, but a FQHE state in
the lowest �L in one of the components; such a state does
not lend itself to an interpretation as an IQHE of composite
fermions. Many FQHE states of composite fermions thus
become available in multicomponent systems.

The spin physics of the FQHE state can be studied most
conveniently through variations in the Zeeman energy, which
causes transitions between these states. Such spin transitions
between the CF-FQHE states provide an extremely rigorous
test of our theoretical understanding of the FQHE, and
in particular, of the residual interaction between composite
fermions. At a qualitative level, such experiments can confirm

if the number of available states is consistent with that
expected from the CF theory. Further, the actual values of the
critical Zeeman energies where spin transitions occur depend
sensitively on the very small energy differences between the
two competing states with different spin polarizations, and thus
constitute a quantitative test of the theory. In many cases only
a small fraction of composite fermions flip their spins at the
transition, which requires multiplying the energy difference
by a large integer (e.g., 4 for the transition from partially
polarized to a fully polarized state at ν = 4/11) to obtain the
critical Zeeman energy, which further enhances the impact of
any error in the theoretical energy difference.

We make many simplifying assumptions in our study. We
assume an SU(N ) symmetric interaction. A Zeeman-type term
can be added straightforwardly. Our considerations allow for
a spontaneous breaking of the SU(N ) symmetry, but we do
not consider an interaction that explicitly breaks the SU(N )
symmetry. We have not included finite width, LL mixing, or
disorder, mainly because of the large parameter space. It has
been shown elsewhere that these make significant corrections
to the critical Zeeman energies [52], because the critical
Zeeman energies depend sensitively on the rather small energy
differences between various incompressible states. These
corrections should be considered for specific experimental
parameters whenever a detailed comparison is sought, but
our results at least enumerate the various possible states and
provide an estimate for where transitions between them are
expected.

We obtain results from the CF theory at two levels
of approximation. In the zeroth-order approximation, we
construct a single wave function for the ground state, which
we refer to as the “CF wave function,” and evaluate its
average Coulomb energy. In a more accurate approximation,
we perform diagonalization within a small set of CF basis
functions to obtain the ground-state energy; this is referred
to as “CF diagonalization.” These methods are described
in greater detail below. We have also given results from
exact diagonalization studies wherever possible. A comparison
between the CF and the exact results also gives an idea
of the reliability of the predictions of the CF theory. For
many fractions, the wave function from the CF theory is
very difficult to evaluate for technical reasons, because of
the need for reverse flux attachment (for which we do not
have a very accurate method). In such cases, we draw our
quantitative conclusions primarily from exact diagonalization
studies (these studies do confirm the spin and the angular
momentum quantum numbers of the incompressible FQHE
states predicted by the CF theory).

For single-component FQHE, particle-hole symmetry re-
lates ν to 1 − ν. For an N -component system, particle-hole
symmetry relates ν to N − ν. We therefore only give results
for fractions up toN /2. It was predicted that no spin transitions
occur [38] (and none have been seen) at fractions of the form
n/(4n + 1) =1/5, 2/9, etc., but we see below that spin transi-
tions are possible (and some have been seen) for fractions of the
form 4/5, 5/9, etc. There is no contradiction, because the states
at n/(4n ± 1) and 1 − n/(4n ± 1) are not related by particle-
hole symmetry unless they are both fully spin polarized.

We compare our results to available experiments. Spin
transitions for CF FQHE states at ν = 4/11, 5/13 [46] have
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not yet been observed directly, but indirect information on
them is available from Raman experiments [53] which show a
change in the character of the excitations that can be associated
with a change in the spin polarization of the ground state.
We compare our theoretical results with the spin-polarization
transitions observed at 4/5, 5/7, 6/5, 9/7, 7/9, 8/11, and
10/13 [8,9,54] in Sec. VIII, and find that the measured critical
Zeeman energies are in reasonable agreement with those
predicted theoretically in most cases. A remaining puzzle is
the experimental evidence [9] for two transitions at 5/7 and
9/7, even though only a single transition is expected in the
simplest theoretical model in which one allows for FQHE
only in a single component of composite fermions. (States in
which FQHE occurs in two or more components of composite
fermions are expected to be weaker and are not considered in
this paper; the only “double” CF FQHE states considered are
5/13 and 5/7 and these are discussed in Appendix D.)

We have not considered excitations in this work. As seen
in previous studies, an enormously rich structure is obtained
when excitations of composite fermions across different com-
ponents is considered [53,55–60]. We will only be interested
in the nature of the ground state and the phase diagram as a
function of the Zeeman energy.

The plan of our paper is as follows. In Sec. II, we list
the large number of incompressible states predicted by the CF
theory. We carefully define a unique notation of possible FQHE
states of composite fermions, and give the corresponding wave
function. All of the states constructed here satisfy the Fock
conditions [61]. Section III lists all of the states that have
been studied previously, along with the original references.
Sections IV and V give an outline of the methods of exact
and CF diagonalization, respectively, which have been used
extensively in our calculations, followed by Sec. VI that lists
some technical details. Section VII discusses many specific
states, listing all possible “spin” polarizations at numerous
fractions. Section VIII mentions the experimental status of
many of these states, and we conclude in Sec. IX.

For convenience of the readers who are not interested in
the details of the calculations but only in the final results,
we note that the theoretical phase diagrams for the FQHE of
two-component composite fermions are shown below in Fig. 4.
Figure 5 contains a summary of the experimentally observed
transitions for various CF FQHE states, along with the
theoretical predictions at zero width. These figures summarize
some of the most important results obtained in our paper for
two-component systems. We note that some of these results are
slightly different from those reported in the earlier literature
using the same calculations; the difference arises because
we extrapolate the energies in this paper after performing
the so-called density correction to the finite system energies
(see Sec. VI), which we believe provides more accurate
numbers.

II. FRACTIONAL QUANTUM HALL EFFECT
OF COMPOSITE FERMIONS

We illustrate the construction of various possible FQHE
states of composite fermions in this section. We find it
convenient to use two notations to denote a FQHE state. The

notation

(ν1,ν2, . . . νN ) (1)

with

ν =
N∑

α=1

να (2)

displays the occupation of each spin component, where the
word “spin” is used in a general sense; only the nonzero occu-
pations will be shown, and the convention ν1 � ν2 � · · · νN
will be assumed. While this is a convenient notation for reading
off the “spin” polarization (denoted by γ ), it is important to
remember that this notation does not specify the actual state.
In particular, one must take care to remember that this is in
general not a product state of the type �ν1 ⊗ �ν2 ⊗ · · · ⊗ �νN ;
such a state is, in general, not a valid state for a system with
SU(N ) symmetry because it does not satisfy the so-called
Fock conditions (see Sec. II D for further details). The actual
state is much more complex, and, in some cases, more than
one possible state can produce the same spin content at a given
filling factor. For that reason, we introduce another notation,
defined below, which will precisely specify the CF structure
of the state. We will see below how to combine IQHE and
FQHE states of composite fermions in such a manner that
the resulting wave function has proper SU(N ) symmetry and
consequently conforms to the Fock conditions.

A. IQHE of composite fermions: � levels inside Landau levels

The simplest states are IQHE states of composite fermions
of the form

[n1,n2,n3, . . . ]±2p ↔
(n1

n
ν,

n2

n
ν, . . .

)
(3)

at the Jain fractions

ν = n

2pn ± 1
, n ≡

∑
α

nα (4)

which are obtained by attaching 2p vortices to each electron
in the IQHE states [n1,n2,n3, . . . ]. The + (−) sign denotes
vortex attachment in the same (opposite) direction as that of
the external magnetic field and this process is termed “parallel
flux attachment” (“reverse flux attachment”). We assume n1 �
n2 � · · · , which can always be arranged by a relabeling of
the component index. The Jain wave function for this N -
component state of N electrons is given by

�[n1,n2,n3,... ]2p
= J 2p−2PLLL

N∏
α=1

�α
nα

J 2 (5)

and

�[n1,n2,n3,... ]2p
= J 2p−2PLLL

N∏
α=1

[
�α

nα

]∗
J 2, (6)

where

J =
∏

1�j<k�N

(zj − zk), (7)

�α
nα

is the Slater determinant of nα filled LLs for electrons
in the αth sector, and zj is the coordinate of the j th electron.
These are straightforward generalizations of the Jain wave

045109-3
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functions for the single-component FQHE states [20]. We
use the Jain-Kamilla method [62,63] for performing the LLL
projection.

The validity of these wave functions has been ascertained by
comparison to exact diagonalization studies which can produce
reliable numbers for certain simple FQHE states. For parallel
flux-attached Jain states, the above wave functions produce
critical Zeeman energies that are accurate at the level of 10–
15%. For the reversed-flux-attached states, on the other hand,
the above wave functions correctly predict the energy ordering
of the states with different spin polarization, but produce
critical Zeeman energies that can be off by approximately a
factor of 2 from the exact values. In the treatment below of the
states that involve reverse flux attachment at any stage of their
construction, we use either exact diagonalization (which can
be performed for only very small systems) or the Jain-Kamilla
projection; one should keep in mind that our conclusions for
these states are quantitatively less reliable than for the states
that do not involve reverse-flux attachment.

[It is noted that the above-mentioned deviation for reverse-
flux-attached states is not a deficiency of the CF theory, but of
the projection method. One can define a “hard-core projection”
[35] as

�[n1,n2,n3,... ]2p
= J 2p−1PLLL

N∏
α=1

[
�α

nα

]∗
J. (8)

Here the external factor J 2p−1 guarantees that the wave func-
tion vanishes when any two electrons coincide independent
of their spin even for 2p = 2, unlike the corresponding wave
function in Eq. (6). The hard-core projection can be explicitly
evaluated for small systems and has been found to produce
extremely accurate wave functions [35]. Unfortunately, no
methods currently exist for dealing with it for large systems.]

The above wave functions reduce to certain previous wave
functions for the special cases when they involve only nj = 1
and do not require any lowest LL projection. The single-
component wave function [1]2p ↔ ( 1

2p+1 ) reproduces the
Laughlin wave function [64]. The wave functions [1,1, . . . ]2p

were earlier proposed by Halperin [65] for multicomponent
systems.

As an example, at 4/9, we can construct the states

[1,1,1,1]2 ↔ (
1
9 , 1

9 , 1
9 , 1

9

)
,

[2,1,1]2 ↔ (
2
9 , 1

9 , 1
9

)
,

[3,1]2 ↔ (
3
9 , 1

9

)
,

[2,2]2 ↔ (
2
9 , 2

9

)
,

[4]2 ↔ (
4
9

)
which involve, respectively, 4, 3, 2, 2, and 1 components.
In GaAs only two spin components are available, and hence
only the last three states are relevant. In graphene and AlAs
quantum wells four components (two spins and two valleys)
are available and thus all five states may be relevant (depending
on parameters).

A straightforward generalization of the above states is given
by

[{nα},[{mβ}]±2q], (9)

where some filled LLs have been added in certain components.
In other words, only the partially filled LLs in some of the
components split into � levels. These are essentially the same
as the IQHE of composite fermions.

Another straightforward generalization is particle-hole con-
jugation. We denote the hole conjugate of a state [· · · ] by [· · · ].
For example, a two-component state with filling factor (ν↑,ν↓)
transforms into its particle-hole conjugate state (ν↑,ν↓) ≡
(1 − ν↑,1 − ν↓). This allows us to write down wave functions
at filling factors (1 − ν↑,1 − ν↓) from the corresponding state
at (ν↑,ν↓). The generalization to states involving an arbitrary
number of components is straightforward.

B. FQHE of composite fermions: � levels within � levels

We next consider the FQHE states of composite fermions,
which have the form

[{nα},[{mβ}]±2q]±2p. (10)

Here, � levels split into further � levels in some components.
These CF-FQHE states are expected to be much less robust,
as measured by the excitation gaps, than the IQHE states of
composite fermions considered in the previous subsection. The
filling factor of the resulting state is given by

ν =
n + m

2qm±1

2p
(
n + m

2qm±1

) ± 1
, (11)

where n = ∑
α nα and m = ∑

β mβ . The wave functions for
N electrons is given by

�[{nα},[{mβ }]±2q ]2p
= PLLL

∏
α

�α
nα

ψ[{mβ }]±2q
J 2p. (12)

�[{nα},[{mβ }]±2q ]−2p
= PLLL

[∏
α

�α
nα

ψ[{mβ }]±2q

]∗
J 2p. (13)

(The Jastrow factor in the wave function ψ[{mβ }]±2q
only

involves electrons in the components labeled by β.) In
addition to n1 � n2 · · · we also assume m1 � m2 · · · without
any loss of generality. We do not consider states of the
form [[{mβ}]±2q]±2p because these are same as the states
[{mβ}]±2q±2p. For an SU(4) system, no more than four integers
may be used. To illustrate the states corresponding to the
notation used here we show some examples in Fig. 1.

C. Moore-Read Pfaffian and Wójs-Yi-Quinn
unconventional states

So far we have constructed states that ultimately arise from
IQHE-like states of composite fermions. Moore and Read [66]
have proposed that composite fermions can also form a paired
Pfaffian (Pf) state at ν = 1/2, which will be referred to as
1/2Pf below. Its hole partner, namely the anti-Pfaffian (APf)
[67,68] wave function will be referred to as

1/2Pf ≡ 1/2APf .

Wójs, Yi, and Quinn (WYQ) proposed [47] a state at 1/3 which
is topologically distinct from [1]2; this will be referred to as
1/3WYQ and its hole partner as

1/3WYQ ≡ 2/3WYQ.
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FIG. 1. (Color online) Some examples illustrate the notation
used in Eq. (10). The green solid dots represent electrons while
the red solid dots with 2p arrows are composite fermions carrying
2p vortices. The overline notation is used to indicate a particle-hole
transformation while [ ]2p and [ ]−2p denote composite fermionization
with parallel and reverse flux attachment, respectively. Note that even
though the two fully polarized ν = 4/5 states shown above, namely
[1 + [1]2]−2 and [1]4, appear different, they represent the same state,
as explained in the text.

These allow construction of many additional FQHE states of
composite fermions, which have the form

[{nα},1/2Pf]±2p, [{nα},1/2APf]±2p, (14)

[n1 + 1/2Pf,n2, . . . ]±2p, [n1 + 1/2APf,n2, . . . ]±2p, (15)

[{nα},1/3WYQ]±2p, [{nα},2/3WYQ]±2p, (16)

and

[n1 + 1/3WYQ,n2, . . . ]±2p, [n1 + 2/3WYQ,n2, . . . ]±2p,

(17)

with the integers chosen so that the final wave functions satisfy
Fock conditions (next subsection).

D. Fock conditions

The energy spectrum for a given system consists of degener-
ate SU(N ) multiplets. It is convenient to work with a maximal
weight state of a given multiplet, from which all other states
of the multiplet can be constructed by repeated applications of
appropriate ladder operators. For a two-component system, the
maximal weight state has Sz = S, the ladder operator is the spin

lowering operator, and the degeneracy is 2S + 1. (Because we
are only interested in the energy, we do not need to explicitly
construct other states of a multiplet; it suffices to know that they
are all degenerate due to the SU(N ) symmetry.) The maximal
weight states satisfy the generalized Fock condition [61], i.e.,
they vanish when we further attempt to antisymmetrize an
electron in the αth component with respect to those in the β <

α component. All wave functions constructed above satisfy
the generalized Fock condition. This can be seen as follows.
For the states given in Eq. (3), the Fock condition is obviously
satisfied because every single-particle orbital occupied in α is
also occupied in β (with β < α). This property is preserved
under composite fermionization, because the Jastrow factor
is symmetric under the exchange of all coordinates. For the
more complicated states given in Eq. (9), every single-particle
orbital occupied in the m sector is necessarily occupied in the n

sectors. Again, composite fermionization of the wave function
to produce states in Eq. (10) preserves this property. We do
not consider states of the type

[[m1,m2]±2p,[m3,m4]±2q]

as these do not satisfy the Fock condition, and do not possess
proper SU(4) quantum numbers. Such states may become
relevant when the SU(4) symmetry is broken, but we will
not consider that case here. For further details, the reader is
referred to the discussions in Refs. [23,41].

E. Further generalization: “Double” FQHE
of composite fermions

One may also construct states which involve at least two
fractional fillings of composite fermions. In general, a state of
the form

[{nα}2q,[{mβ}]±2q ′ ]2p (18)

does not satisfy Fock conditions, because an occupied state
in a given component index is not necessarily occupied in
all previous component indices. However, one may construct
states of the type[

1 + n

2qn ± 1
,1,[m1,m2]2q ′

]
2p

, (19)

where in the first component the lowest LL is full and a FQHE
state is created in the second LL. Such states satisfy Fock
conditions, and some examples will be considered below.

III. CONNECTION TO PREVIOUS STATES

The IQHE states of composite fermions for single- and
multicomponent systems have been considered previously. For
a single component, the state [1]2p at ν = 1/(2p + 1) is the
Laughlin state [64] and the state [n]±2p at ν = n/(2pn ± 1)
are the Jain states [20]. The two-component CF-IQHE states
of the type [n1,n2]2p and [n1,n2]−2p have been considered by
Wu et al. [35], Park and Jain [36,38,39], Wójs et al. [51], and
Davenport and Simon [40]. Multicomponent states of the type
[n1,n2,n3,n4]2 were studied by Tőke and Jain [41,42,69] in
the context of graphene. These are all IQHE states of composite
fermions, in that the CF filling in each sector is an integer. We
will not consider these states in this paper.
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Many FQHE states of composite fermions have also
been considered previously. The states of the form
[1,1, . . . ,[1,1, . . . ]2p]2q are the Halperin states [65] that
satisfy the Fock condition; these were introduced as multi-
component generalizations of the Laughlin wave functions.
Two component states of the form [1,[n]2]2 were considered
by Park and Jain [49] and Chang et al. [50]. The state 1/3WYQ

was proposed by Wójs, Yi, and Quinn [47] and the state
1/2Pf by Moore and Read [66]; 1/2APf is its particle-hole
conjugate. The states [1 + 1/3WYQ]2 and [1 + 2/3WYQ]2 were
considered by Mukherjee et al. [48] as candidates of fully
spin polarized (i.e., one-component) FQHE at 4/11 and 5/13.
The states [1 + 1/2Pf]2 and [1 + 1/2APf]2 were considered by
Mukherjee et al. [70] for fully spin polarized FQHE at 3/8.
Two-component states [1,1/2Pf] and [1,1/2APf] at ν = 3/8
have been studied by Mukherjee, Jain, and Mandal [71]. Ref-
erence [44] considered the ν = 5/3 state (1,1/3,1/3) which is
[1,[1,1]−2], where [1,1]−2 is the 2/3 “spin singlet” state in the
two relevant components. (Note that the wave function �2/3 =
PLLL[�1�1]∗J 2 studied in Ref. [40] is less accurate than
the “hard-core projected” �2/3 = JPLLL[�1�1]∗J studied
previously by Wu et al. [35]. As remarked above, this is not
an intrinsic deficiency of the CF theory, but is related to the
technical issue of using the Jain-Kamilla projection method
[62,63] for dealing with unpolarized states requiring reverse
flux attachment.) For completeness, we will reproduce results
of the aforementioned states in this work.

IV. CF DIAGONALIZATION

In many cases, we will produce results obtained from CF
diagonalization, outlined below. This approach has several
advantages. First, the CF basis has a much smaller dimension
than the full basis, and thus allows a study of much larger
systems than would be possible from exact diagonalization.
Second, it gives very accurate results for the lowest LL FQHE.
This is particularly useful for Jain states involving reverse
flux attachment, for which no good method currently exists
to evaluate the “hard-core projected” wave function given in
Eq. (6). Finally, this method also provides an independent test
of whether the actual ground state indeed occurs at the (L,S)
quantum numbers predicted by the CF theory.

The Coulomb interaction is taken as the Hamiltonian and
the energies of the states are evaluated using the Monte Carlo
method as follows: First, L2 eigenstates are created in the
corresponding IQHE system. Composite fermionization, i.e.,
multiplying by J 2p and projection into the lowest LL, of this
state gives the required L2 eigenstate, since J 2 has zero angular
momentum and therefore L2 operator commutes with it. The
set of basis states {�i}’s are constructed by taking all possible
L2 eigenstates. The Hamiltonian matrix is given by

H(�1,�2) =
∫

�∗
1

⎛
⎝∑

i<j

1

|zi − zj |

⎞
⎠�2dz, (20)

where dz stands for the collective set of coordinates, i.e., dz ≡
dz1dz2 . . . dzN . Note that the CF wave functions are in general
not orthogonal to each other. To implement the Gram-Schmidt
orthogonalization procedure one calculates the overlap matrix

defined as

O(�1,�2) =
∫

�∗
1 �2d

2 

. (21)

To evaluate the above quantities, we need to perform
multidimensional integrals. We use the Metropolis Monte
Carlo algorithm to evaluate such integrals. The algorithm
works by approximating the integral as a sum and then
sampling different configurations of the set of coordinates
{
i} drawn from a probability distribution which is weighted
by the absolute square of the wave function. Both O and H
are evaluated in a single Monte Carlo run. The energies of the
states are given by the eigenvalues ofO−1H (see Appendix C).
To make the computation more efficient we perform the
calculation within the subspace of L2 eigenstates. The lowest
LL projection, as stated above, is carried out by the Jain-
Kamilla method [63], details of which can be found in [23].
This procedure of evaluation of energies of CF wave functions
is termed composite fermion diagonalization (CFD) [72].

As noted above, Jain’s CF wave functions can be con-
structed for states involving parallel flux attachment (2p

positive); for such cases it is possible to go to very large
systems to obtain accurate thermodynamic limits. For states
involving reverse flux attachment (2p negative), no good
method exists for implementing Jain’s CF wave functions.
Here, we obtain the ground-state energies by performing CF
diagonalization, which often allows us to go to larger systems
than exact diagonalization.

V. EXACT DIAGONALIZATION

For one-component states we carry out standard exact
diagonalization (in the full space spanned by all N -electron
configurations), i.e., apply Lanczos algorithm to diagonalize
the Hamiltonian matrix H in the subspace of minimum total
orbital angular momentum projection Lz = 0 in search of
the absolute ground state, for which we then compute the
expectation value of L2 to verify that it indeed has L = 0.

For two-component states with polarization corresponding
to a total spin S we perform diagonalization in the subspace of
Sz = S and Lz = 0 and then compute the expectation values
of S2 and L2 to verify that the ground state indeed has L = 0
and the assumed spin S (by taking Sz = S we disregard the
possibility that the absolute ground state may have spin lower
than S, but by checking average S2 we confirm that no state
with spin larger than the assumed value S has a lower energy).

The critical part of the Lanczos procedure is efficient
on-the-fly computation of the H matrix elements. The config-
uration basis is generated once and stored in the form of binary
numbers B with consecutive bits representing consecutive
orbitals (0-empty, 1-occupied), which is equivalent to the tabu-
lation and storage of the index-to-configuration mapping B(i).
For each row i, the initial configuration I = B(i) is immedi-
ately assigned, then all possible final configurations F = HI

and the corresponding scattering amplitudes 〈F |H〉 are gener-
ated by explicit action on I of the second-quantized two-body
Hamiltonian H. The column indexes f = B−1(F ) must then
be obtained from configuration search, as storing the inverse
(configuration-to-index) mapping B−1 is generally unfeasible.
The ordering of configurations, i.e., the monotonicity of B(i),
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allows for efficient bisection search, further accelerated by
the partial storage of B−1 (all configurations classified by a
certain number of leading bits, allowing bisection only within
the relevant class, i.e., range of configurations).

Our optimized OpenMP-parallel code [the two most critical
parts being the generation of F = HI and the column search
f = B−1(F )] permits us diagonalization of Hamiltonians with
dimensions up to a few billion, at the speed of at least a few
Lanczos iterations per day (on a single cluster node) for the
largest systems.

We note that all exact diagonalization studies are performed
for the N and 2Q values guided by the CF theory. The
spin and angular momentum quantum numbers are consistent
with that predicted by the CF theory, and the energies and
wave functions are also in excellent agreement wherever a
comparison can be made.

VI. SOME TECHNICAL DETAILS

In all calculations that follow, we use the spherical geometry
[73], where in N electrons reside on the surface of a sphere,
with a Dirac monopole at the center which generates a radial
magnetic field that produces a total magnetic flux of 2Qφ0

through the surface of the sphere, where φ0 = hc/e is referred
to as a flux quantum. Using the mapping postulated by CF
theory, the effective flux seen by composite fermions is given
by 2Q∗ = 2Q − 2p(N − 1). States are characterized by the
orbital angular momentum quantum number L (appropriate
in this geometry) and the spin-angular momentum quantum
number S. Ground state are seen to be incompressible, i.e.,
have L = 0. The total energies include contributions from the
electron-background and the background-background interac-
tions. These are determined by assuming that the neutralizing
background positive charge of strength Ne is distributed
uniformly on the surface of the sphere. The total energy
E for N particles is given by EN = Eel−el − N2

2
√

Q

e2

ε

, where

the first term on the right-hand side is the electron-electron
interaction energy, which is evaluated by exact and/or CF
diagonalization, and the second term incorporates interaction
with a positively charged neutralizing background. Compar-
ison with experiments requires the thermodynamic values of
the energies of the ground states. We obtain these from the
intercept of a linear fit of the ground-state energies per particle
as a function of the inverse electron number 1/N . To account
for the slight density dependencies on the number of particles
in the spherical geometry, we make a “density correction”
to the finite system energies before extrapolation to the
thermodynamic limits. The density corrected energy is defined
as [74] E′

N =
√

ρ∞
ρN

EN =
√

2Qν

N
EN . We find that extrapolation

with and without density correction produces slightly different
critical Zeeman energies. All of the thermodynamic limits
quoted below are obtained with density correction.

In some cases it has been possible to obtain only two finite
system energies, because the dimension of the Hilbert space for
the next system is too large for our calculations. In these cases,
we obtain the thermodynamic energy from an extrapolation
using only two points of data. We believe that it is better to
give these results than no numbers at all, especially because a
consideration of systems where we have many points shows
that taking the two smallest available systems already gives a

reasonable extrapolation. Nonetheless, the energies obtained
from only two points ought to be taken as crude estimates, and
are highlighted with an underline in the tables below.

We note that some small systems admit two different
interpretations. For example, the fully polarized system of
nine particles at a flux of 12 can be thought of either as 5/7 or
as 7/9 FQHE state. However, because the density correction
depends on the filling factor ν, the density corrected energies
are different for this system in Tables XVIII and XIX. Of
course, such aliasing does not occur for larger systems, which
are needed for the determination of the thermodynamically
extrapolated energies.

VII. PROMINENT CF-FQHE STATES FOR
MULTICOMPONENT SYSTEMS

The IQHE states of two-component composite fermions
have been investigated in great detail before [35,36,38,40].
The earlier experiments in GaAs [2–6,8] fully confirm this
physics. In particular, the measured spin polarizations [4]
agree with the theoretical predictions, and the observed critical
Zeeman energies are roughly consistent with theory, although
a very precise agreement is not expected as the theory does
not include corrections due to LL mixing, finite thickness, and
the ubiquitous disorder. The two-component systems in AlAs
quantum wells, where the two components are valleys, are also
in good agreement with the CF theory [16,17]. The fractions
seen in graphene [10–15] and in an H-terminated Si(111)
surface [18] are also consistent with one- or two-component
IQHE of composite fermions.

Our focus below is on fractional QHE of composite
fermions, which we define as those states in which composite
fermions in at least one component show FQHE. (The states
where all components are integers are defined as IQHE of
composite fermions, not considered here.) Many such states
have already been observed, and many more are predicted to
occur. We mention the experimental status of each fraction
below, while also listing the number of possible states and
their generalized spin contents.

A. ν = 4/11 (parent state ν∗ = 4/3)

1. One-component fully polarized 4/11

The fully polarized one-component 4/11 state

[1 + 1/3WYQ]2 ↔ (4/11)

corresponds to ν∗ = 4/3, which is obtained by filling the
lowest �L completely and forming a 1/3 state in the second
�L; explicit calculation shows that the residual interaction
between composite fermions in the second �L is of the form
as to favor the WYQ 1/3 state [47,48].

2. Two-component partially polarized 4/11

The partially polarized two-component 4/11 state

[1,[1]2]2 ↔ (3/11,1/11)

is obtained by composite-fermionizing the partially polarized
4/3 state

[1,[1]2] ↔ (1,1/3).
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TABLE I. The Coulomb energies of the states obtained from ν∗ = 4/3 with p = 1 and parallel flux attachment. We quote both the exact
and CF energies (both obtained from CFD and from just the CF wave function) for fully polarized, partially polarized, and spin singlet states.
The numbers are obtained by extrapolating finite size results to the thermodynamic limit and the errors in the linear fit are shown. Cases where
only two data points are used to extrapolate to the thermodynamic limit are underlined in this table as well as in the tables below. All energies
are quoted in units of e2/ε
.

[1 + 1/3WYQ]2 ↔ (4/11) [1,[1]2]2 ↔ (3/11,1/11) [[1,1]−2]2 ↔ (2/11,2/11)

ν exact CFD exact CFD CF w.f. exact CFD

4/11 −0.4166(0) −0.4160(1) −0.4218(0) −0.4203(0) −0.42054(0) −0.4224(0) −0.4220(0)

It corresponds to filling the lowest spin-up �L completely and
forming a 1/3 state in the lowest spin-down �L [50].

3. Two-component singlet 4/11

The state

[[1,1]−2]2 ↔ (2/11,2/11)

was first proposed in Ref. [49]. It is obtained from the 2/3 spin
singlet state

[1,1]−2 ↔ (1/3,1/3)

by taking its particle hole conjugate to produce a singlet
state at 4/3 of the form (2/3,2/3) [35], and then composite-
fermionizing it. We stress that the (2/3,2/3) is not a direct
product of two one-component 2/3 states in two spin sectors;
that state with a wave function �2/3�2/3 = [[1]2,[1]2] does
not satisfy the Fock condition and thus does not have proper
symmetry properties.

In Table I we show the thermodynamic energies of these
states and in Table XIV we show the critical Zeeman energies
for the transitions among these states. (A slight difference from
the value in Ref. [48] arises because that paper did not make a
density correction while obtaining the thermodynamic limits
of the various energies.)

4. Three- and more-component 4/11

It is not possible to construct a wave function of the type
considered here with three or more components that satisfies
Fock conditions. For example, a naive wave function

[[1]2,[1]2,[1]2,[1]2]2 ↔ (1/3,1/3,1/3,1/3)

is not a valid wave function for an SU(4)-symmetric inter-
action. Thus, a 4/11 FQHE state is likely to be a one- or

two-component state; the stabilization of a 4/11 FQHE with
three or more components will require physics that is beyond
what is considered in this work.

The one-component [1 + 1/3WYQ]2 was considered by
Wójs, Yi, and Quinn [47] and by Mukherjee et al. [48], and
the two-component [1,[1]2]2 was considered in Refs. [50,51].
These studies did not identify the spin singlet 4/11 state
[[1,1]−2]2.

The 4/11 FQHE has been observed in the experiment of
Ref. [46] but its spin polarization has not yet been measured.
As mentioned above the fully polarized and partially polarized
states at 4/11 have been studied earlier. We explore the 4/11
spin-singlet state in detail and give an analysis of its spectrum
and collective modes in Appendix E. We see there that the
CF theory is in good agreement with the spectrum obtained
from exact diagonalization. The spectrum also indicates the
presence of an unconventional spin wave with a spin roton
minimum, as found previously for the fully spin polarized 2/5
and 3/7 states [55]. Furthermore, a charged collective mode
is also identified.

B. ν = 4/5 (parent state ν∗ = 4/3)

1. One-component fully polarized 4/5

The fully polarized one component 4/5 state

[1 + [1]2]−2 ↔ (4/5)

corresponds to ν∗ = 4/3, which is obtained by filling the
lowest �L completely and forming a 1/3 state in the second
�L. One might think that another candidate for a fully
polarized FQHE at 4/5 is

[1]4 ↔ (4/5)

(
)

(
)

(
)

FIG. 2. (Color online) Extrapolation of the ground-state energy to the thermodynamic limit, assuming zero thickness. The density correction
has been applied.
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which is the hole conjugate of the 1/5 state. However, in
spite of the superficial difference, the two wave functions are
equivalent, i.e., represent the same state, as can be seen by
noting that they occur at the same flux and have the same
excitation spectrum. The situation is analogous to 2/3 for
which two wave functions can be written, namely [1]2 and
[2]−2, but these two were shown to be essentially identical by
explicit calculation [35]. However, one of those two points
of view is more useful in consideration of the spin phase
transitions. For example, for 2/3, its understanding as two
filled � levels of composite fermions immediately reveals
the possibility of a spin singlet state, and gives an intuitive
understanding of the spin phase transition as a level crossing
transition as the Zeeman energy is varied. For similar reasons,
the mapping of 4/5 into a state at ν∗ = 4/3 is more useful in
bringing out the physics of spin transitions. (We also note
that for the single-component 4/5 state, the interpretation
[1]4 views it as an IQHE of composite fermions, whereas
[1 + [1]2]−2 as a FQHE state of composite fermions. This
is only a difference of nomenclature, however. Both states
involve 4CFs.)

2. Two-component partially polarized 4/5

The partially polarized two-component 4/5 state

[1,[1]2]−2 ↔ (3/5,1/5)

is obtained from the partially polarized 4/3 state

[1,[1]2] ↔ (1,1/3)

which corresponds to filling the lowest �L of spin-up
completely and forming a 1/3 state in the spin-down lowest
�L.

3. Two-component singlet 4/5

The state

[[1,1]−2]−2 ↔ (2/5,2/5)

is obtained from the 2/3 spin singlet state [35]

[1,1]−2 ↔ (1/3,1/3)

by taking its particle-hole conjugate to produce a singlet state
at 4/3 and then composite-fermionizing it.

4. Three- and more-component 4/5

It is not possible to construct a wave function of the type
considered here with three or more components that satisfies
Fock conditions for the same reasons as mentioned above
for 4/11.

In Table II we show the thermodynamic energies of these
states and in Table XIV we show the critical Zeeman energies
for the transitions among these states.

C. ν = 5/13 (parent state ν∗ = 5/3)

1. Onecomponent fully polarized 5/13

The fully polarized onecomponent 5/13 state

[1 + 2/3WYQ]2 ↔ (5/13)

corresponds to ν∗ = 5/3, which is obtained by filling the
lowest �L completely and forming a 2/3 WYQ state in the
second �L.

2. Two-component partially polarized 5/13

The partially polarized two-component 5/13 state

[1,[2]−2]2 ↔ (3/13,2/13)

is obtained from the partially polarized 5/3 state

[1,[2]−2] ↔ (1,2/3)

which in turn is obtained by filling the lowest �L of spin-up
completely and forming a 2/3 state in the spin-down lowest
�L.

3. Three- and more-component 5/13

A three-component state of the following kind can be
constructed:

[1,[1,1]−2]2 ↔ (3/13,1/13,1/13),

where in the lowest �L of one of the components is fully filled
and a spin singlet 2/3 state is formed in any of the two other
components.

In Table III we show the Coulomb energies for these states
extrapolated to the thermodynamic limit and in Table XIV we
give the critical Zeeman energies for the transitions among
these states.

D. ν = 5/7 (parent state ν∗ = 5/3)

1. One-component fully polarized 5/7

The fully polarized one-component 5/7 state

[1 + [2]−2]−2 ↔ (5/7)

corresponds to ν∗ = 5/3, which is obtained by filling the
lowest �L completely and forming a 1/3 state in the second
�L. This state is equivalent to

[2]−4,

i.e., the state obtained from the 2/7 state by particle-hole
transformation.

2. Two-component partially polarized 5/7

The partially polarized two-component 5/7 state

[1,[2]−2]−2 ↔ (3/7,2/7)

TABLE II. The Coulomb energies of the states obtained from ν∗ = 4/3 with p = 1 and reverse flux attachment.

[1 + [1]2]−2 ≡ [1]4 ↔ (4/5) [1,[1]2]−2 ↔ (3/5,1/5) [[1,1]−2]−2 ↔ (2/5,2/5)

ν exact CF exact CF exact CF

4/5 −0.5504(7) −0.551736(9) −0.5601(0) −0.5637(5)
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TABLE III. The Coulomb energies of the states obtained from ν∗ = 5/3 with p = 1 and parallel flux attachment.

[1 + 2/3WYQ]2 ↔ (5/13) [1,[2]−2]2 ↔ (3/13,2/13)

ν exact CFD exact CFD

5/13 −0.4243(7) −0.4243(1) −0.4317(0) −0.4303(0)

is obtained from the partially polarized 5/3 state

[1,[2]−2] ↔ (1,2/3)

which in turn is obtained by filling the lowest �L of spin-
up completely and forming a 2/3 state in the spin-down
lowest �L.

3. Three- and more-component 5/7

A three-component state of the following kind can be
constructed:

[1,[1,1]−2]−2 ↔ (3/7,1/7,1/7),

where in the lowest �L of one of the components is fully filled
and a spin singlet 2/3 state is formed in any of the two other
components.

In Table IV we show the Coulomb energies for these states
extrapolated to the thermodynamic limit and in Table XIV we
give the critical Zeeman energies for the transitions among
these states.

E. ν = 7/19 (parent state ν∗ = 7/5)

1. One-component fully polarized 7/19

The fully polarized one-component 7/19 state

[1 + [2]2]2 ↔ (7/19)

corresponds to ν∗ = 7/5, which is obtained by filling the
lowest �L completely and forming a 2/5 state in the
second �L.

2. Two-component partially polarized 7/19

a. Obtained from fully polarized 3/5 of holes. This par-
tially polarized two-component 7/19 state is obtained from
the fully polarized νh = 3/5 state:

[1,[2]2]2 ≡ [[3]−2]2 ↔ (5/19,2/19).

b. Obtained from partially polarized 3/5 of holes. This
partially polarized two-component 7/19 state is obtained from
the partially polarized νh = 3/5 state:

[[1,2]−2]2 ↔ (4/19,3/19).

3. Three-component partially polarized 7/19

A three-component state [43,65] can be written as

[1,[1,1]2]2 ↔ (5/19,1/19,1/19).

Its parent state is the spin singlet CF ground-state wave
function at ν∗ = 2/5,

[1,1]2 ↔ (1/5,1/5).

Tables V and VI show the Coulomb energies for these states
extrapolated to the thermodynamic limit, and in Table XIV
we give the critical Zeeman energies for the transitions among
these states.

F. ν = 7/9 (parent state ν∗ = 7/5)

1. One-component fully polarized 7/9

The fully polarized one-component 7/9 state

[1 + [2]2]−2 ↔ (7/9)

corresponds to ν∗ = 7/5, which is obtained by filling the
lowest �L completely and forming a 2/5 state in the second
�L. An equivalent state

[2]4

is obtained by first constructing a νh = 2/9 and taking its
particle-hole conjugate state.

2. Two-component partially polarized 7/9

a. Obtained from fully polarized 3/5 of holes. This par-
tially polarized two-component 7/9 state is obtained from the
fully polarized νh = 3/5 state:

[1,[2]2]−2 ≡ [[3]−2]−2 ↔ (5/9,2/9).

b. Obtained from partially polarized 3/5 of holes. This
partially polarized two-component 7/9 state is obtained from
the partially polarized νh = 3/5 state:

[[1,2]−2]−2 ↔ (4/9,3/9).

Table VII shows the Coulomb energies for these states
extrapolated to the thermodynamic limit and in Table XIV
we give the critical Zeeman energies for the transitions among
these states.

TABLE IV. The Coulomb energies of the states obtained from ν∗ = 5/3 with p = 1 and reverse flux attachment.

[1 + [2]−2]−2 ≡ [2]−4 ↔ (5/7) [1,[2]−2]−2 ↔ (3/7,2/7)

ν exact CF exact CF

5/7 −0.5294(0) − 0.52852(3) −0.5389(0)
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TABLE V. The Coulomb energies of the states obtained from ν∗ = 7/5 with p = 1 and parallel flux attachment.

[1 + [2]2]2 ↔ (7/19) [1,[2]2]2 ≡ [[3]−2]2 ↔ (5/19,2/19) [[1,2]−2]2 ↔ (4/19,3/19)

ν exact CFD exact CFD CF w.f. exact CFD

7/19 −0.4169(0) −0.4227(2) −0.42258(4) −0.4242(3)

3. Three-component partially polarized 7/9

A three-component state can be obtained as

[1,[1,1]2]−2 ↔ (5/9,1/9,1/9).

The parent state is the spin-singlet CF ground-state wave
function at ν∗ = 2/5,

[1,1]2 ↔ (1/5,1/5).

G. ν = 8/21 (parent state ν∗ = 8/5)

1. One-component fully polarized 8/21

The fully polarized one-component 8/21 state

[1 + [3]−2]2 ↔ (8/21)

corresponds to ν∗ = 8/5, which is obtained by filling the
lowest �L completely and forming a 3/5 state in the second
�L.

2. Two-component partially polarized 8/21

The partially polarized two-component 8/21 state is ob-
tained from the fully polarized νh = 2/5 state:

[1,[3]−2]2 ≡ [[2]2]2 ↔ (5/21,3/21).

The energy in the thermodynamic limit obtained from the
unperturbed CF wave function is −0.4278(2).

3. Two-component spin singlet 8/21

The singlet two-component 8/21 state is obtained from spin
singlet νh = 2/5 state:

[[1,1]2]2 ↔ (4/21,4/21).

In Table XIV we give the critical Zeeman energies for the
transitions among these states.

4. Three-component partially polarized 8/21

The state

[1,[2,1]−2]2 ↔ (5/21,2/21,1/21)

can be derived by the composite fermionization of the partially
polarized state at 3/5,

[2,1]−2 ↔ (2/5,1/5),

using parallel flux attachment.

TABLE VI. The Coulomb energies of the three-component states
obtained from ν∗ = 7/5 with p = 1 and parallel flux attachment.

[1,[1,1]2]2 ↔ (5/19,1/19,1/19)

ν exact CFD CF w.f.

7/19 −0.422640(7)

5. Four-component partially polarized 8/21

The state

[1,[1,1,1]−2]2 ↔ (5/21,1/21,1/21,1/21)

is obtained from a parent state at 3/5,

[1,1,1]−2 ↔ (1/5,1/5,1/5),

which would be SU(3) singlet in a three-component system.

H. ν = 8/11 (parent state ν∗ = 8/5)

1. One-component fully polarized 8/11

The fully polarized one-component 8/11 state

[1 + [3]−2]−2 ↔ (8/11)

corresponds to ν∗ = 8/5, which is obtained by filling the
lowest �L completely and forming a 3/5 state in the second
�L. An exactly equivalent construction via the νh = 3/5 state
exists and we denote it by

[3]−4 ↔ (8/11).

2. Two-component partially polarized 8/11

The partially polarized two-component 8/11 state is ob-
tained from the fully polarized νh = 2/5 state:

[1,[3]−2]−2 ≡ [[2]2]−2 ↔ (5/11,3/11).

3. Two-component spin singlet 8/11

The singlet two-component 8/11 state is obtained from spin
singlet νh = 2/5 state:

[[1,1]2]−2 ↔ (4/11,4/11).

Table VIII shows the Coulomb energies for these states
extrapolated to the thermodynamic limit and in Table XIV we
give the critical Zeeman energies for the transitions among
these states.

4. Three-component partially polarized 8/11

The state

[1,[2,1]−2]−2 ↔ (5/11,2/11,1/11)

can be derived by the composite fermionization of the partially
polarized state at 3/5,

[2,1]−2 ↔ (2/5,1/5),

using reverse flux attachment.

5. Four-component partially polarized 8/11

The state

[1,[1,1,1]−2]−2 ↔ (5/11,1/11,1/11,1/11)
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TABLE VII. The Coulomb energies of the states obtained from ν∗ = 7/5 with p = 1 and reverse flux attachment.

[1 + [2]2]−2 ≡ [2]4 ↔ (7/9) [1,[2]2]−2 ≡ [[3]−2]−2 ↔ (5/9,2/9) [[1,2]−2]−2 ↔ (4/9,3/9)

ν exact CF exact CF exact CF

7/9 −0.5450(1) −0.545442(5) −0.5541(0)

is obtained from a parent state at 3/5,

[1,1,1]−2 ↔ (1/5,1/5,1/5),

which would be SU(3) singlet in a three-component system.

I. ν = 10/27 (parent state ν∗ = 10/7)

1. One-component fully polarized 10/27

The fully polarized one component 10/27 state

[1 + [3]2]2 ↔ (10/27)

corresponds to ν∗ = 10/7, which is obtained by filling the
lowest �L completely and forming a 3/7 state in the
second �L.

2. Two-component partially polarized 10/27

The partially polarized two-component 10/27 state is
obtained from the fully polarized νh = 4/7 state:

[1,[3]2]2 ≡ [[4]−2]2 ↔ (7/27,3/27).

3. Two-component spin singlet 10/27

The singlet two-component 10/27 state is obtained from
spin singlet νh = 4/7 state:

[[2,2]−2]2 ↔ (5/27,5/27).

4. Three-component partially polarized 10/27

This 10/27 state is obtained from the partially polarized
ν = 3/7 state:

[1,[2,1]2]2 ↔ (7/27,2/27,1/27).

5. Four-component partially polarized 10/27

This 10/27 state is obtained from the three-component ν =
3/7 state:

[1,[1,1,1]2]2 ↔ (7/27,1/27,1/27,1/27).

Tables IX and X show the thermodynamic limits of the
Coulomb energies for these states obtained by extrapolation of
finite system results. In Table XIV we give the critical Zeeman
energies for the transitions among these states.

J. ν = 10/13 (parent state ν∗ = 10/7)

1. One-component fully polarized 10/13

The fully polarized one-component 10/13 state

[1 + [3]2]−2 ↔ (10/13)

corresponds to ν∗ = 10/7, which is obtained by filling the
lowest �L completely and forming a 3/7 state in the second
�L. An exactly equivalent state is constructed from νh = 3/13
and is denoted by

[3]4.

2. Two-component partially polarized 10/13

The partially polarized two-component 10/13 state is
obtained from the fully polarized νh = 4/7 state:

[1,[3]2]−2 ≡ [[4]−2]−2 ↔ (7/13,3/13).

3. Two-component spin singlet 10/13

The singlet two-component 10/13 state is obtained from
the spin singlet νh = 4/7 state:

[[2,2]−2]−2 ↔ (5/13,5/13).

Table XI shows the Coulomb energies for these states
extrapolated to the thermodynamic limit and in Table XIV
we give the critical Zeeman energies for the transitions among
these states.

4. Three-component partially polarized 10/13

This 10/13 state is obtained from the partially polarized
ν = 3/7 state by reverse flux attachment:

[1,[2,1]2]−2 ↔ (7/13,2/13,1/13).

5. Four-component partially polarized 10/13

This 10/13 state is obtained from the three-component ν =
3/7 state by reverse flux attachment:

[1,[1,1,1]2]−2 ↔ (7/13,1/13,1/13,1/13).

TABLE VIII. The Coulomb energies of the states obtained from ν∗ = 8/5 with p = 1 and reverse flux attachment.

[1 + [3]−2]−2 ≡ [3]−4 ↔ (8/11) [1,[3]−2]−2 ≡ [[2]2]−2 ↔ (5/11,3/11) [[1,1]2]−2 ↔ (4/11,4/11)

ν exact CF exact CF exact CF

8/11 −0.5328(0) −0.53184(4) −0.5429(0)
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TABLE IX. The Coulomb energies of the states obtained from ν∗ = 10/7 with p = 1 and parallel flux attachment.

[1 + [3]2]2 ↔ (10/27) [1,[3]2]2 ≡ [[4]−2]2 ↔ (7/27,3/27) [[2,2]−2]2 ↔ (5/27,5/27)

ν exact CFD exact CFD CF w.f. exact CF

10/27 −0.4170(2) −0.4231(1) −0.42346(6)

K. ν = 11/29 (parent state ν∗ = 11/7)

1. One-component fully polarized 11/29

The fully polarized one-component 11/29 state

[1 + [4]−2]2 ↔ (11/29)

corresponds to ν∗ = 11/7, which is obtained by filling the
lowest �L completely and forming a 4/7 state in the
second �L.

2. Two-component partially polarized 11/29

a. Obtained from fully polarized 3/7 of holes. This par-
tially polarized two-component 11/29 state is obtained from
the fully polarized νh = 3/7 state:

[1,[4]−2]2 ≡ [[3]2]2 ↔ (7/29,4/29).

b. Obtained from partially polarized 3/7 of holes. This
partially polarized two-component 11/29 state is obtained from
the partially polarized νh = 3/7 state:

[[1,2]2]2 ↔ (6/29,5/29).

Table XII shows the Coulomb energies for these states
extrapolated to the thermodynamic limit and in Table XIV
we give the critical Zeeman energies for the transitions among
these states.

3. Three-component state partially polarized 11/29

a. Obtained from the partially polarized ν = 4/7 state.
This state is

[1,[3,1]−2]2 ↔ (7/29,3/29,1/29).

b. Obtained obtained from the unpolarized ν = 4/7 state.
This state is

[1,[2,2]−2]2 ↔ (7/29,2/29,2/29).

4. Four-component partially polarized 11/29

This state is obtained from one of the partially polarized
ν = 4/7 states:

[1,[2,1,1]−2]2 ↔ (7/29,2/29,1/29,1/29).

5. Five-component partially polarized 11/29

This state is obtained from the ν = 4/7 state that would be
SU(4) singlet in a four-component system:

[1,[1,1,1,1]−2]2 ↔ (7/29,1/29,1/29,1/29,1/29).

L. ν = 11/15 (parent state ν∗ = 11/7)

1. One-component fully polarized 11/15

The fully polarized one-component 11/15 state

[1 + [4]−2]−2 ↔ (11/15)

corresponds to ν∗ = 11/7, which is obtained by filling the
lowest �L completely and forming a 4/7 state in the second
�L. An exactly identical state is obtained by taking the
particle-hole conjugate of the state at νh = 4/15. We denote
this state by

[4]−4.

2. Two-component partially polarized 11/15

a. Obtained from fully polarized 3/7 of holes. This par-
tially polarized two-component 11/15 state is obtained from
the fully polarized νh = 3/7 state:

[1,[4]−2]−2 ≡ [[3]2]−2 ↔ (7/15,4/15).

The energy in the thermodynamic limit obtained from exact
diagonalization is −0.5336(0).

b. Obtained from partially polarized 3/7 of holes. This
partially polarized two-component 11/15 state is obtained from
the partially polarized νh = 3/7 state:

[[1,2]2]−2 ↔ (6/15,5/15).

In Table XIV we give the critical Zeeman energies for the
transitions among these states.

3. Three-component partially polarized 11/15

a. Obtained from the partially polarized ν = 4/7 state.
This state is

[1,[3,1]−2]−2 ↔ (7/15,3/15,1/15).

TABLE X. The Coulomb energies of the three and four-component states obtained from ν∗ = 10/7 with p = 1 and parallel flux attachment.

[1,[2,1]2]2 ↔ ( 7
27 , 2

27 , 1
27 ) [1,[1,1,1]2]2 ↔ ( 7

27 , 1
27 , 1

27 , 1
27 )

ν exact CF w.f. exact CF w.f.

10/27 −0.42350(4) −0.42353(4)
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TABLE XI. The Coulomb energies of the states obtained from ν∗ = 10/7 with p = 1 and reverse flux attachment.

[1 + [3]2]−2 ≡ [3]4 ↔ (10/13) [1,[3]2]−2 ≡ [[4]−2]−2 ↔ (7/13,3/13) [[2,2]−2]−2 ↔ (5/13,5/13)

ν exact CF exact CF exact CF

10/13 −0.5414(5) −0.54310(1) −0.5519(0)

b. Obtained from the unpolarized ν = 4/7 state. This state
is

[1,[2,2]−2]−2 ↔ (7/15,2/15,2/15).

4. Four-component partially polarized 11/15

This state is obtained from one of the partially polarized
ν = 4/7 states:

[1,[2,1,1]−2]−2 ↔ (7/15,2/15,1/15,1/15).

5. Five-component partially polarized 11/15

This state is obtained from the ν = 4/7 state that would be
SU(4) singlet in a four-component system:

[1,[1,1,1,1]−2]−2 ↔ (7/15,1/15,1/15,1/15,1/15).

M. ν = 3/8 (parent state ν∗ = 3/2)

1. One-component fully polarized 3/8

The fully polarized one-component 3/8 state

[1 + 1/2APf]2 ↔ (3/8)

corresponds to ν∗ = 3/2, which is obtained by filling the
lowest �L completely and forming an anti-Pfaffian (APf) state
in the second �L. Reference [70] has shown that the APf state
is favored over the Moore-Read Pfaffian state in the second �L.

2. Two-component partially polarized 3/8

The partially polarized two-component 3/8 state

[1,1/2APf]2 ↔ (2/8,1/8)

is obtained from the partially polarized 3/2 state

[1,1/2APf] ↔ (1,1/2)

which in turn is obtained by filling the lowest �L of spin-up
completely and forming an APf state in the spin-down lowest
�L. Reference [71] shows that this state provides an almost
exact realization of the APf state.

3. Three- or more-component 3/8

It is not possible to construct a wave function of the type
considered here with three or more components that satisfies
Fock conditions.

Table XIII shows the Coulomb energies for these states
extrapolated to the thermodynamic limit and in Table XIV we

give the critical Zeeman energies for the transitions among
these states. The numbers for fully polarized and partially
polarized states are reproduced from Refs. [70] and [71]
respectively.

In Tables XV and XVI we show energies extrapolated to the
thermodynamic limit for states with at least two components
(see Figs. 2 and 3).

The phase diagram of various states at many fractions is
shown in Fig. 4. We again stress that the results are obtained for
a system with zero thickness, no LL mixing, and no disorder.
Also, the critical Zeeman energies from exact diagonalization
are not expected to be very accurate because in many cases, the
extrapolation to the thermodynamic limit has been performed
from only two points as the Hilbert space grows very rapidly
for unpolarized systems. The “?” symbol indicates a transition
for which we are not able to estimate the critical Zeeman
energy based on the current calculational methods.

VIII. COMPARISONS WITH EXPERIMENTS

Only a limited amount of experimental information is
currently available for spin transitions involving FQHE states
of composite fermions. A comparison of our calculated critical
Zeeman energies with those measured in experiments is shown
in Table XVII. We stress that the theoretical numbers do
not include corrections due to finite width, LL mixing, and
disorder, which are all expected to affect the observed critical
Zeeman energies [52]. This affects the degree of agreement we
expect between theory and experiment. The best comparison
is with heterostructure samples, as these systems have the
smallest effective width of the transverse wave function.
Indeed a satisfactory agreement is seen between our predicted
critical Zeeman energies at 4/5, 5/7, 7/9 with those measured
in the heterostructure sample studied by Yeh et al. [8]. (We
mention that the spin transitions were not interpreted as
FQHE of CFs in Ref. [8]; the understanding in terms of spin
transitions involving FQHE of CFs was given in Ref. [9].)
Finite transverse width in general softens the interaction, which
suggests that the critical Zeeman energies decrease with in-
creasing width (as has been confirmed by explicit calculation;
see for example Ref. [52]). This is consistent with the fact
that the observed critical Zeeman energies are smaller than
the theoretically predicted ones. Overall, these comparisons
confirm the CF-FQHE nature of the observed states.

TABLE XII. The Coulomb energies of the states obtained from ν∗ = 11/7 with p = 1 and parallel flux attachment.

[1 + [4]−2]2 ↔ (11/29) [1,[4]−2]2 ≡ [[3]2]2 ↔ (7/29,4/29) [[1,2]2]2 ↔ (6/29,5/29)

ν exact CFD exact CFD CF w.f. exact CF

11/29 −0.4213(0) −0.4279(0) −0.4281(3)
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TABLE XIII. The Coulomb energies of the states obtained from ν∗ = 3/2 with p = 1 and parallel flux attachment.

[1 + 1/2APf]2 ↔ (3/8) [1,1/2APf]2 ↔ (2/8,1/8)

ν exact CFD exact CFD

3/8 −0.4215(0) −0.4195(2) −0.4256(1)

Figure 5 shows the width dependence of the experimentally
measured critical Zeeman energies. The effective width λ

is defined as the expectation value of λ =
√

〈w2〉, where
w is the coordinate in the transverse direction and the
expectation value is obtained with respect to a transverse wave
function determined from local density approximation. For
heterojunctions this is typically of order 0.1 in units of the
magnetic length. For the quantum well samples, we have only
included results from phase transitions seen as a function of
the variation of the density; the phase transitions in which
the Zeeman energy is varied by application of an additional
magnetic field parallel to the layer also require a consideration
of mixing of electric subbands, which can be a significant
effect for wide quantum wells. (We thank Mansour Shayegan
and Yang Liu for these data [54]). As expected, the critical
Zeeman energies decrease with increasing width. The reason

is that finite width softens the interaction and thus reduces
the interaction energy difference between differently spin
polarized states, which therefore requires a smaller Zeeman
energy to cause the transition. The zero thickness limits of the
critical Zeeman energies are in surprisingly good agreement
with our theoretical estimates.

The critical Zeeman energies quoted in Table XVII for
the spin transitions for ν = 4/11, 5/13, and 3/8 are inferred
from the excitations of the respective states. In Ref. [53] it
was shown that for a quantum well of width w = 33 nm and
density n = 5.6 × 1010 cm−2, certain excitations that appear
at θ = 30◦ tilt are absent at θ = 50◦ tilt, which was taken as
an evidence of a spin transition somewhere between these two
tilts; i.e., the ground state is fully polarized state at a tilt of
θ = 50◦ whereas at a tilt of θ = 30◦ it is partially polarized.
Hence we specify a range for Ec

Z in Table XVII for these filling

TABLE XIV. The critical Zeeman energy Ec
Z in units of e2/ε
 for various transitions. For EZ > Ec

Z (EZ < Ec
Z), the state on the left (right)

is favored over the state on the right (left). The first column gives values obtained from extrapolating exact diagonalization results, the second
one gives results obtained from CFD, and the last column gives results obtained from calculating energies of CF wave functions. The critical
Zeeman energies are extremely sensitive to the ground-state energies as well as the extrapolation to the thermodynamic limit, so these numbers
should only be taken as ballpark estimates.

Ec
Z

ν Transition exact CFD

4/11 [1,[1]2]2 ↔ [[1,1]−2]2 0.0026 0.0070
4/11 [1 + 1/3WYQ]2 ↔ [1,[1]2]2 0.0208 0.0171

4/5 [1,[1]2]−2 ↔ [[1,1]−2]−2 0.0117

4/5 [1 + [1]2]−2 ≡ [1]4 ↔ [1,[1]2]−2 0.0388
5/13 [1 + 2/3WYQ]2 ↔ [1,[2]−2]2 0.0183 0.0149

5/7 [1 + [2]−2]−2 ≡ [2]−4 ↔ [1,[2]−2]−2 0.0238

7/19 [1,[2]2]2 ≡ [[3]−2]2 ↔ [[1,2]−2]2 0.0095

7/19 [1 + [2]2]2 ↔ [1,[2]2]2 ≡ [[3]−2]2 0.0194

7/9 [1,[2]2]−2 ≡ [[3]−2]−2 ↔ [[1,2]−2]−2

7/9 [1 + [2]2]−2 ≡ [2]4 ↔ [1,[2]2]−2 ≡ [[3]−2]−2 0.0320

8/21 [1,[3]−2]2 ≡ [[2]2]2 ↔ [[1,1]2]2

8/21 [1 + [3]−2]2 ↔ [1,[3]−2]2 ≡ [[2]2]2

8/11 [1,[3]−2]−2 ≡ [[2]2]−2 ↔ [[1,1]2]−2

8/11 [1 + [3]−2]−2 ≡ [3]−4 ↔ [1,[3]−2]−2 ≡ [[2]2]−2

10/27 [1,[3]2]2 ≡ [[4]−2]2 ↔ [[2,2]−2]2

10/27 [1 + [3]2]2 ↔ [1,[3]2]2 ≡ [[4]−2]2 0.0203

10/13 [1,[3]2]−2 ≡ [[4]−2]−2 ↔ [[2,2]−2]−2

10/13 [1 + [3]2]−2 ≡ [3]4 ↔ [1,[3]2]−2 ≡ [[4]−2]−2 0.0349

11/29 [1,[4]−2]2 ≡ [[3]2]2 ↔ [[1,2]2]2

11/29 [1 + [4]−2]2 ↔ [1,[4]−2]2 ≡ [[3]2]2 0.0181

11/15 [1,[4]−2]−2 ≡ [[3]2]−2 ↔ [[1,2]2]−2

11/15 [1 + [4]−2]−2 ≡ [4]−4 ↔ [1,[4]−2]−2 ≡ [[3]2]−2

3/8 [1 + 1/2APf]2 ↔ [1,1/2APf]2 0.0183
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TABLE XV. Energy per particle for various CF FQHE states involving only parallel flux attachment.

ν Construction Nmin Nmax Data points Energy χ 2
red

4
11 [1,[1]2]2 18 62 14 −0.420540(4) 0.60
7
17 [1,1,[1]2]2 17 108 14 −0.442992(4) 0.77
10
23 [1,1,1,[1]2]2 24 154 14 −0.453649(5) 0.24
7
19 [1,[2]2]2 25 67 7 −0.42258(4) 0.09

[1,[1,1]2]2 19 61 7 −0.42264(7) 0.12
12
29 [1,1,[2]2]2 42 102 6 −0.44388(5) 0.04

[1,1,[1,1]2]2 32 92 6 −0.44388(1) 0.31
17
39 [1,1,1,[2]2]2 59 144 6 −0.45417(5) 0.25

[1,1,1,[1,1]2]2 45 130 6 −0.454135(9) 0.74
10
27 [1,[3]2]2 46 96 6 −0.42346(6) 0.09

[1,[2,1]2]2 34 84 6 −0.42350(4) 0.12
[1,[1,1,1]2]2 28 78 6 −0.42353(4) 0.10

17
41 [1,1,[3]2]2 77 128 4 −0.44427(8) 0.24

[1,1,[2,1]2]2 57 108 4 −0.44421(6) 0.12
[1,1,[1,1,1]2]2 47 132 6 −0.44427(5) 0.13

24
55 [1,1,1,[3]2]2 108 180 4 −0.45438(8) 0.09

[1,1,1,[2,1]2]2 80 152 4 −0.45427(9) 0.63
[1,1,1,[1,1,1]2]2 6 186 6 −0.45437(3) 0.69

13
35 [1,[4]2]2 73 125 5 −0.42389(7) 0.44

[1,[3,1]2]2 55 120 6 −0.42396(5) 0.01
[1,[2,2]2]2 49 114 6 −0.42400(6) 0.15

[1,[2,1,1]2]2 43 121 7 −0.42398(3) 1.21
[1,[1,1,1,1]2]2 37 102 6 −0.42403(4) 0.12

22
53 [1,1,[4]2]2 122 188 4 −0.44441(7) 0.028

[1,1,[3,1]2]2 92 180 5 −0.4444(1) 0.19
[1,1,[2,2]2]2 82 170 5 −0.44446(5) 0.12

[1,1,[2,1,1]2]2 72 182 6 −0.44444(5) 0.06
[1,1,[1,1,1,1]2]2 62 172 6 −0.44448(4) 0.24

31
71 [1,1,1,[4]2]2 171 233 3 −0.4545(2) 0.20

[1,1,1,[3,1]2]2 129 253 5 −0.45446(6) 0.58
[1,1,1,[2,2]2]2 115 239 5 −0.45445(8) 0.89

[1,1,1,[2,1,1]2]2 101 256 6 −0.45445(7) 0.23
[1,1,1,[1,1,1,1]2]2 87 242 6 −0.45448(2) 0.98

factors. We should make a note of the fact that the experiment
of Ref. [53] does not include transport, and thus does not show
direct evidence for FQHE at these fractions.

One puzzle should be mentioned here. In the experiment of
Liu et al. [9], they observe two transitions at 5/7 (and its hole
partner at 9/7). This is inconsistent with our expectation of a
single transition for a two-component system. We speculate
on the possible causes. While only two states, [1 + [2]−2]−2

and [1,[2]−2]−2, are possible when we allow FQHE in only
one component, other candidate FQHE states of the form
[1 + 1/3,1/3]−2, where one or both of 1/3 states can be
replaced by 1/3WYQ, become possible when we allow FQHE in
both spin components. These states satisfy the Fock conditions,
but involve much more delicate physics than the two states
considered above. However, we have found that these states
are not stabilized by the Coulomb interaction in a sample

TABLE XVI. Energy per particle for the states with parallel flux attachment in the outer state and reverse flux attachment in the inner state.

ν Construction Nmin Nmax Data points Energy χ 2
red

5
13 [1,[2]−2]2 16 41 6 −0.43059(9) 0.04

[1,[1,1]−2]2 10 50 8 −0.43062(3) 0.37
8
21 [1,[3]−2]2 34 74 6 −0.4287(2) 0.36

[1,[2,1]−2]2 22 70 7 −0.4286(2) 0.11
[1,[1,1,1]−2]2 16 80 9 −0.42868(8) 0.48

11
29 [1,[4]−2]2 47 91 5 −0.4281(3) 0.27

[1,[3,1]−2]2 40 95 6 −0.4279(2) 0.04
[1,[2,2]−2]2 34 78 5 −0.4278(1) 0.44

[1,[2,1,1]−2]2 28 72 5 −0.4280(2) 0.44
[1,[1,1,1,1]−2]2 22 99 8 −0.42786(6) 0.65
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FIG. 3. (Color online) Extrapolation of the ground-state energy to the thermodynamic limit, assuming zero thickness. The density correction
has been applied. Among the fractions that allow several multicomponent states, the data are convincing only at ν = 7/19 and ν = 10/27;
even here it is difficult to conclude anything beyond error bars (see Table XV).

with zero width (see Appendix D). With three components,
more states become possible, such as [1,[1,1]−2]−2, but
the experimentalists have argued that the subband degree
of freedom is suppressed for their experimental parameters
(i.e., the separation between the symmetric and antisymmetric
subbands is very large compared to the Zeeman energy). We
thus do not at present have an explanation for the experimental
observation of two transitions at 5/7.

In graphene, many spin transitions have been seen for IQHE
states of composite fermions [13,14] at fractions of the form

n/(2pn ± 1) but none so far involving FQHE of composite
fermions. The two-component systems in AlAs quantum wells,
where the two components are valleys, are also understood in
terms of IQHE of composite fermions [16,17].

IX. CONCLUSION

We have carried out an extensive theoretical study of
fractional QHE of composite fermions in multicomponent
systems. We have explicitly listed a large number of prominent
fractions, identifying the possible CF states at each fraction,
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BALRAM, TŐKE, WÓJS, AND JAIN PHYSICAL REVIEW B 91, 045109 (2015)

FIG. 4. (Color online) Phase diagram of the CF FQHE states in the filling factor regions 1/3 < ν < 2/5 (upper panel) and 2/3 > ν > 1
(lower panel). The various possible states are shown for several fractions, along with the theoretical critical Zeeman energies where transitions
between them are expected. (The “?” symbol is used to represent transitions that are expected to occur but for which the critical Zeeman energies
have not been estimated.) The spin contents and polarizations of the states can be found in the main text, but lowest state at even-numerator
fractions is spin singlet and the highest state is fully spin polarized. The states in the top (bottom) panel are obtained from states of CF
in the filling factor range 1 < ν∗ < 2 by parallel (reverse) flux attachment. The dots in the upper panel are obtained with the help of CF
diagonalization, whereas those in the lower panel are estimated from exact diagonalization studies. In both cases the thermodynamic energies
are obtained by extrapolation of finite system results to obtain the critical Zeeman energies.
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TABLE XVII. Comparison of theoretical (zero width w = 0, no LL mixing, zero disorder) critical Zeeman energies with experimental results.

Theoretical Ec
Z Experimental Ec

Z

ν Transition exact CFD Reference w (nm) n (× 1011 cm−2) Ec
Z

4/11 [1 + 1/3WYQ]2 ↔ [1,[1]2]2 0.0208 0.0171 [53] 33 0.55 0.0172-0.0225
4/5 [1 + [1]2]−2 ≡ [1]4 ↔ [1,[1]2]−2 0.0388 [9] 65 1.13 0.0145

0.0388 [9] 65 1.00 0.0157
0.0388 [9] 60 0.44 0.0177
0.0388 [8] heterostructure 1.13 0.0298

6/5 [1 + [1]4] ↔ [1,[1]4] 0.0388 [9] 65 1.13 0.0149
5/13 [1 + 2/3WYQ]2 ↔ [1,[2]−2]2 0.0183 0.0149 [53] 33 0.55 0.0167-0.0218
5/7 [1 + [2]−2]2 ≡ [2]−4 ↔ [1,[2]−2]−2 0.0238 [9] 60 0.44 0.0150

0.0238 [8] heterostructure 1.13 0.0205
9/7 [1 + [2]−4] ↔ [1,[2]−4] 0.0238 [9] 60 0.44 0.0175
7/9 [1,[2]2]−2 ≡ [[3]−2]−2 ↔ [[1,2]−2]−2 [8] heterostructure 1.13 0.0251
7/9 [1 + [2]2]−2 ≡ [2]4 ↔ [1,[2]2]−2 ≡ [[3]−2]−2 0.0320 [8] heterostructure 1.13 0.0305
8/11 [1,[3]−2]−2 ≡ [[2]2]−2 ↔ [[1,1]2]−2 [8] heterostructure 1.13 0.0204
8/11 [1 + [3]−2]−2 ≡ [3]−4 ↔ [1,[3]−2]−2 ≡ [[2]2]−2 [8] heterostructure 1.13 0.0260
10/13 [1,[3]2]−2 ≡ [[4]−2]−2 ↔ [[2,2]−2]−2 [8] heterostructure 1.13 0.0276
10/13 [1 + [3]2]−2 ≡ [3]4 ↔ [1,[3]2]−2 ≡ [[4]−2]−2 0.0349 [8] heterostructure 1.13 0.0307
3/8 [1 + 1/2APf]2 ↔ [1,1/2APf]2 0.0183 [53] 33 0.55 0.0169-0.0223

along with an estimate of their thermodynamic energies. This
has allowed us to make predictions regarding the critical
values of the Zeeman energy (used in a general sense)
where transitions between different states take place. We have
compared our predictions to the experimental studies currently
available, and found very good qualitative and semiquantita-
tive agreement. We have also mentioned experimental features
that are not understood.

Note added in proof. A definitive observation of FQHE at
4/11 and 5/13, in the form of accurately quantized plateaus
and activated longitudinal resistance, had so far been lacking.
Two experimental articles by Pan et al. [75] and Samkharadze
et al. [76] have appeared very recently that have conclusively
verified the existence of FQHE at 4/11 and 5/13 and estimated
the activation gaps.

FIG. 5. (Color online) Critical Zeeman energies for transitions at
4/5, 9/7, 5/7, 7/9, and 10/13 as a function of the effective transverse
width λ (see text for definition) in units of the magnetic length 
. The
results are taken from Liu et al. [9] and Yeh et al. [8], as indicated on
the figure. The experiment of Yeh et al. employed heterostructures,
which correspond to very small transverse widths. Theoretical values
at zero width are encircled in black. They are in good agreement with
zero width limits of the experiments.
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APPENDIX A: POLARIZATION

The polarization γ of a two-component state is defined as

γ = ν↑ − ν↓
ν↑ + ν↓

. (A1)

In this section we state how the polarization of a state changes
under the CF transformation and particle-hole conjugation. We
restrict ourselves to two-component states (this for example
describes the spin polarization of states in GaAs or valley
polarization in the case of graphene) and denote the states by
(ν↑,ν↓).

Under the CF transformation [ν∗
↑,ν∗

↓]±2p → (ν↑,ν↓) the
polarization of the state does not change. This is proved by
noting the fact that under the CF transformation

[ν∗
↑,ν∗

↓]±2p →
(

ν∗
↑

2p(ν∗
↑ + ν∗

↓) ± 1
,

ν∗
↓

2p(ν∗
↑ + ν∗

↓) ± 1

)

= (ν↑,ν↓). (A2)
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Using the definition of polarization from Eq. (A1), we see
that the polarization of the state (ν↑,ν↓) is identical to that of
(ν∗

↑,ν∗
↓).

Under particle-hole conjugation [ν↑,ν↓] → [1 − ν↑,1 −
ν↓] the polarization of the state changes from γ to −γ ν/(2 −
ν) where ν = ν↑ + ν↓. This can be seen from the definition
of Eq. (A1). Let us denote by γ the polarization of the state
obtained from the particle-hole conjugation,

γ = ν − 2ν↓
ν

⇒ ν↓ = ν

2
(1 − γ ), (A3)

γ = −ν − 2ν↓
2 − ν

⇒ γ = − γ ν

2 − ν
. (A4)

APPENDIX B: ENERGIES OF FINITE SYSTEMS

In Tables XVIII–XX we show results for the ground-state
energies per particle for individual systems with finite particle

numbers obtained from exact and CF diagonalization. In
some cases we also include results for the unperturbed CF
wave function. The energies listed in these tables include
background subtraction and density correction, and are used
to obtain the energies in the thermodynamic limits quoted in
the main text.

APPENDIX C: CALCULATING ENERGY EIGENSTATES
FROM NONORTHOGONAL BASIS

The set of CF states that are constructed by composite
fermionization of simple IQHE states do not form an or-
thogonal set. In this situation, one can define the matrix
representation H of the Hamiltonian operator H in the usual
way. However the eigenvalues and eigenvectors of this matrix
are not the eigenvalues of the Hamiltonian operator. In this
section we show how the correct quantities can be obtained
by diagonalizing the matrix O−1H where O is the overlap
matrix.

TABLE XVIII. The ground state Coulomb energies of N particles with spin S at flux 2Q at various filling factors. The energies include
background subtraction and density correction. The number shown in the parentheses indicates the error from Monte Carlo calculation. The
symbol ∗ marks systems for which the ground state does not occur at L = 0; and ‡ indicates systems for which calculations were carried out in
only the L = 0 and the relevant S sector. The symbol † indicates that the CF variational wave function cannot be constructed with the given N .

Energy (e2/ε
)

ν State N 2Q S exact CFD CF w.f.

4/11 [1 + 1/3WYQ]2 8 17 4 * *
12 28 6 −0.41135 −0.41101(1)
16 39 8 −0.41266 −0.41246(3)
20 50 10 −0.41299(0)
24 61 12 −0.41350(2)
28 72 14 −0.41395(1)

4/5 [1 + [1]2]−2 ≡ [1]4 8 10 4 −0.56493 −0.564933(4)
12 15 6 −0.56072 −0.560534(8)

4/11 [1,[1]2]2 6 13 1 −0.42170 −0.42070(0) −0.42069(1)
10 24 2 −0.42174 −0.42056(0) −0.42057(1)
14 35 3 −0.42059(0) −0.42056(2)
18 46 4 −0.42053(4) −0.42055(8)

4/5 [1,[1]2]−2 6 7 1 −0.58100
10 12 2 −0.57264

4/11 [[1,1]−2]2 8 19 0 −0.42356 −0.42305(1)
12 30 0 −0.42272(2)
16 41 0 −0.42257(2)

4/5 [[1,1]−2]−2 8 9 0 −0.57579
12 14 0 −0.57221

5/13 [1 + 2/3WYQ]2 6 13 3 −0.42386 −0.42375(0)
11 26 5.5 −0.42362 −0.42339(2)
16 39 8 −0.42440 −0.42418(3)
21 52 10.5 −0.42422(2)
26 65 13 −0.42416(3)
31 78 15.5 −0.42428(2)

5/7 [1 + [2]−2]−2 ≡ [2]−4 9 12 4.5 −0.53788 −0.53788(2)
5/13 [1,[2]−2]2 6 13 1 −0.43369 −0.43266(0) †

11 26 1.5 −0.43277 −0.43156(0) −0.43157(4)
16 39 2 −0.43118(0) −0.43132(5)
21 52 2.5 −0.43096(1) −0.43113(3)

5/7 [1,[2]−2]−2 6 7 1 −0.54899
11 14 1.5 −0.54442
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TABLE XIX. Same as Table XVIII.

Energy (e2/ε
)

ν State N 2Q S exact CFD CF w.f.

7/19 [1 + [2]2]2 9 20 4.5 * *
16 39 8 −0.41537 −0.41516(3)
23 58 11.5 −0.41570(4)‡

7/9 [1 + [2]2]−2 ≡ [2]4 9 12 4.5 −0.56128 −0.56128(2)
16 21 8 −0.55402 −0.55396(1)
23 30 11.5 −0.55126 −0.551215(8)
30 39 15 −0.54995 −0.549861(8)

7/19 [1,[2]2]2 ≡ [[3]−2]2 11 26 1.5 −0.42356 −0.42238(0) −0.42238(5)
18 45 3 −0.42241(0)‡ −0.42243(4)
25 64 4.5 −0.42262(4) −0.42244(4)

7/9 [1,[2]2]−2 ≡ [[3]−2]−2 11 14 1.5 −0.56810
7/19 [[1,2]−2]2 6 13 1 −0.42446 −0.42346(0)

13 32 1.5 −0.42365(0)
20 51 2 −0.42411(8)

7/9 [[1,2]−2]−2 6 7 1 −0.57287
8/21 [1 + [3]−2]2 8 18 4 * *

16 39 8 −0.42237 −0.42216(3)
24 60 12 −0.42188(2)‡

8/11 [1 + [3]−2]−2 ≡ [3]−4 8 10 4 −0.53864 †
16 21 8 −0.53573 †

8/21 [1,[3]−2]2 ≡ [[2]2]2 10 24 2 −0.43166 −0.43046(0) †
18 45 3 −0.42952(0)‡ †
26 66 4 −0.42924(2)‡ −0.4292(1)

8/11 [1,[3]−2]−2 ≡ [[2]2]−2 10 12 2 −0.54600
18 23 3

8/21 [[1,1]2]2 12 29 0 −0.43075(0)‡

20 50 0 −0.43003(2)‡

8/11 [[1,1]2]−2 12 15 0 −0.54897
20 26 0

Let H be an operator which we intend to diagonalize within
the space V spanned by the nonorthonormal set of vectors
{|1〉 , |2〉 , |3〉 , . . . , |n〉}. The quantities H and O defined as

Hij = 〈i|H |j 〉 ,
(C1)

Oij = 〈i| I |j 〉

are the quantities numerically computed through Monte Carlo
integrations. I is the identity operator. Let |φ〉 and ε be an
eigenvector and corresponding eigenvalue of H in the Hilbert
space V . By using the completeness relation, this eigenstate
can be expanded in the nonorthogonal basis.

|φ〉 =
⎡
⎣ n∑

i,j=1

|i〉 [O−1]ij 〈j |
⎤
⎦ |φ〉

=
n∑

i=1

ci |i〉 where ci =
n∑

j=1

[O−1]ij 〈j |φ〉 . (C2)

We prove below that the column vector containing the expan-
sion coefficients ci is a right eigenvector of the non-Hermitian
matrix O−1H with an eigenvalue ε.

Since |φ〉 is an eigenstate, H |φ〉 = ε |φ〉. Inserting the
completeness relations we get

[
n∑

k,l=1

|k〉 [O−1]kl 〈l|
]
H

⎡
⎣ n∑

i,j=1

|i〉 [O−1]ij 〈j |
⎤
⎦ |φ〉

= ε

[
n∑

a,b=1

|a〉 [O−1]ab 〈b|
]

|φ〉 .

After rearranging the summations and using the definition of
H and ci , the above equality can be rewritten as

n∑
k=1

|k〉 [O−1Hc]k = ε

n∑
k=1

ck |k〉 .

Since the basis vectors are linearly independent, this can be
true only if the coefficients of the vectors are equal on both
sides, which implies

O−1Hc = εc. (C3)

Every eigenvalue of the operator H in V is therefore an
eigenvalue of matrix O−1H . The corresponding eigenvector of
the matrix provides the coefficients for expanding the state in
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TABLE XX. Same as Table XVIII.

Energy (e2/ε
)

ν State N 2Q S exact CFD CF w.f.

10/27 [1 + [3]2]2 14 33 7 −0.41500 −0.41487(0)
24 60 12 −0.41599(3)‡

10/13 [1 + [3]2]−2 ≡ [3]4 14 19 7 −0.55480 †
24 32 12 −0.54972 −0.549679(7)
34 45 17 −0.54774 −0.54766(1)

10/27 [1,[3]2]2 ≡ [[4]−2]2 6 12 0 −0.42391 −0.42336(0) †
16 39 2 −0.42311(0) †
26 66 4 −0.42323(3) −0.42317(4)

10/13 [1,[3]2]−2 ≡ [[4]−2]−2 6 8 0 −0.58170
16 21 2 −0.56307

10/27 [[2,2]−2]2 12 29 0 −0.42472
22 56 0

10/13 [[2,2]−2]−2 12 15 0 −0.56459
11/29 [1 + [4]−2]2 12 29 6 −0.42243 −0.42219(0)

23 58 11.5 −0.42176(9)‡

11/15 [1 + [4]−2]−2 ≡ [4]−4 12 15 6 −0.53684 †
23 30 11.5 −0.53527 †

11/29 [1,[4]−2]2 ≡ [[3]2]2 14 35 3 −0.42956(0) †
25 64 4.5 −0.42882(2)‡ †

11/15 [1,[4]−2]−2 ≡ [[3]2]−2 14 17 3 −0.54520
25 32 4.5

11/29 [[1,2]2]2 13 32 1.5 −0.42987(0)
24 61 2

11/15 [[1,2]2]−2 13 16 1.5 −0.54850
24 31 2

3/8 [1 + 1/2APf]2 6 13 3 −0.41852 −0.41844(0)
12 29 6 −0.42002 −0.41978(5)
18 45 9 −0.41953(1)
24 61 12 −0.41991(2)

3/8 [1,1/2APf]2 8 19 2 −0.42914 −0.42833(0)
14 35 3 −0.42711(0)
20 51 4 −0.42669(2)
26 67 5 −0.42640(0)

terms of the nonorthogonal basis. These eigenvalues exhaust
all the possible eigenvalues of O−1H .

APPENDIX D: DOUBLE FQHE
OF COMPOSITE FERMIONS

In this paper we have considered only the states in which
FQHE occurs in no more than one component of composite
fermions. These are expected to be the most prominent FQHE
states of composite fermions. In this section we discuss the
simplest state which involves FQHE in two components of
composite fermions and also satisfies the Fock condition,
namely the two-component 5/3 state formed as (1 + 1/3,1/3).
[Note that a state of the type (1/3,1/3) does not satisfy the Fock
condition.]

The simplest possibility is [1 + [1]2,[1]2]2, in which we
fill the spin-up lowest �L (L�L) completely and construct
[1]2 state in the spin-up second �L and spin-down lowest �L.
This gives us the following relations between the flux and the

number of particles in each �L:

2Q∗ + 1 = N0↑, (D1)

2Q∗ + 1 = 3N0↓ − 2, (D2)

2Q∗ + 3 = 3N1↑ − 2. (D3)

From the last two equations we obtain (N1↑ − N0↓) = 2
3 /∈ Z.

Therefore this state cannot be constructed. A similar argument
shows that the corresponding 5/3 state formed by 1/3 WYQ
states in both spin-up second �L and spin-down L�L with
spin-up L�L full cannot be constructed.

Next, we consider [1 + 1/3WYQ,[1]2]2, in which we fill
the spin-up L�L completely and construct 1/3WYQ and [1]2

states in the spin-up second �L and spin-down lowest �L
respectively. This gives us the following set of relations:

2Q∗ + 1 = N0↑,

2Q∗ + 1 = 3N0↓ − 2,
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2Q∗ + 3 = 3N1↑ − 6,

N = N0↑ + N0↓ + N1↑,

N0↑ = 3k − 2,N0↓ = k,N1↑ = k + 2 (k ∈ N),

N = 5k, 2Q∗ = 3k − 3, S = 3k

2
.

From this state at ν∗ = 5/3, we can construct states at ν =
5/13 and ν = 5/7 (by reverse flux attachment). Doing exact
diagonalization at the corresponding flux, we find that the
lowest-energy state does not have L = 0 for all allowed values
of N and hence is unlikely to be incompressible.

The third possibility is [1 + [1]2,1/3WYQ]2, in which one
constructs the 1/3WYQ state in the spin-down lowest �L and
[1]2 in second �L. This implies the following relations:

2Q∗ + 1 = N0↑, (D4)

2Q∗ + 1 = 3N0↓ − 6, (D5)

2Q∗ + 3 = 3N1↑ − 2. (D6)

From the last two equations we find that (N1↑ − N0↓) = − 2
3 /∈

Z. Hence this state cannot be constructed.

APPENDIX E: SPIN SINGLET FQHE AT 4/11

In this section we provide details of the excitation spectrum
of the 4/11 spin singlet state. The spectra of partially polarized
and fully polarized 4/11 states have been discussed previously
in Refs. [47,48,50,51,77]. The 4/11 FQHE has been observed
but no spin phase transition has yet been observed. This also
serves as an illustration of how we have obtained various
energies by the method of CFD.

As stated above, the ν = 4/11 spin singlet state is obtained
from the ν∗ = 4/3 spin singlet state which is the particle-hole
conjugate state to the 2/3 spin singlet. The 2/3 spin singlet
state is obtained by filling the lowest �L of spin-up and spin-
down completely and composite-fermionizing this state by
reverse flux attachment. A straightforward calculation shows
that the spin singlet 4/11 state occurs at flux

2Q = 11
4 N − 3. (E1)

Therefore we must choose the particle number N to be a
multiple of 4.
Figure 6 shows the Coulomb spectra obtained from CF
diagonalization in the spherical geometry for three systems,
namely N = 4, 8, and 12. The spectrum is obtained by
constructing all Sz = 0 and Lz = 0 states at 4/3 at the
effective flux 2Q∗ = 2Q − 2(N − 1), composite fermionizing
them by the standard method to obtain the CF basis at the
desired 2Q given by Eq. (E1), and then diagonalizing the
Coulomb interaction in that subspace by the method of CF
diagonalization. (Here Sz and Lz are the z components of
the total spin and orbital angular momentum.) For four and
eight particles, we also display the exact spectrum (obtained
by a diagonalization of the Coulomb interaction in the full
LLL Hilbert space), and a comparison shows the accuracy
with which the CF theory captures the low-energy physics. In
particular, the ground state is seen to have S = 0 and L = 0,
consistent with a a spin singlet FQHE state of composite
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FIG. 6. (Color online) Energy spectrum of the 4/11 spin singlet
FQHE state, where composite fermions form a spin singlet 4/3 FQHE
state. The spectra shown by dots (different colors representing differ-
ent spin quantum numbers S) were obtained by CF diagonalization.
The dashes in the top two panels show the exact spectrum obtained by
exact diagonalization in the full Hilbert space. The spherical geometry
is used for the calculation. L is the total orbital angular momentum,
2Q is the flux through the sphere in units of the flux quantum, and
N is the total number of electrons. The bottom panel shows the two
lowest-energy collective modes, namely the charge exciton and the
spin-flip exciton.
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fermions here. The thermodynamic limit of the ground-state
energy per particle is obtained by an extrapolation of the three
energies. We find that even with two points (with four and
eight particles) we get a reasonably good approximation for
the ground-state energy, which is why we have used for some
states that involve reverse flux attachment the exact energies
only from two systems to obtain the thermodynamic energy.

It is interesting to ask if we can make quantitative
predictions about the nature of the charge and spin collective
modes at 4/11. As known from previous studies [78,79],
the collective modes are excitons of composite fermions that
involve either a spin flip or no spin flip, called spin-flip excitons
or charge excitons, respectively. They can be constructed up
to a maximum L in the spherical geometry. The CF theory
predicts this value as follows. The 12-particle 4/11 state maps
into the 12-particle 4/3 state at flux 2Q∗ = 8, which, by
particle-hole symmetry, is equivalent to a six-particle spin
singlet 2/3 state at 2Q∗ = 8. This state, in turn, maps into

a six-particle spin singlet state at filling factor 2. The lowest-
energy CF exciton of the spin singlet 4/11 state is thus derived
from the lowest-energy exciton of the six-particle ν∗∗ = 2 state
at flux 2|Q∗∗| = 2. The latter exciton corresponds to a particle
with angular momentum 2 and a hole with angular momentum
1, giving a spin polarized exciton at L = 2,3 (L = 1 exciton
is annihilated [78,80]) and a spin-flip exciton at L = 1,2,3.
This shows that larger systems would be required for bringing
out the full nature of the excitonic collective-mode dispersion.
Nonetheless, from the spectra, it is clear that both the charge
and the spin-flip exciton modes are gapped, as expected for a
spin singlet FQHE state, and that both of them have at least one
roton minimum. Rotons in the charge mode were first predicted
by Girvin, MacDonald, and Platzman [81] and spin-flip rotons
have also been predicted [55] and observed [58] for fully spin
polarized 2/5 and 3/7. We note that the roton gaps for the spin
singlet 4/11 are on the order of 0.01e2/ε
 for both charge and
spin-flip exciton modes.
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