Pair-distribution functions of correlated composite fermions

Arkadiusz Wójs,^{1,2} Daniel Wodziński,¹ and John J. Quinn²

¹Wroclaw University of Technology, 50-370 Wroclaw, Poland

²University of Tennessee, Knoxville, Tennessee 37996, USA

(Received 2 February 2005; revised manuscript received 4 May 2005; published 30 June 2005)

Pair-distribution functions g(r) of Laughlin quasielectrons (composite fermions in their second Landau level) are calculated in the fractional quantum Hall states at electron filling factors $\nu_e=4/11$ and 3/8. A shoulder in g(r) is found, supporting the idea of cluster formation. The intra- and intercluster contributions to g(r) are identified, largely independent of ν_e . The average cluster sizes are estimated; pairs and triplets of quasielectrons are suggested at $\nu_e=4/11$ and 3/8, respectively.

DOI: 10.1103/PhysRevB.71.245331

PACS number(s): 73.43.-f, 71.10.Pm

I. INTRODUCTION

Pan *et al.*¹ have recently observed the fractional quantum Hall effect^{2,3} (FQHE) in a spin-polarized two-dimensional electron gas (2DEG) at the $\nu_e = \frac{4}{11}, \frac{3}{8}, \text{ and } \frac{5}{13}$ fillings of the lowest Landau level (LL). In the composite fermion (CF) model,^{4,5} these values correspond to the fractional fillings ν $= \frac{1}{3}, \frac{1}{2}, \text{ and } \frac{2}{3}$ of the second CF LL, respectively. In Haldane's hierarchy picture⁶ of these states, Laughlin quasielectrons (QE's) fill (the same) fraction ν of their LL. The most striking conclusion from Pan's discovery is that the CF's (or QE's) can also form incompressible states when partially filling a LL. This could not be predicted by a simple analogy with known fractional electron liquids (Laughlin,³ Jain,⁴ or Moore-Read⁷ states), because of a different form of QE-QE interaction,⁸⁻¹⁰ therefore yielding qualitatively different QE-QE correlations.

Although several numerical studies of interacting QE's have been reported^{10–13} and ideas such as CF flavor mixing,¹⁴ QE pairing,^{15,16} or stripes¹⁷ were invoked, the correlations responsible for the FQHE at $\nu_e = \frac{4}{11}$ and $\frac{3}{8}$ are not yet understood. It has not even been settled if these FQH states are isotropic, and the energies of liquid and solid phases were compared recently²⁰ (although the Laughlin form was arbitrarily assumed for the liquid).

Sometimes overlooked is a general connection^{18,19} between the form of Haldane pseudopotential,²¹ the occurrence of Laughlin correlations, and the validity of the CF transformation. Actually, the form of QE-QE interaction is known from independent calculations,^{8–10} and Laughlin correlations among the QE's have been ruled out using both a general pseudopotential argument⁹ and a direct analysis of many-QE wave functions.¹² In this paper we refer to the following well-established facts.

(i) The QE-QE Haldane pseudopotential²¹ is known from exact diagonalization of the Coulomb interaction among electrons in the lowest LL.^{8–10} Since there are no unchecked assumptions in such a calculation, it must be regarded as a "numerical experiment." Neither finite-size errors, lowest-LL restriction, finite 2DEG width, nor other details of realistic experimental systems affect the dominant feature of the pseudopotential which is the lack of strong QE-QE repulsion at short range.

(ii) The QE's do not^{9,12} have Laughlin correlations at $\nu = \frac{1}{3}$ corresponding to $\nu_e = \frac{4}{11}$. The Moore-Read half-filled state is not^{12,22} an adequate description of QE-QE correlations at $\nu = \frac{1}{2}$ corresponding to $\nu_e = \frac{3}{8}$.

(iii) A sequence of nondegenerate finite-size QE ground states with a gap, extrapolating to $\nu = \frac{1}{3}$, has been found¹² on a sphere. Although spherical geometry is not adequate for studying crystal or other broken-symmetry phases, the identified states appear incompressible and have the lowest energy of all QE liquids (considerably below the Laughlin state).

To address the problem of correlations at $\nu_e = \frac{4}{11}, \frac{3}{8}$, and $\frac{5}{13}$ we calculate pair-distribution functions g(r) in the incompressible liquid ground states of up to N=14 QE's. Their comparison with the (known) curves of the Laughlin and Moore-Read states implies a different nature of the QE correlations in these FQH states. It shows that their incompressibility cannot be explained by a simple analogy between the QE and electron liquids, and suggests that different wave functions need to be proposed for correlated CF's. Unfortunately, the calculated g(r) are of little help in a precise definition of these wave functions, even though some qualitative statements can be made about the QE correlations.

From our finite-size results we identify and analyze the size-independent features in g(r), the $\sim r^2$ behavior at short range and a shoulder at a medium range, and argue that they are consistent with the idea¹² of QE cluster formation. Shortand long-range contributions to g(r) are found, describing correlations between the QE's from the same or different clusters. Both intra- and intercluster QE-QE correlations depend rather weakly on ν . The average size of the clusters is estimated; it seems that the QE's form pairs at $\nu = \frac{1}{3}$ and triplets at $\nu = \frac{1}{2}$. A similar analysis of g(r) carried out for the Moore-Read state reveals a qualitatively different behavior.

II. MODEL

A. Haldane sphere

The numerical calculations have been carried out in Haldane's spherical geometry,⁶ convenient for the exact study of short-range correlations. In this model, the lowest LL for particles of charge q is a degenerate shell of angular

momentum l=Q. Here 2Q is the strength of the Dirac monopole in the center of the sphere defined in the units of elementary flux $\phi_0 = hc/q$ as $2Q\phi_0 = 4\pi R^2 B$, the total flux of the magnetic field B through the surface of radius R. Using the usual definition of the magnetic length $\lambda = \sqrt{\hbar c/qB}$, this can be written as $l\lambda^2 = R^2$. In the following, λ denotes the QE magnetic length corresponding to the fractional charge q=-e/3.

The relative (\mathcal{R}) and total (L) pair angular momenta are related via $L=2l-\mathcal{R}$. For fermions, \mathcal{R} is an odd integer, and it increases with increasing average pair separation $\sqrt{\langle r^2 \rangle}$. The interaction (within the lowest LL) is entirely determined by the Haldane pseudopotential defined as the pairinteraction energy V as a function of \mathcal{R} .

B. Exact diagonalization

Recently, we have identified¹² the series of finite-size spin-polarized states that in the thermodynamic limit describe the FQHE at $\nu_e = \frac{4}{11}$ and $\frac{3}{8}$. To do so, we have carried out extensive exact-diagonalization calculations for interacting QE's (particles in the second CF LL). On the Haldane sphere, *N* fermionic QE's were confined in a standard way to an angular momentum shell of degeneracy $\Gamma = 2l+1$, corresponding to the QE filling factor $\nu \sim N/\Gamma$, and the Haldane QE-QE pseudopotential $V(\mathcal{R})$ was taken from earlier calculations.⁸⁻¹⁰

Regardless of the electron layer width w, magnetic field B, or other experimental parameters, the dominant feature of $V(\mathcal{R})$ is strong repulsion at $\mathcal{R}=3$. This feature alone determines the wave functions at $\frac{1}{3} \le \nu \le \frac{1}{2}$ (with the QE-QE correlations consisting of maximum possible avoidance of the Haldane pair amplitude \mathcal{G} at $\mathcal{R}=3$), which are hence virtually insensitive to the (sample-dependent) details of $V(\mathcal{R})$. This justifies model calculations using the $V(\mathcal{R})$ of Refs. 8–10. Actually, a model pseudopotential as simple as $V=\delta_{\mathcal{R},3}$ is sufficient to reproduce correct correlations and incompressibility at $\nu_e = \frac{4}{11}$ or $\frac{3}{8}$.

III. NUMERICAL RESULTS

A. Energy spectra

The numerical results carried out for $N \le 14$ (two sample spectra are displayed in Fig. 1) showed¹² a sequence of nondegenerate (i.e., at the total angular momentum L=0) ground states at $2l=N/\nu-\gamma$ with $\nu=\frac{1}{3}$ and $\gamma=7$. The significant and well-behaved (as a function of N) excitation gap along this sequence strongly suggests that it represents the infinite $\nu_e = \frac{4}{11}$ FQH state observed in experiment.¹ The value $\gamma \neq 3$ precludes Laughlin correlations among QE's in this state (earlier ruled out indirectly, based on the form of QE-QE pseudopotential⁹), i.e., the idea that the $\nu_e = \frac{4}{11}$ state is simply a Haldane hierarchy state of Laughlin-correlated CF's. While the exact correlations in this (known only numerically for a few consecutive N) ground state have not yet been defined, their vanishing degeneracy (L=0) implies that they describe a QE liquid, rather than a broken-symmetry state (such as

FIG. 1. Excitation energy spectra (energy *E* as a function of total angular momentum *L*; E_0 is the ground-state energy) of *N* interacting QE's on a sphere, at the values of CF LL degeneracy $\Gamma=2l$ +1 corresponding to the incompressible ground states at the QE filling factors $\nu=1/3$ (a) and 1/2 (b).

liquid-crystal nematic states proposed²³ in the context of the FQHE at different values of ν).

Another sequence was anticipated at $2l=2N-\gamma$ to represent the infinite $\nu_e = \frac{3}{8}$ FQH state. However, the only ground state with a significant gap and remaining outside of the ν $=\frac{1}{3}$ sequence (or its particle-hole symmetric $\nu = \frac{2}{3}$ sequence at $2l=\frac{3}{2}N+2$) occurs¹² for N=14 and 2l=25 (and it also has L=0). These values of (N,2l) happen to belong to a 2l=2N-3 series representing the Moore-Read (Pfaffian) paired state, but the overlap between the two turns out nearly zero.^{12,22} Moreover, the ground states for the two neighboring even (as appropriate for a hypothetically paired state) values of N=12 and 16 (and 2l=21 and 29) have L>0 and no gap, the value of 2l=17 for N=10 coincides with the ν $=\frac{2}{3}$ sequence (so that only for N > 8 can the filling factor ν be meaningfully assigned), and we are unable to compute the spectra for $N \ge 18$. Nevertheless, despite little evidence available from numerical diagonalization, the ground state for N=14 and 2l=25 (and its particle-hole counterpart at N =12 and the same 2*l*=25) may possibly represent the $\nu_e = \frac{3}{8}$ FQH state (i.e., have similar correlations causing incompressibility).

B. Pair-distribution functions

The QE-QE pair-distribution functions g(r) have been calculated for the incompressible many-QE ground states as expectation values of the appropriate pair interaction,

$$g(r) = (2/N)^2 \langle \delta(R\theta - r) \rangle. \tag{1}$$

Here, θ is the relative angle on a sphere, so that *r* measures interparticle distance along the surface (rather than chord distance). More accurately, *r* is the distance between the centers of extended QE's (note that in the calculation of many-QE wave functions, the system of QE's is mapped onto the lowest LL of point charges interacting through an effective pseudopotential). The prefactor in Eq. (1) ensures proper normalization, $g(\infty) \rightarrow 1$. Denoting the infinitesimal area by $dS=2\pi R^2 d(\cos \theta)$ or (in magnetic units) by $ds=dS/2\pi\lambda^2$, we get an equivalent normalization condition

FIG. 2. QE-QE pair-distribution functions g(r) of the incompressible ground states at different QE filling factors ν . (a) Curves for $\nu = 1/3$ and different QE numbers N; (b) curves for QE's at different ν (thick lines) compared to some known incompressible states of electrons.

$$\int [1 - g(r)]ds = \frac{2l}{N} \to \nu^{-1}$$
⁽²⁾

in large systems. Since $ds = l \ d(\cos \theta)$, a "local filling factor" can also be defined as $\nu(r) = dN/ds = (N/2l)g(r)$, and it satisfies $\nu(\infty) = \nu$ and $\int \nu(r)ds = N-1$.

The results for the $\nu = \frac{1}{3}$ sequence at 2l=3N-7 are shown in Fig. 2(a). Similarity of all four curves is evident, indicating a size-independent form of correlations (hence, describing an infinite system), with a well-developed shoulder around $r \approx 2.5\lambda$. Similar shoulders occur in g(r) of all incompressible ground states at $\nu = \frac{2}{3}$ or $\frac{1}{2}$ (the $\nu = \frac{2}{3}$ sequence at $2l = \frac{3}{2}N+2$ is obtained from 2l=3N-7 by replacing N with $\Gamma-N$, while at $\nu = \frac{1}{2}$ there are two particle-hole conjugate sequences at 2l=2N-3 and 2N+1, denoted by $\nu = \frac{1}{2}^{\pm}$). The four curves representative of $\nu = \frac{1}{3}, \frac{2}{3}$, and $\frac{1}{2}^{\pm}$ are shown in Fig. 2(b). They are all clearly different from those marked with thin lines and describing correlations known for other incompressible FQH states (full LL, Laughlin $\nu = \frac{1}{3}$ state, or Moore-Read half-filled state). This is a direct indication of the different nature of QE-QE correlations responsible for the FQHE at $\nu_e = \frac{4}{11}$ and $\frac{3}{8}$.

Let us stress that although the QE-QE interactions are not known with great accuracy, the correlation functions in Fig. 2 are rather insensitive to the details of $V(\mathcal{R})$, as long as the dominant repulsion occurs at $\mathcal{R}=3$ (which seems to be universally true in the systems studied experimentally). This insensitivity is reminiscent of the Laughlin wave function, which also very accurately describes the actual $\nu = \frac{1}{3}$ ground state for a wide class of electron-electron pseudopotentials. However, while the avoidance of $\mathcal{R}=1$ by the electrons in the lowest LL can be elegantly described by flux attachment in the CF picture, no similar model has been proposed yet for the avoidance of $\mathcal{R}=3$ by the QE's. Therefore, knowing the g(r) curves of QE's and understanding their correlations, we still cannot write their wave functions.

C. Gaussian deconvolution

The curves of Fig. 2(b) can be accurately deconvoluted using Gaussians, $G(r/\lambda)=A \exp[-(r/\lambda-\delta)^2/2\sigma^2]$. This is shown in Fig. 3 where the symbols mark the exact data of Fig. 2(b) and the lines give the (nearly perfect) fits using three Gaussians, $g=1-G_0-G_1-G_2$ (sufficient for $r \le 6\lambda$). The fitted values of $[A_i, \delta_i, \sigma_i]$ for all four curves are listed in Table I. Note that $A_0=1$, $\delta_0=0$, and $\delta_1=3$ for all curves (the last value being least obvious, but probably resulting from the avoidance of the same $\mathcal{R}_3=3$ by the QE's at all values of ν). The values of the G_2 parameters are not very meaningful when the next term in the approximation (G_3) is neglected. The clearest difference between the four curves is in A_1 .

D. Short- and long-range deconvolution

It appears more physically meaningful to decompose g(r) into $g_0=1-\exp(-r^2/2\lambda^2)$, describing a full lowest LL,²⁴ and a (properly normalized) "remainder" g_{diff} ,

$$g(r) = \alpha g_0(r) + (1 - \alpha)g_{\text{diff}}(r).$$
 (3)

For each g(r), the parameter α is calculated as the limit of g/g_0 at $r \rightarrow 0$. It is clear from Fig. 4(a) that g(r) is accurately approximated by $\alpha g_0(r)$ within a finite area or a radius $\sim \lambda$ for all four ground states of Fig. 2(b). The numerical values of α are 0.772, 0.804, 0.856, and 0.899 for $\nu = \frac{1}{3}, \frac{1}{2}^{-}, \frac{1}{2}^{+}$, and $\frac{2}{3}$, respectively. Evidently, α is size dependent (e.g., the pair of values for $\nu = \frac{1}{2}^{\pm}$ must converge to the same thermodynamic limit).

The four curves $g_{\text{diff}}(r)$ calculated from Eq. (3) are plotted in Fig. 4(b). Symbols and lines mark the exact data and the three-Gaussian fits of Table I, respectively. We note the following. (i) For the pairs of particle-hole conjugate states (N=12,18 at 2l=29 and N=12,14 at 2l=25), the $g_{\text{diff}}(r)$ curves are *identical*. (ii) The curves obtained for $\nu=\frac{1}{3}$ and $\frac{1}{2}$ are very similar (and possibly identical in large systems); they all vanish at short range and have a minimum at $r \approx 3\lambda$ and a maximum at $r\approx 5.5\lambda$.

TABLE I. Gaussian deconvolution parameters for QE-QE pair-distribution functions shown in Figs. 2(b) and 3.

ν	A_0	δ_0	σ_0	A_1	δ_1	σ_1	A_2	δ_2	σ_2
1/3	1	0	1.0989	0.3450	3	0.9412	-0.1199	5.6905	1.0298
2/3	1	0	1.0419	0.1535	3	0.9361	-0.0530	5.6655	0.9987
$1/2^{+}$	1	0	1.0626	0.2034	3	0.9475	-0.0741	5.4041	1.1011
1/2-	1	0	1.0896	0.2755	3	0.9431	-0.1005	5.4156	1.0903

FIG. 3. Gaussian deconvolution of the QE-QE pair distribution functions g(r): dots, data of Fig. 2(b); lines, fits.

IV. DISCUSSION

A. QE clustering

Some information about the form of QE-QE correlations can be easily deduced from the form of interaction pseudopotential $V(\mathcal{R})$, which is simply the interaction Hamiltonian defined only for those pair states allowed in the lowest LL. In low-energy many-body states the particles generally tend to avoid pair eigenstates with high interaction energy, which means minimization of the corresponding Haldane pair amplitude \mathcal{G} . If the repulsion V decreases sufficiently quickly¹⁸ as a function of \mathcal{R} (the exact criterion being¹⁹ that V decreases sublinearly as a function of $\sqrt{\langle r^2 \rangle}$), the smallest value of $\mathcal{R}=1$ is avoided. This Laughlin type of correlation is elegantly described by attachment of 2p=2 fluxes to each particle in the CF transformation. In a Laughlin-correlated state, each particle avoids being close to any other particle (as much as possible at a given finite ν).

When short-range repulsion weakens (*V* at $\mathcal{R}=1$ decreases compared to *V* at $\mathcal{R} \ge 3$), Laughlin correlations disappear and can be replaced by pairing or formation of larger clusters. Pairs^{15,16} or clustering¹² were suggested by several authors for the QE's. This idea was justified by the observation that the QE-QE pseudopotential nearly vanishes at $\mathcal{R} = 1$ and is strongly repulsive at $\mathcal{R}=3$, causing an increase of $\mathcal{G}(1)$ and a simultaneous decrease of $\mathcal{G}(3)$ compared to the Laughlin-correlated state.¹²

The assumption that QE's form clusters naturally explains the shoulder in g(r), and allows one to interpret g_0 and g_{diff}

FIG. 4. (a) Ratio of QE-QE pair-distribution functions g(r) to $g_0(r)$ of a full lowest LL for different incompressible QE ground states; (b) the "remainder" $g_{\text{diff}}(r)$ defined by Eq. (3).

TABLE II. Parameters β_K of the short-range approximation $\nu(r) \sim \beta g_0(r)$ obtained for independent clusters of size *K*.

21	eta_2	β_3	eta_4	β_5	eta_6
25	0.2768	0.4196	0.5110	0.5765	0.6269
29	0.2730	0.4134	0.5029	0.5669	0.6159
60	0.2609	0.3938	0.4778	0.5372	0.5821
∞	0.2500	0.3763	0.4555	0.5110	0.5527

as the intra- and intercluster QE-QE correlations, i.e. the short- and long-range contributions to g, corresponding to the QE pairs belonging to the same or different clusters, respectively. The vanishing of $g_{diff}(r)$ at short range reflects isolation of QE's belonging to different clusters. The reason why g_{diff} is not positive definite is that intracluster correlations are accurately described by g_0 only within a certain radius. In other words, the actual intercluster contribution to g is not *exactly* given by g_{diff} defined by Eq. (3). Nevertheless, the following two conclusions remain valid: (i) the intra- and intercluster QE-QE correlations are similar at $\nu = \frac{1}{3}, \frac{1}{2}, \text{ and } \frac{2}{3}$, with the respective correlation-hole radii $\varrho_0 \sim \lambda$ and $\varrho_1 \sim 4\lambda$; and (ii) the cluster size K depends on ν .

A similar form of g(r) was found²³ for broken-symmetry Laughlin states, in which the shoulder results from angular averaging of an anisotropic function $g(r, \phi) \sim r^2$ or r^6 , depending on ϕ . However, the present case of QE's is different, because g(r) is isotropic (wave functions have L=0) and the shoulders result from *radial* averaging of inter- and intracluster correlations (beginning as $\sim r^2$ and a higher power of rat short range, respectively).

B. Average cluster size

In a clustered state, the (average) cluster size *K* is connected to α , and the form of g_{diff} depends on correlations between the clusters. The values of *K* at $\nu = \frac{1}{3}$ or $\frac{1}{2}$ can be estimated by comparison of the actual parameters α with those predicted for the hypothetical states of *N* particles arranged into *N/K independent K*-clusters. By independence of the clusters we mean that intercluster correlations do not affect the local filling factor $\nu(r)$ at short range. For a single cluster, which on a sphere is the *K*-particle state with the maximum total angular momentum $L=Kl-\frac{1}{2}K(K-1)$, the $\nu_K(r)$ depends on the surface curvature and thus (through $R/\lambda = \sqrt{l}$) on 2*l*.

We have calculated the prefactors β_K of the short-range approximation $\nu_K(r) \approx \beta_K g_0(r)$ for different values of *K* and 2*l* and listed some in Table II [note that $\nu_2(r)$ is known exactly]. These coefficients are to be compared with β = $(N/2l)\alpha$ of the incompressible *N*-QE states obtained from diagonalization. Of course, this approach is somewhat questionable as one generally cannot deduce the precise cluster size from the short-range behavior of g(r) for the following reasons: (i) *K* is not a well-defined (conserved) quantum number; (ii) $\nu = \frac{1}{3}$ states occur for all *N* (not only those divisible by 2 or 3) which means that all clusters cannot have the same *K*; (iii) the parameters α and β are size dependent and

FIG. 5. (a) Pair-distribution functions g(r) of lowest L=0 states of finite systems corresponding to $\nu=1/3$ and 1/2, for pseudopotentials of electrons in the first and second LL, and of CF's in the second LL. (b) The total g(r) and "remainder" $g_{diff}(r)$ curves of the Moore-Read $\nu=1/2$ state; circles mark a fitting linear combination of the curves for Laughlin states.

their extrapolation to large systems is not very reliable based on the limited number of *N*-QE systems we are able to diagonalize; (iv) intercluster exchange of QE's makes the "independent-cluster" picture only an approximation.

Fortunately, we can use the Moore-Read states (known to be paired^{7,22}) as a test. Our calculation (for details see Sec. IV C) for N=14 and 2l=25 gives $\beta_{MR}=0.336$, somewhat larger than β_2 . Hence, we shall assume that β_K in general underestimates the actual value of β in a many-body *K*-clustered state.

For the QE's, we got $\beta = 0.319 \approx \beta_{MR}$ for N=12 and $2l = 29 \ (\nu = \frac{1}{3})$, and $\beta = 0.479$ for N=14 and $2l=25 \ (\nu = \frac{1}{2}^+$; directly comparable with the Moore-Read state). With appropriate reservation, we can hence risk a hypothesis that QE's (on the average) form pairs at $\nu = \frac{1}{3}$ and triplets at $\nu = \frac{1}{2}$ (possible triplet formation might turn out especially intriguing in the context of parafermion statistics²⁵).

C. Comparison with Moore-Read state

The evolution of g(r) when going from the lowest electron LL to the second CF LL (i.e., from LL_0 to CF-LL₁) is clear when using a model pseudopotential $V_{\zeta}(\mathcal{R}) = \zeta \, \delta_{\mathcal{R},1}$ $+(1-\zeta)\delta_{\mathcal{R},3}$. For $\zeta \approx 0$ or 1, the correlations (avoidance of $\mathcal{R}=1$ or 3) are insensitive to ζ , and both Laughlin and QE-QE correlations are accurately reproduced by V_0 and V_1 , respectively. Modeling correlations among electrons in LL₁ (the second LL) is more difficult, because they are very sensitive to the exact form of $V(\mathcal{R})$ at the corresponding $\zeta \sim \frac{1}{2}$. As a result, the *N*-electron Coulomb eigenstates in LL_1 are more susceptible to finite-size errors than in LL_0 or CF-LL₁. In large systems, a good trial state is only known at $\nu = \frac{1}{2}$ (Moore-Read state), and much less is established about the correlations at $\nu = \frac{1}{3}$. Still, the g(r) curves for electrons in LL₁ must certainly fall between the two extreme curves for $\zeta = 0$ and 1 (and differ from both of them). This is shown in Fig. 5(a) for both $\nu = \frac{1}{3}$ and $\frac{1}{2}$.

The exact Moore-Read wave functions were calculated on a sphere for $N \le 14$ and 2l=2N-3=25 by diagonalizing a short-range three-body repulsion.²² In Fig. 5(a) we only plotted g(r) for N=14 because the N=12 curve is too close to be easily distinguished. The values of $\alpha=0.602$ and 0.600 for N=12 and 14. The $g_{diff}(r)$, also shown, is positive definite, very different from the QE curves in Fig. 4(b), and rather close to $g_1(r)$, where g_p describes a Laughlin $\nu=(2p+1)^{-1}$ state. Assuming $\alpha_{MR}=\frac{3}{5}$ and expanding g_{diff} into g_1 and g_2 in accordance with Eq. (2) one obtains an approximate formula

$$g_{\rm MR}(r) \approx \frac{3}{5}g_0(r) + \frac{3}{10}g_1(r) + \frac{1}{10}g_2(r),$$
 (4)

marked with the circles in Fig. 4(b), that appears to be quite accurate (the largest finite-size error is in g_2 calculated for only N=8, while g_1 is for N=12).

The fact that g_{diff} is positive and rather featureless (similar to g_p) for the Moore-Read wave function is in contrast with the result for QE's. This difference may indicate that the QE clusters cannot be understood literally as Moore-Read pairs. Indeed, even the lack of correlation between the occurrence of L=0 ground states (or size of the excitation gap) and the divisibility of N by K=2 or 3 precludes such a simple picture. The fact that $g_{\text{diff}}(r \sim 3\lambda) < 0$ could mean that the average relative (with respect to center of mass) angular momentum \mathcal{R}_K of the QE clusters is much larger than \mathcal{R}_K^{\min} $=\frac{1}{2}K(K-1)$. Certainly, \mathcal{R}_{K} is only conserved for an isolated cluster, but it is possible that the QE clusters are more relaxed due to cluster-cluster interaction than the Moore-Read pairs are. This would make g_0 underestimate the radius of the actual intracluster QE-QE correlation hole, and explain the negative sign of g_{diff} .

V. CONCLUSION

From exact numerical diagonalization on Haldane sphere, we obtained the energy spectra and wave functions of up to N=14 interacting Laughlin QE's (CF's in the second LL). We identified the series of finite-size liquid ground states with a gap, which extrapolate to the experimentally observed incompressible FQH states at $\nu_e = \frac{4}{11}, \frac{3}{8}$, and $\frac{5}{13}$. In these states, we calculated QE-QE pair-distribution functions g(r), and showed that they increase as $\sim r^2$ at short range and have a pronounced shoulder at a medium range. This behavior supports the idea of QE cluster formation, suggested earlier from the analysis of the QE-QE interaction pseudopotential. The g(r) is decomposed into short- and long-range contributions, interpreted as correlations between the QE's from the same or different clusters. The intracluster contribution to g(r) is that of a full LL, and the remaining term identified with the intercluster QE-QE correlations appears to be the same in all three $\nu = \frac{1}{3}, \frac{1}{2}$, and $\frac{2}{3}$ states. The (average) cluster size on the other hand does depend on ν , and we present arguments which suggest that the QE's form pairs at $\nu = \frac{1}{3}$ and triplets at $\nu = \frac{1}{2}$.

The qualitative difference between the g(r) curves obtained here for correlated CF's and those known for the Laughlin and Moore-Read liquids of electrons is another indication that the origin of incompressibility at $\nu_e = \frac{4}{11}, \frac{3}{8}$, and $\frac{5}{13}$ is different. Of other hypotheses invoked in literature and

mentioned here in the Introduction, the broken-symmetry states cannot be excluded by our calculation in spherical geometry. However, we anticipate that the QE's form a liquid (studied in this paper) also in experimental samples, because of the whole series of isotropic ground states with a gap occurring in finite systems of different size.

ACKNOWLEDGMENTS

The authors thank W. Pan, W. Bardyszewski, and L. Bryja for helpful discussions. This work was supported by Grant No. DE-FG 02-97ER45657 of the Materials Science Program, Basic Energy Sciences of the U.S. Dept. of Energy, and Grant No. 2P03B02424 of the Polish KBN.

- ¹W. Pan, H. L. Störmer, D. C. Tsui, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. Lett. **90**, 016801 (2003); the conjugate ν =7/11 state was first observed by V. J. Goldman and M. Shayegan [Surf. Sci. **229**, 10 (1990)].
- ²D. C. Tsui, H. L. Störmer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).
- ³R. B. Laughlin, Phys. Rev. Lett. **50**, 1395 (1983).
- ⁴J. K. Jain, Phys. Rev. Lett. **63**, 199 (1989).
- ⁵A. Lopez and E. Fradkin, Phys. Rev. B 44, 5246 (1991);B. I. Halperin, P. A. Lee, and N. Read, *ibid.* 47, 7312 (1993).
- ⁶F. D. M. Haldane, Phys. Rev. Lett. **51**, 605 (1983).
- ⁷G. Moore and N. Read, Nucl. Phys. B **360**, 362 (1991).
- ⁸P. Sitko, S. N. Yi, K.-S. Yi, and J. J. Quinn, Phys. Rev. Lett. **76**, 3396 (1996).
- ⁹A. Wójs and J. J. Quinn, Phys. Rev. B 61, 2846 (2000).
- ¹⁰S.-Y. Lee, V. W. Scarola, and J. K. Jain, Phys. Rev. Lett. 87, 256803 (2001); Phys. Rev. B 66, 085336 (2002).
- ¹¹S. S. Mandal and J. K. Jain, Phys. Rev. B 66, 155302 (2002).
- ¹²A. Wójs, K.-S. Yi, and J. J. Quinn, Phys. Rev. B 69, 205322 (2004).
- ¹³C.-C. Chang and J. K. Jain, Phys. Rev. Lett. **92**, 196806 (2004).
- ¹⁴M. R. Peterson and J. K. Jain, Phys. Rev. Lett. **93**, 046402 (2004); J. H. Smet, Nature (London) **422**, 391 (2003).

- ¹⁵M. Flohr and K. Osterloh, Phys. Rev. B **67**, 235316 (2003).
- ¹⁶A. Wójs, K.-S. Yi, and J. J. Quinn, Acta Phys. Pol. A **103**, 517 (2003); J. J. Quinn, A. Wójs, and K.-S. Yi, Phys. Lett. A **318**, 152 (2003).
- ¹⁷N. Shibata and D. Yoshioka, J. Phys. Soc. Jpn. **72**, 664 (2003); **73**, 1 (2004); **73**, 2169 (2004).
- ¹⁸F. D. M. Haldane and E. H. Rezayi, Phys. Rev. Lett. **54**, 237 (1985).
- ¹⁹A. Wójs and J. J. Quinn, Philos. Mag. B **80**, 1405 (2000); Acta Phys. Pol. A **96**, 593 (1999); J. J. Quinn and A. Wójs, J. Phys.: Condens. Matter **12**, R265 (2000).
- ²⁰M. O. Goerbig, P. Lederer, and C. M. Smith, Phys. Rev. Lett. **93**, 216802 (2004); Phys. Rev. B **69**, 155324 (2004).
- ²¹F. D. M. Haldane, in *The Quantum Hall Effect*, edited by R. E. Prange and S. M. Girvin (Springer-Verlag, New York, 1987), Chap. 8, pp. 303-352.
- ²²A. Wójs and J. J. Quinn, Phys. Rev. B **71**, 045324 (2005).
- ²³ K. Musaelian and R. Joynt, J. Phys.: Condens. Matter 8, L105 (1996); O. Ciftja and C. Wexler, Phys. Rev. B 65, 045306 (2002); 65, 205307 (2002).
- ²⁴B. Jancovici, Phys. Rev. Lett. 46, 386 (1981).
- ²⁵N. Read and E. Rezayi, Phys. Rev. B **59**, 8084 (1999).