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Pair-distribution functions g(r) of the Laughlin quasielectrons are calcu-

lated in the fractional quantum Hall states at electron filling factors ν = 4/11

and 3/8. They all have a shoulder at a medium range, supporting the idea of

quasielectron cluster formation. The intra- and inter-cluster contributions

to g(r) are identified. The average cluster sizes are estimated; pairs and

triplets of quasielectrons are suggested at ν = 4/11 and 3/8, respectively.

PACS numbers: 71.10.Pm, 73.43.–f

1. Introduction

Pan et al. [1] have recently observed fractional quantum Hall effect (FQHE)
in a spin-polarized two-dimensional electron gas (2DEG) at electron filling factors
ν = 4

11 , 3
8 , and 5

13 . These values correspond to νQE = 1
3 , 1

2 , and 2
3 of the Laughlin

quasielectrons (QE’s), respectively. In the composite fermion (CF) model [2], each
QE corresponds to a CF in the second Landau level (LL). Pan’s discovery implies
that the QE’s or CF’s can also form incompressible states when partially filling
a shell. This could not be predicted by a simple analogy with known fractional
electron liquids (Laughlin [3], Jain [2], or Moore–Read [4] states), because of a
different form of the QE–QE interaction [5].

From exact numerical diagonalization on a Haldane sphere [6], we have ob-
tained the energy spectra and wave functions of up to 14 interacting QE’s. We
have identified the series of finite-size liquid ground states with a gap, which ex-
trapolate to the experimentally observed incompressible FQH states. In these
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states, we have calculated QE–QE pair-distribution functions g(r), and showed
that they increase as ∼ r2 at short range and have a pronounced shoulder at a
medium range. This behavior supports the idea of QE cluster formation, suggested
earlier [7] from the analysis of QE–QE interaction pseudopotential. The g(r) is
decomposed into short- and long-range contributions, interpreted as correlations
between the QE’s from the same or different clusters. The inter-cluster QE–QE
correlations appear to be the same in all three νQE = 1

3 , 1
2 , and 2

3 states. The
cluster size on the other hand does depend on ν, and we argue that the QE’s form
pairs at νQE = 1

3 and triplets at νQE = 1
2 .

2. Numerical calculations

To investigate the system we use Haldane’s idea [6] of putting N particles of
charge q on a spherical surface of radius R. Dirac monopole of strength 2Q placed
in the center of the sphere is the source of magnetic field B, and 2Qφ0 = 4πR2B.
Here φ0 = hc/q is the elementary flux. Using the definition of the magnetic length,
λ =

√
h̄c/qB, this can be written as Qλ2 = R2. In the following, λ denotes the

QE magnetic length corresponding to the fractional charge q = −e/3.
Each particle on the lowest LL has angular momentum l = Q and its

z-component m can take on values from −l to l so degeneracy of the shell is
equal to Γ = 2l + 1. The single-particle configurations |m1,m2, . . . , mN 〉 can be
chosen as a basis of the Hilbert space. Diagonalizing the matrix of interaction
Hamiltonian we obtain energy as a function of total angular momentum L. Since
number of electrons required to represent FQHE at ν = 3

8 , 4
11 , and 5

13 is too large
to be diagonalized exactly, we neglect quasiparticles on the lowest CF-LL and take
into account only CF’s from the second, partially filled CF-LL. Interaction between
these particles is given by QE–QE pseudopotential V (R), where the relative pair
angular momentum R = 2l − L increases with average pair separation

√
〈r2〉.

Fig. 1. Excitation energy spectra (E0 is the ground state energy) of N interacting

QE’s on a sphere, at the values of CF-LL degeneracy Γ = 2l + 1 corresponding to the

incompressible ground states at the QE filling factors ν=1
3

(a) and 1
2

(b).
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Showing small value at R = 1 and strong maximum at R = 3 [5, 8, 9], this pseu-
dopotential differs from a superlinearly decreasing one, describing the Coulomb
interaction among electrons. This difference precludes the Laughlin correlations
among QE’s.

Incompressible states are represented by these combinations of particles num-
ber N and shell degeneracy Γ for which ground state is significantly separated from
excited states. For the Laughlin liquid it occurs for 2l = 3N − 3. In contrast, for
QE such situation takes place for sequence 2l = 3N − 7 (Fig. 1) representing
νQE = 1

3 ≈ N/Γ and for its particle–hole conjugates series (i.e. sequences with N

replaced by Γ −N) 2l = 3
2N + 2 (ν = 2

3 ) [7].
Another sequence was anticipated at 2l = 2N + 1 and 2l = 2N − 3 to repre-

sent the infinite ν = 3
8 FQH state. Unfortunately, we are unable to compute the

spectra for N ≥ 18 and it seems that in this case incompressible states occur only
for odd values of 1

2N . Hence we have only two configurations for each sequence.
Nevertheless, we expect that the ground state for N = 14 and 2l = 25 (and its
particle–hole counterpart at N = 12 and the same 2l = 25) may possibly represent
the ν = 3

8 FQH state (i.e., have similar correlations causing incompressibility).

3. Pair-distribution function

Pair-distribution functions g(r) were calculated as expectation value of oper-
ator ĝ(r) = (2/N)2δ(Rθ−r) for previously found wave function of non-degenerate
ground state of QE system. Here, θ is the relative angle on a sphere and r mea-
sures interparticle distance along the sphere surface. Denoting infinitesimal area
by dS = 2πR2d(cos θ) or (in magnetic units) by ds = dS/2πλ2, we get a normal-
ization condition in large systems

∫
[1− g(r)]ds =

2l

N
→ ν−1. (1)

Since ds = ld(cos θ), a “local filling factor” can also be defined as ν(r) = dN/ds =
(N/2l) g(r), and it satisfies ν(∞) = ν and

∫
ν(r)ds = N − 1.

For a full lowest LL (νe = 1) the pair-distribution function is [10]:

g0 = 1− exp(−r2/2λ2). (2)

For the sequence 2l = 3N − 7, representing νQE = 1
3 state, the behavior of g(r)

looks like in Fig. 1a. For small r it is similar to g0, i.e., g(r) ∝ r2, but the curve
bends around r = 2.5λ. The shoulder appears for all calculated N , and evidently
it is not an effect of a finite number of particles. Similar shoulders occur also in
g(r) for νQE = 2

3 , i.e. ν = 5
13 state. In Fig. 2b we have compared this curve

with pair-correlation functions obtained for other incompressible FQH states (full
LL, Laughlin ν = 1

3 state, or Moore–Read half-filled state). Qualitative difference
between these functions indicates that correlations responsible for the FQHE at
new ν = 4

11 and 3
8 fillings states cannot be the same.
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Fig. 2. QE–QE pair-distribution functions g(r) of the incompressible ground states

at different QE filling factors ν. (a) Curves for ν = 1
3

and different QE numbers N ;

inset — blowup of the plateau region; (b) curves for QE’s at different ν (thick lines)

compared to some known incompressible states of electrons; (c) the “remainder” gdiff(r)

defined by Eq. (3).

The shoulder in g(r) may result from different correlation between QE’s
close to each other and between distant ones, consistently with an idea of clusters
formation [7, 11, 12]. To find inter- and intra-cluster correlation we decompose
g(r) into g0 describing a full lowest LL and a (properly normalized) “remainder”
gdiff :

g(r) = αg0(r) + (1− α)gdiff(r). (3)

Parameter α is calculated as the limit of g/g0 at r → 0. The curves gdiff obtained
for νQE = 1

3 and 1
2 are very similar and for the pairs of particle–hole conjugate

states they are identical (Fig. 2c). The vanishing of gdiff(r) at short-range reflects
isolation of QE’s belonging to different clusters. Negative value around r = 3
indicates that intra-cluster correlations are accurately described by g0 only within
a certain radius.

Similar form of g(r) was found [13] for broken-symmetry Laughlin states,
in which the shoulder results from angular averaging of an anisotropic function
g(r, φ) ∼ r2 or r6, depending on φ. However, the present case of QE’s is different,
because g(r) is isotropic (nondegenerate ground state wave functions have L = 0)
and the shoulders result from radial averaging of inter- and intra-cluster correla-
tions (beginning as ∼ r2 and a higher power of r at short range, respectively).

4. Average cluster size

Let us assume that our system consists of independent clusters, each with K

particle. By independence of the clusters we mean that inter-cluster correlations
do not affect the local filling factor ν(r) at short range. Such system for small r

should have ν(r) similar to νK(r) of a single K-cluster. For that cluster, which
on a sphere is the K-particle state with the maximum total angular momentum



Pair-Distribution Functions of Laughlin Quasielectrons . . . 913

L = Kl − 1
2K(K − 1), we have calculated gK(r) and then by taking νK(r) =

νgK(r) ≈ βKg0(r) we found prefactor βK for different values of K and 2l. Some
results are listed in Table. Now we can compare these values βK with β = (N/2l)α
obtained for our investigated incompressible N -QE systems.

TABLE

Parameters βK of the short-range approxima-

tion ν(r) ∼ βg0(r) obtained for independent

clusters of size K.

2l β2 β3 β4 β5 β6

25 0.2768 0.4196 0.5110 0.5765 0.6269

29 0.2730 0.4134 0.5029 0.5669 0.6159

60 0.2609 0.3938 0.4778 0.5372 0.5821

∞ 0.2500 0.3763 0.4555 0.5110 0.5527

Obviously, assumption that our clusters are independent is only approxima-
tion. Apart from that, we know that νQE = 1

3 states occur for all N (not only
divisible by two or three) so different clusters could have different sizes K. Also,
parameters α and β are size-dependent and their extrapolation to large systems is
not very reliable based on limited number of N -QE systems we are able to diago-
nalize. Nevertheless, we can test the method using the Moore–Read state known
to be paired [4, 14]. Our calculation for N = 14 and 2l = 25 gives βMR = 0.336,
somewhat larger than β2. Hence, we shall assume that βK in general underesti-
mates the actual value of β in a many-body K-clustered state.

For the QE system at νQE = 1
3 (N = 12 and 2l = 29), we got β =

0.319 ≈ βMR, and β = 0.479 for νQE = 1
2

+ (N = 14 and 2l = 25). In the
light of these facts it seems probable that QE’s (on the average) form pairs at
νQE = 1

3 and triplets at νQE = 1
2 .

5. Conclusion

Pair-distribution functions of new FQH states differ significantly from these
known for electrons at ν = 1, 1

3 (Laughlin), or 1
2 (Moore–Read). For small r

they behave like g(r) for electrons occupying completely the lowest LL, and then
for r ≈ 2.5λ they have a shoulder. Our results support hypothesis that QE’s
form clusters. Short- and long-range contribution to g(r), describing correlations
between the QE’s from the same and different clusters, have been found. Both
correlations depend rather weakly on ν. We also estimated average size of the
clusters, which seem to form pairs at νQE = 1

3 and triplets at νQE = 1
2 .
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