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Pair-distribution functions of correlated composite fermions
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Pair-distribution functions g(r) of Laughlin quasielectrons (composite fermions in their second Landau
level) are calculated in the fractional quantum Hall states at electron filling factors v,=4/11 and 3/8. A
shoulder in g(r) is found, supporting the idea of cluster formation. The intra- and intercluster contributions to
g(r) are identified, largely independent of v,. The average cluster sizes are estimated; pairs and triplets of
quasielectrons are suggested at v,=4/11 and 3/8, respectively.
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I. INTRODUCTION

Pan et al.' have recently observed the fractional quantum
Hall effect>® (FQHE) in a spin-polarized two-dimensional
electron gas (2DEG) at the ve:ﬁ, %, and 15—3 fillings of the
lowest Landau level (LL). In the composite fermion (CF)
model,*3 these values correspond to the fractional fillings v
=%, %, and % of the second CF LL, respectively. In Haldane’s
hierarchy picture® of these states, Laughlin quasielectrons
(QE’s) fill (the same) fraction v of their LL. The most strik-
ing conclusion from Pan’s discovery is that the CF’s (or
QE’s) can also form incompressible states when partially fill-
ing a LL. This could not be predicted by a simple analogy
with known fractional electron liquids (Laughlin,® Jain,* or
Moore-Read’ states), because of a different form of QE-QE
interaction,3'0 therefore yielding qualitatively different
QE-QE correlations.

Although several numerical studies of interacting QE’s
have been reported'®!® and ideas such as CF flavor
mixing,'* QE pairing,'>!¢ or stripes!” were invoked, the cor-
relations responsible for the FQHE at ve=14—1 and % are not
yet understood. It has not even been settled if these FQH
states are isotropic, and the energies of liquid and solid
phases were compared recently’® (although the Laughlin
form was arbitrarily assumed for the liquid).

Sometimes overlooked is a general connection'®!? be-
tween the form of Haldane pseudopotential,?! the occurrence
of Laughlin correlations, and the validity of the CF transfor-
mation. Actually, the form of QE-QE interaction is known
from independent calculations,®~' and Laughlin correlations
among the QE’s have been ruled out using both a general
pseudopotential argument® and a direct analysis of many-QE
wave functions.!? In this paper we refer to the following
well-established facts.

(i) The QE-QE Haldane pseudopotential®! is known from
exact diagonalization of the Coulomb interaction among
electrons in the lowest LL.371° Since there are no unchecked
assumptions in such a calculation, it must be regarded as a
“numerical experiment.” Neither finite-size errors, lowest-LL
restriction, finite 2DEG width, nor other details of realistic
experimental systems affect the dominant feature of the
pseudopotential which is the lack of strong QE-QE repulsion
at short range.
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(i) The QE’s do not>'? have Laughlin correlations at v
:§ corresponding to v,= 14—1. The Moore-Read half-filled state
is not'>?? an adequate description of QE-QE correlations at
v=% corresponding to VEZ%.

(iii) A sequence of nondegenerate finite-size QE ground
states with a gap, extrapolating to VZ%, has been found'? on
a sphere. Although spherical geometry is not adequate for
studying crystal or other broken-symmetry phases, the iden-
tified states appear incompressible and have the lowest en-
ergy of all QE liquids (considerably below the Laughlin
state).

To address the problem of correlations at v,= ﬁ, %, and 15—3
we calculate pair-distribution functions g(r) in the incom-
pressible liquid ground states of up to N=14 QE’s. Their
comparison with the (known) curves of the Laughlin and
Moore-Read states implies a different nature of the QE cor-
relations in these FQH states. It shows that their incompress-
ibility cannot be explained by a simple analogy between the
QE and electron liquids, and suggests that different wave
functions need to be proposed for correlated CF’s. Unfortu-
nately, the calculated g(r) are of little help in a precise defi-
nition of these wave functions, even though some qualitative
statements can be made about the QE correlations.

From our finite-size results we identify and analyze the
size-independent features in g(r), the ~r> behavior at short
range and a shoulder at a medium range, and argue that they
are consistent with the idea'? of QE cluster formation. Short-
and long-range contributions to g(r) are found, describing
correlations between the QE’s from the same or different
clusters. Both intra- and intercluster QE-QE correlations de-
pend rather weakly on v. The average size of the clusters is
estimated; it seems that the QE’s form pairs at v=% and
triplets at V=%. A similar analysis of g(r) carried out for the
Moore-Read state reveals a qualitatively different behavior.

II. MODEL

A. Haldane sphere

The numerical calculations have been carried out in
Haldane’s spherical geometry,® convenient for the exact
study of short-range correlations. In this model, the lowest
LL for particles of charge ¢ is a degenerate shell of angular
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momentum /=0. Here 20 is the strength of the Dirac mono-
pole in the center of the sphere defined in the units of el-
ementary flux ¢y=hc/q as 2Q¢,=4mR’B, the total flux of
the magnetic field B through the surface of radius R. Using
the usual definition of the magnetic length N\ =\%c/gB, this
can be written as IN>=R?. In the following, \ denotes the
QE magnetic length corresponding to the fractional charge
qg=-el3.

The relative (R) and total (L) pair angular momenta are
related via L=2/-"R. For fermions, R is an odd integer, and
it increases with increasing average pair separation \/@-
The interaction (within the lowest LL) is entirely determined
by the Haldane pseudopotential defined as the pair-
interaction energy V as a function of R.

B. Exact diagonalization

Recently, we have identified'? the series of finite-size
spin-polarized states that in the thermodynamic limit de-
scribe the FQHE at ve:ﬁ and % To do so, we have carried
out extensive exact-diagonalization calculations for interact-
ing QE’s (particles in the second CF LL). On the Haldane
sphere, N fermionic QE’s were confined in a standard way to
an angular momentum shell of degeneracy I'=2/+1, corre-
sponding to the QE filling factor v~ N/T", and the Haldane
QE-QE pseudopotential V(R) was taken from earlier
calculations.?-10

Regardless of the electron layer width w, magnetic field
B, or other experimental parameters, the dominant feature of
V(R) is strong repulsion at R=3. This feature alone deter-
mines the wave functions at %i v$% (with the QE-QE cor-
relations consisting of maximum possible avoidance of the
Haldane pair amplitude G at R =3), which are hence virtually
insensitive to the (sample-dependent) details of V(R). This
justifies model calculations using the V(R) of Refs. 8-10.
Actually, a model pseudopotential as simple as V=205 5 is
sufficient to reproduce correct correlations and incompress-
ibility at v,=- or 3.

III. NUMERICAL RESULTS
A. Energy spectra

The numerical results carried out for N< 14 (two sample
spectra are displayed in Fig. 1) showed!? a sequence of non-
degenerate (i.e., at the total angular momentum L=0) ground
states at 2/=N/v—y with VZ% and y="7. The significant and
well-behaved (as a function of N) excitation gap along this
sequence strongly suggests that it represents the infinite v,
=ﬁ FQH state observed in experiment.! The value y#3
precludes Laughlin correlations among QE’s in this state
(earlier ruled out indirectly, based on the form of QE-QE
pseudopotential®), i.e., the idea that the v,= 14—] state is simply
a Haldane hierarchy state of Laughlin-correlated CF’s. While
the exact correlations in this (known only numerically for a
few consecutive N) ground state have not yet been defined,
their vanishing degeneracy (L=0) implies that they describe
a QE liquid, rather than a broken-symmetry state (such as

PHYSICAL REVIEW B 71, 245331 (2005)

L PR £ MR DR R MY R
* . « * 2 s e®®a :':. e
.. ! o ° . oo'.:’ OE:':
. ....‘ . M .o
= ° ° . '.o . * [}
& ¢ . °
3 [ ] L ]
< . ° . . . °
W .
v=1/3 v=1/2
a)N=12, 21=29 = =
o00-le ek ) .(t.)).N|1.4’.2|. il
0 5 10 15 0 5 10 15
L L

FIG. 1. Excitation energy spectra (energy E as a function of total
angular momentum L; E| is the ground-state energy) of N interact-
ing QE’s on a sphere, at the values of CF LL degeneracy I'=21
+1 corresponding to the incompressible ground states at the QE
filling factors v=1/3 (a) and 1/2 (b).

liquid-crystal nematic states proposed?? in the context of the
FQHE at different values of v).

Another sequence was anticipated at 2/=2N -y to repre-
sent the infinite ve=% FQH state. However, the only ground
state with a significant gap and remaining outside of the v
=% sequence (or its particle-hole symmetric v=§ sequence at
21=%N+2) occurs'? for N=14 and 2/=25 (and it also has
L=0). These values of (N,2/) happen to belong to a 2/
=2N-3 series representing the Moore-Read (Pfaffian) paired
state, but the overlap between the two turns out nearly
zero.'>?2 Moreover, the ground states for the two neighbor-
ing even (as appropriate for a hypothetically paired state)
values of N=12 and 16 (and 2/=21 and 29) have L>0 and
no gap, the value of 2/=17 for N=10 coincides with the v
:% sequence (so that only for N> 8 can the filling factor v be
meaningfully assigned), and we are unable to compute the
spectra for N=18. Nevertheless, despite little evidence
available from numerical diagonalization, the ground state
for N=14 and 2/=25 (and its particle-hole counterpart at N
=12 and the same 2/=25) may possibly represent the V,_,:%
FQH state (i.e., have similar correlations causing incom-
pressibility).

B. Pair-distribution functions

The QE-QE pair-distribution functions g(r) have been
calculated for the incompressible many-QE ground states as
expectation values of the appropriate pair interaction,

g(r) = 2IN*(SRO-1)). (1)

Here, 6 is the relative angle on a sphere, so that r measures
interparticle distance along the surface (rather than chord dis-
tance). More accurately, r is the distance between the centers
of extended QE’s (note that in the calculation of many-QE
wave functions, the system of QE’s is mapped onto the low-
est LL of point charges interacting through an effective
pseudopotential). The prefactor in Eq. (1) ensures proper
normalization, g(°)— 1. Denoting the infinitesimal area by
dS=2mR*d(cos 6) or (in magnetic units) by ds=dS/2m\>,
we get an equivalent normalization condition
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FIG. 2. QE-QE pair-distribution functions g(r) of the incom-
pressible ground states at different QE filling factors v. (a) Curves
for v=1/3 and different QE numbers N; (b) curves for QE’s at
different v (thick lines) compared to some known incompressible
states of electrons.

[ 1-gas=2 o @)

in large systems. Since ds=1I d(cos 6), a “local filling factor”
can also be defined as v(r)=dN/ds=(N/2l)g(r), and it satis-
fies v(©)=v and [v(r)ds=N-1.

The results for the VZ% sequence at 2/=3N-7 are shown
in Fig. 2(a). Similarity of all four curves is evident, indicat-
ing a size-independent form of correlations (hence, describ-
ing an infinite system), with a well-developed shoulder
around r=~2.5\. Similar shoulders occur in g(r) of all in-
compressible ground states at V=% or % (the v:% sequence at
21 =%N +2 is obtained from 2/=3N-7 by replacing N with
I'=N, while at v=% there are two particle-hole conjugate
sequences at 2/=2N-3 and 2N+1, denoted by v= %i). The
four curves representative of vzi, %, and %* are shown in
Fig. 2(b). They are all clearly different from those marked
with thin lines and describing correlations known for other
incompressible FQH states (full LL, Laughlin v=% state, or
Moore-Read half-filled state). This is a direct indication of
the different nature of QE-QE correlations responsible for
the FQHE at v,=7; and 3.

Let us stress that although the QE-QE interactions are not
known with great accuracy, the correlation functions in Fig.
2 are rather insensitive to the details of V(R), as long as the
dominant repulsion occurs at R =3 (which seems to be uni-
versally true in the systems studied experimentally). This
insensitivity is reminiscent of the Laughlin wave function,
which also very accurately describes the actual v:% ground
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state for a wide class of electron-electron pseudopotentials.
However, while the avoidance of R=1 by the electrons in
the lowest LL can be elegantly described by flux attachment
in the CF picture, no similar model has been proposed yet for
the avoidance of R =3 by the QE’s. Therefore, knowing the
g(r) curves of QE’s and understanding their correlations, we
still cannot write their wave functions.

C. Gaussian deconvolution

The curves of Fig. 2(b) can be accurately deconvoluted
using Gaussians, G(r/\)=A exp[—(r/\—38)?/207]. This is
shown in Fig. 3 where the symbols mark the exact data of
Fig. 2(b) and the lines give the (nearly perfect) fits using
three Gaussians, g=1-Gy,—G,—G, (sufficient for r<6\).
The fitted values of [A;, &;, g;] for all four curves are listed in
Table 1. Note that Ay=1, §,=0, and &,=3 for all curves (the
last value being least obvious, but probably resulting from
the avoidance of the same R3=3 by the QE’s at all values of
v). The values of the G, parameters are not very meaningful
when the next term in the approximation (G;) is neglected.
The clearest difference between the four curves is in A;.

D. Short- and long-range deconvolution

It appears more physically meaningful to decompose g(r)
into go=1-exp(~r*/2\?), describing a full lowest LL,** and
a (properly normalized) “remainder” g,

3)

For each g(r), the parameter « is calculated as the limit of
g/go at r—0. It is clear from Fig. 4(a) that g(r) is accurately
approximated by a gy(r) within a finite area or a radius ~\
for all four ground states of Fig. 2(b). The numerical values
of @ are 0.772, 0.804, 0.856, and 0.899 for v=1, 3=, 1%, and
%, respectively. Evidently, « is size dependent (e.g., the pair
of values for v= %i must converge to the same thermody-
namic limit).

The four curves ggi(r) calculated from Eq. (3) are plotted
in Fig. 4(b). Symbols and lines mark the exact data and the
three-Gaussian fits of Table I, respectively. We note the fol-
lowing. (i) For the pairs of particle-hole conjugate states (
N=12,18 at 2/=29 and N=12,14 at 2[=25), the guix(r)
curves are identical. (ii) The curves obtained for V=% and 5
are very similar (and possibly identical in large systems);
they all vanish at short range and have a minimum at r
~3\ and a maximum at r=5.5\.

g(r)=a go(r) + (1 — a)gais(r).

TABLE 1. Gaussian deconvolution parameters for QE-QE pair-distribution functions shown in Figs. 2(b)

and 3.

14 AO 50 (o)) Al 6] (o] A2 52 (o))
1/3 1 0 1.0989 0.3450 3 0.9412 -0.1199 5.6905 1.0298
2/3 1 0 1.0419 0.1535 3 0.9361 -0.0530 5.6655 0.9987
1/2* 1 0 1.0626 0.2034 3 0.9475 -0.0741 5.4041 1.1011
1/2~ 1 0 1.0896 0.2755 3 0.9431 -0.1005 5.4156 1.0903
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] TABLE II. Parameters [y of the short-range approximation
P S DOl ot | O q v(r) ~ B go(r) obtained for independent clusters of size K.
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FIG. 3. Gaussian deconvolution of the QE-QE pair distribution
functions g(r): dots, data of Fig. 2(b); lines, fits.

IV. DISCUSSION
A. QE clustering

Some information about the form of QE-QE correlations
can be easily deduced from the form of interaction pseudo-
potential V(R), which is simply the interaction Hamiltonian
defined only for those pair states allowed in the lowest LL.
In low-energy many-body states the particles generally tend
to avoid pair eigenstates with high interaction energy, which
means minimization of the corresponding Haldane pair am-
plitude G. If the repulsion V decreases sufficiently quickly'®
as a function of R (the exact criterion being!® that V de-
creases sublinearly as a function of \/@), the smallest value
of R=1 is avoided. This Laughlin type of correlation is el-
egantly described by attachment of 2p=2 fluxes to each par-
ticle in the CF transformation. In a Laughlin-correlated state,
each particle avoids being close to any other particle (as
much as possible at a given finite ).

When short-range repulsion weakens (V at R=1 de-
creases compared to V at R =3), Laughlin correlations dis-
appear and can be replaced by pairing or formation of larger
clusters. Pairs'>!® or clustering!?> were suggested by several
authors for the QE’s. This idea was justified by the observa-
tion that the QE-QE pseudopotential nearly vanishes at R
=1 and is strongly repulsive at R =3, causing an increase of
G(1) and a simultaneous decrease of G(3) compared to the
Laughlin-correlated state.!?

The assumption that QE’s form clusters naturally explains
the shoulder in g(r), and allows one to interpret g, and ggi
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FIG. 4. (a) Ratio of QE-QE pair-distribution functions g(r) to
go(r) of a full lowest LL for different incompressible QE ground
states; (b) the “remainder” gg(r) defined by Eq. (3).

as the intra- and intercluster QE-QE correlations, i.e. the
short- and long-range contributions to g, corresponding to
the QE pairs belonging to the same or different clusters,
respectively. The vanishing of ggi(r) at short range reflects
isolation of QE’s belonging to different clusters. The reason
why ggirr 1S not positive definite is that intracluster correla-
tions are accurately described by g, only within a certain
radius. In other words, the actual intercluster contribution to
g is not exactly given by g defined by Eq. (3). Neverthe-
less, the following two conclusions remain valid: (i) the
intra- and intercluster QE-QE correlations are similar at v
=%, %, and %, with the respective correlation-hole radii @,
~\ and @; ~4\; and (ii) the cluster size K depends on v.

A similar form of g(r) was found? for broken-symmetry
Laughlin states, in which the shoulder results from angular
averaging of an anisotropic function g(r, )~ r*> or 1%, de-
pending on ¢. However, the present case of QE’s is different,
because g(r) is isotropic (wave functions have L=0) and the
shoulders result from radial averaging of inter- and intrac-
luster correlations (beginning as ~ and a higher power of r
at short range, respectively).

B. Average cluster size

In a clustered state, the (average) cluster size K is con-
nected to «, and the form of gy depends on correlations
between the clusters. The values of K at V=% or % can be
estimated by comparison of the actual parameters a with
those predicted for the hypothetical states of N particles ar-
ranged into N/K independent K-clusters. By independence of
the clusters we mean that intercluster correlations do not af-
fect the local filling factor »(r) at short range. For a single
cluster, which on a sphere is the K-particle state with the
maximum total angular momentum L:Kl—%K(K—l), the
vg(r) depends on the surface curvature and thus (through
R/\=\1) on 2I.

We have calculated the prefactors S of the short-range
approximation vg(r)= Bgg,(r) for different values of K and
2] and listed some in Table II [note that v,(r) is known
exactly]. These coefficients are to be compared with B
=(N/2l)a of the incompressible N-QE states obtained from
diagonalization. Of course, this approach is somewhat ques-
tionable as one generally cannot deduce the precise cluster
size from the short-range behavior of g(r) for the following
reasons: (i) K is not a well-defined (conserved) quantum
number; (ii) V=% states occur for all N (not only those divis-
ible by 2 or 3) which means that all clusters cannot have the
same K; (iii) the parameters « and B are size dependent and
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FIG. 5. (a) Pair-distribution functions g(r) of lowest L=0 states
of finite systems corresponding to »=1/3 and 1/2, for pseudopo-
tentials of electrons in the first and second LL, and of CF’s in the
second LL. (b) The total g(r) and “remainder” gu(r) curves of the
Moore-Read v=1/2 state; circles mark a fitting linear combination
of the curves for Laughlin states.

their extrapolation to large systems is not very reliable based
on the limited number of N-QE systems we are able to diag-
onalize; (iv) intercluster exchange of QE’s makes the
“independent-cluster” picture only an approximation.

Fortunately, we can use the Moore-Read states (known to
be paired’??) as a test. Our calculation (for details see Sec.
IV C) for N=14 and 2[=25 gives Byr=0.336, somewhat
larger than B,. Hence, we shall assume that By in general
underestimates the actual value of B in a many-body
K-clustered state.

For the QE’s, we got 8=0.319= By for N=12 and 2!/
=29 (v=1), and B=0.479 for N=14 and 2/=25 (v=3"; di-
rectly comparable with the Moore-Read state). With appro-
priate reservation, we can hence risk a hypothesis that QE’s
(on the average) form pairs at v:% and triplets at v:% (pos-
sible triplet formation might turn out especially intriguing in
the context of parafermion statistics?).

C. Comparison with Moore-Read state

The evolution of g(r) when going from the lowest elec-
tron LL to the second CF LL (i.e., from LL, to CF-LL,) is
clear when using a model pseudopotential V/(R)={ éx
+(1-)6r 3. For {=0 or 1, the correlations (avoidance of
R=1 or 3) are insensitive to ¢, and both Laughlin and
QE-QE correlations are accurately reproduced by V,, and Vi,
respectively. Modeling correlations among electrons in LL,
(the second LL) is more difficult, because they are very sen-
sitive to the exact form of V(R) at the corresponding {~ %
As a result, the N-electron Coulomb eigenstates in LL; are
more susceptible to finite-size errors than in LL or CF-LL;.
In large systems, a good trial state is only known at v=%
(Moore-Read state), and much less is established about the
correlations at V=%. Still, the g(r) curves for electrons in LL,;
must certainly fall between the two extreme curves for {=0
and 1 (and differ from both of them). This is shown in Fig.
5(a) for both v:% and %

The exact Moore-Read wave functions were calculated on
a sphere for N<14 and 2/=2N-3=25 by diagonalizing a
short-range three-body repulsion.?? In Fig. 5(a) we only plot-
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ted g(r) for N=14 because the N=12 curve is too close to be
easily distinguished. The values of a=0.602 and 0.600 for
N=12 and 14. The gu(r), also shown, is positive definite,
very different from the QE curves in Fig. 4(b), and rather
close to g;(r), where g, describes a Laughlin v=(2p+1)™"'
state. Assuming aMR:% and expanding ggis into g; and g, in
accordance with Eq. (2) one obtains an approximate formula

3 3 1
gm@*g&@+ﬁ&@+ﬁ&®, (4)

marked with the circles in Fig. 4(b), that appears to be quite
accurate (the largest finite-size error is in g, calculated for
only N=8, while g, is for N=12).

The fact that g is positive and rather featureless (similar
to g,) for the Moore-Read wave function is in contrast with
the result for QE’s. This difference may indicate that the QE
clusters cannot be understood literally as Moore-Read pairs.
Indeed, even the lack of correlation between the occurrence
of L=0 ground states (or size of the excitation gap) and the
divisibility of N by K=2 or 3 precludes such a simple pic-
ture. The fact that gg(r ~3\) <0 could mean that the aver-
age relative (with respect to center of mass) angular momen-
tum Ry of the QE clusters is much larger than Rg"
:%K(K —1). Certainly, R is only conserved for an isolated
cluster, but it is possible that the QE clusters are more re-
laxed due to cluster-cluster interaction than the Moore-Read
pairs are. This would make g, underestimate the radius of the
actual intracluster QE-QE correlation hole, and explain the
negative sign of g

V. CONCLUSION

From exact numerical diagonalization on Haldane sphere,
we obtained the energy spectra and wave functions of up to
N=14 interacting Laughlin QE’s (CF’s in the second LL).
We identified the series of finite-size liquid ground states
with a gap, which extrapolate to the experimentally observed
incompressible FQH states at ve=ﬁ, %, and % In these
states, we calculated QE-QE pair-distribution functions g(r),
and showed that they increase as ~7? at short range and have
a pronounced shoulder at a medium range. This behavior
supports the idea of QE cluster formation, suggested earlier
from the analysis of the QE-QE interaction pseudopotential.
The g(r) is decomposed into short- and long-range contribu-
tions, interpreted as correlations between the QE’s from the
same or different clusters. The intracluster contribution to
g(r) is that of a full LL, and the remaining term identified
with the intercluster QE-QE correlations appears to be the
same in all three v:%, %, and % states. The (average) cluster
size on the other hand does depend on v, and we present
arguments which suggest that the QE’s form pairs at V=§
and triplets at V=%.

The qualitative difference between the g(r) curves ob-
tained here for correlated CF’s and those known for the
Laughlin and Moore-Read liquids of electrons is another in-
dication that the origin of incompressibility at Ve=14—1, %, and
]5—3 is different. Of other hypotheses invoked in literature and
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mentioned here in the Introduction, the broken-symmetry
states cannot be excluded by our calculation in spherical ge-
ometry. However, we anticipate that the QE’s form a liquid
(studied in this paper) also in experimental samples, because
of the whole series of isotropic ground states with a gap
occurring in finite systems of different size.
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