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Signatures of non-Abelian statistics are sought in correlated liquids of composite fermions �CFs� responsible
for a “second generation” of fractional quantum Hall effect. The hierarchy stems from the zero-energy state of
a model CF interaction by means of a flux attachment procedure converting this uniquely correlated state of
“first-generation” CFs to a filled shell of second-generation CF�’s. Quasiholes of this state do not obey Abelian
statistics. The hierarchy is confirmed numerically, including known states at filling factors �e=4 /11 and 3/8
and a hypothetical state at �e=9 /25.
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The theory of Laughlin1 for fractional quantum Hall
�FQH� effect2 invokes the concept of incompressible quan-
tum liquids �IQLs� formed by two-dimensional �2D� elec-
trons in the lowest Landau level �LL�. The quasiparticle �QP�
excitations of the IQL carry fractional electric charge �e.g.,
q= �

1
3e at LL filling factor �e= 1

3 �. It was further realized3

that Laughlin QPs are neither fermions nor bosons but
“anyons” characterized by complex exchange phase ei� and
allowed exclusively in two dimensions.4 However, Chern-
Simons transformation �attachment of magnetic flux� enables
transmutation of statistics in two dimensions.5 This justifies
fermionic description of Laughlin QPs in the “composite fer-
mion” �CF� theory of Jain6 for the FQH effect.

Even more unusual statistics was later identified for quasi-
hole �QH� excitations of the Moore-Read state,7 arguably
responsible for FQH effect in a half-filled second LL.8 Since
the Hilbert space of Moore-Read QHs located at fixed posi-
tions is degenerate, their adiabatic exchange is represented
by a matrix �instead of merely a phase factor�. Since matrix
exchange operations do not generally commute, such statis-
tics is called “non-Abelian.”

Interest in non-Abelian states was revived by the idea of
fault-tolerant “topological quantum computation.”9 However,
the focus has been almost exclusively on the Moore-Read
model state,10 whose relevance for experimental FQH sys-
tems at �e= 5

2 is still debated.11,12

In this Rapid Communication we postulate a non-Abelian
electron liquid in the lowest LL. The hierarchy it generates
through a flux attachment transformation includes
confirmed13 FQH states at �e= 4

11 and 3
8 , which in the model

of Jain6 correspond to a partially filled second LL of CFs.
We consider N fermions of charge q confined to a

Haldane sphere of unit radius.14 The magnetic monopole of
strength 2Q �i.e., flux 4�B=2Q�q, where �q=hc /q is the
flux quantum� produces isotropic radial field B yielding mag-
netic length scale ����c /qB=Q−1/2 at the surface. The sth
LL �called LLs� is a multiplet of single-particle angular mo-
mentum �=Q+s. Interaction Hamiltonian in an isolated LL
is determined by Haldane pseudopotential V�R�, defined15 as
dependence of pair interaction energy on relative pair angu-
lar momentum �for K particles: R�K�−L, where L is total
angular momentum; for two identical fermions: R=1,3 , . . .�.

The Haldane sphere is a useful model for extended many-

body problems in a partially filled LL, assuming that corre-
lations are isotropic and have relatively short length. This is
usually true of FQH liquids. For example, correlations of the
Laughlin �e= 1

3 state are induced by the first coefficient of the
Coulomb pseudopotential in LL0. They mean avoidance of
the pair state at the minimum R=1 or, more formally, van-
ishing of Haldane pair amplitude G �Ref. 15� at R=1. In
terms of wave functions, each electron binds two additional
vortices, as described by the Laughlin-Jastrow prefactor
�i	j�zi−zj�2 �where z’s are complex coordinates�. This is el-
egantly captured by the theory of Jain6 in which correlated
electrons convert into nearly free CFs by binding some of the
external magnetic field B in the form of flux tubes. Flux 2�e
pointing opposite to B is attached to each electron, leaving a
reduced effective field BCF=B−2��e �� being 2D concen-
tration� seen by the CFs and corresponding to an increased
effective filling factor �CF= ��e

−1−2�−1.
The “second generation” of FQH states13 corresponds to a

partially filled CF-LL1 �second LL of CFs�. The strongest
states �e= 4

11 and 3
8 have �CF= 4

3 and 3
2 , i.e., �= 1

3 and 1
2 partial

fillings of CF-LL1. In contrast to “first-generation” Laughlin/
Jain states, their incompressibility depends on “residual” CF
interaction. Effective pseudopotential in CF-LL1 is domi-
nated by repulsion at R=3,16,17 making CF correlations at
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FIG. 1. �Color online� �a� Discrete correlation functions
�Haldane amplitude G versus relative pair angular momentum R�
for �= 1

5 nondegenerate zero-energy ground states of model interac-
tion V=
3 for N=9 and 10 particles on a Haldane sphere �2�=5N
−9� compared to Laughlin state �V=
1+
3, 2�=5N−5�. �b� and �c�
Analogous plots for �= 1

3 and 1
2 : nondegenerate ground states of V

=
3 at 2�=3N−7 and 2N−3 compared to Laughlin state �V=
1 and
2�=3N−3� and nondegenerate Coulomb ground state in LL1,
respectively.
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�= 1
3 or 1

2 distinct from electron correlations at the same fill-
ing �e of LL0 or LL1. The tendency of CFs to minimize the
pair amplitude G�3� instead of G�1� was demonstrated �by
direct calculation of pair and triplet amplitudes�18 to be
equivalent to a form of CF pairing.

For description of correlated CFs, an intuitive model
analogous to the CF description by Jain6 of Laughlin-
correlated electrons would be useful. Hence, we seek conver-
sion of an incompressible many-CF state at �= 1

3 or 1
2 to a

filled shell of �essentially� noninteracting hypothetical fermi-
ons to be called “second-generation CFs” or, shortly, CF�’s.

First, we will identify the maximum-density state with
G�3�=0, i.e., nondegenerate zero-energy �E=0� ground state
of a model pseudopotential V�R�=
3�R��
R,3. From exact
diagonalization of N�10 fermions interacting through V
=
3 in LLs with different � we find such E=L=0 series at
2�=5N−9, extrapolating to N /2�→�= 1

5 in large systems.
CF pairing in this state is evident from the amplitudes G�R�
plotted in Fig. 1. Moreover, comparison of correlation ener-
gies shows that it is favored over the Laughlin �= 1

5 state of
the CFs.

Conversion from 2�=5N−9 to 2��=N−1 of a filled CF�

shell is achieved by the following transformation:

2�� = 2� − 4�N − 2� . �1�

Attributing degeneracy of CF-LL1 to fictitious magnetic flux,
Eq. �1� can be interpreted as attachment of p=4 flux quanta
to each CF. Furthermore, the factor �N−2� suggests that each
CF� sees an average flux from all but one other CF, which
simply reflects the CF pairing.

Notably, the 2�=5N−9 series of ground states includes
both even and odd CF numbers, undermining the “CF pair-
ing” interpretation of Eq. �1�. However, no particular CF
correlation was assumed in the formulation of Eq. �1�, which

instead followed directly from the analysis of “numerical ex-
periments” �spectra of V=
3�.

Let us turn to elementary excitations. QHs of a nonde-
negerate E=0 ground state can be identified as degenerate
E=0 eigenstates in a system with added flux.19 We computed
the spectra of V=
3 for N�10 CFs at 2�=5N−9+K with
K�4. In Table I we list all E=0 multiplets L� for N=8 ��
counts the number of multiplets at each L�. For comparison,
in Table II we show the multiplets predicted from CF trans-
formation �1�, i.e., for K fermion QHs in a shell with ��

= 1
2 �N−1+K�.
Surprisingly, Table I shows no states at 2�=32 in contrast

to prediction of a single QH �K=1� in Table II. Evidently,
addition of a single flux quantum to the nondegenerate E
=0 ground state at 2�=5N−9 does not produce a degenerate
E=0 band that might be interpreted as LL degeneracy of a
QH. This is clearly different from other known �Laughlin,
Jain, or Moore-Read� IQLs.

At 2�32, Table I shows a growing number of E=0
states, in each case containing all multiplets from Table II.
The maximum total angular momentum of K QHs, �=K��

− 1
2K�K−1�= 1

2KN, always correctly predicts the maximum L
in Table I, supporting the CF picture of QH excitations.
Fermi statistics of QHs is conventional since the same sets of
L multiplets could result for K bosons with angular momen-
tum �B

� =��− 1
2 �K−1�= 1

2N. However, the occurrence of addi-
tional E=0 states beyond those predicted for K fermions/
bosons implies that the QHs considered here cannot be
described as Abelian �regardless of the choice of K and ���.
This argument was raised earlier19 for non-Abelian QHs of
other known paired IQLs. In those states, knowledge of the
many-body wave function allowed expression of total di-
mensions of the Hilbert spaces, D=���2L+1�, by direct ac-
count for �non-Abelian� exchanges of the QHs. Here, the
values of D are different, and �not knowing an explicit for-
mula� we list them in Table III along with Da= � N+K

N � for K
Abelian QHs. For Moore-Read state, D /Da→2K/2−1 in large

TABLE I. Total angular momentum �L� multiplets with zero
amplitude G�3� at the relative pair state R=3 �i.e., the exact zero-
energy states of the model pseudopotential V=
3�R�� for N=8 par-
ticles with different shell angular momenta �.

2� L

32

33 02 22 4 6 8

34 03 1 24 33 45 52 64 72 82 9 10 12

35
08 12 213 38 418 510 617 79 813 96 108 113 124 13

142 16

TABLE II. Angular momentum multiplets of K�4 Abelian
quasiholes in a shell of angular momentum �� �to be compared with
data from Table I for N=8 particles and different �’s�.

2� K 2�� L

32 1 8 4

33 2 9 0 2 4 6 8

34 3 10 0 2 3 42 5 62 7 8 9 10 12

35 4 11 02 23 3 44 52 64 72 84 92 103 11 122 13 14 16

TABLE III. Dimensions D of zero-energy subspaces for N�9 fermions with interaction V=
3�R�, compared with dimensions Da of the
corresponding spaces of K Abelian quasiholes.

K 2 3 4

N 6 7 8 9 6 7 8 9 6 7 8 9

D 29 39 51 65 105 182 295 452 376 790 1553 2878

Da 28 36 45 55 84 120 165 220 210 330 495 715
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systems.19 Here, this ratio is higher, although finite-size data
in Table III are insufficient for extrapolation.

Dependence of multiplicities � on system size appears
simpler when they are considered as a function of R�

�K��−L �relative angular momentum of K QHs� instead of
L. Actually, to make Table IV more compact we chose �
−L=R�− 1

2K�K−1� instead of R� itself. Clearly, multiplici-
ties � become size independent at larger N, and the N=�
limits ��K ,R�� have already been reached for N�9 at those
few smallest R�’s marked with boldface.

Comparison with multiplicities �a�K ,R�� predicted for K
Abelian QHs is made in Table V. The differences �−�a were
calculated for N=9, but for the shown small values of �
−L they correctly describe an infinite �planar� system. Simi-
lar to state counts for fixed QH positions,19 �−�a gives the
number of additional states due to non-Abelian QH ex-
change. Remarkably, the values in Table V differ from
those19 of Moore-Read state �e.g., �−�a=0 for K=2, and
�−�a=0,0 ,1 ,0 ,1 ,1 , . . . for K=4 and �−L=0,1 ,2 , . . ., re-
spectively�.

Let us summarize discussion of the E=0 ground state of
V=
3�R� at �= 1

5 : �i� the fact that the largest angular momen-
tum � predicted from CF transformation �1� agrees with the
largest L of the E=0 states for nearly �see below� every
combination of N and 2��5N−9 supports this transforma-
tion and the QH picture of the E=0 subspace. �ii� The �un-
explained� exception is the lack of E=0 states at 2�=5N
−8 in the CF picture corresponding to a single QH at L
= 1

2N. �iii� The fact that DDa for K�2 is a sign of non-

Abelian statistics of the QHs. �iv� The dependences of �
−�a on R� for different numbers K are an important charac-
teristic of the non-Abelian QHs; here, they allow for distinc-
tion from the statistics of Moore-Read QHs.

Let us return to the �= 1
3 state of CFs. On a sphere, it is

represented by a series of L=0 ground states at 2�=3N−7
�distinct from 3N−3 of the Laughlin state of individual fer-
mions and from 3N−5 of the hypothetical Laughlin-
correlated states of R=1 fermion pairs�.18

Transformation �1� can be naturally extended to

2�� = 	2� − p�N − 2�	 , �2�

with an arbitrary number p of flux quanta attached to each
CF. In contrast to the original CF picture of Jain,6 odd values
of p must also be admitted due to pairing �path of a given
particle can only encircle a whole other pair�. Let us consider
an arbitrary number 	n	 of completely filled CF� shells, with
the effective magnetic field pointing either in the same or in
the opposite direction to the fictitious external field giving
rise to the degeneracy of CF-LL1. The latter case, corre-
sponding to 2�	 p�N−2�, will be conveniently distinguished
by a negative sign of n.

The filling of CF� shells yields a family of CF states at

2� = �p + n−1�N − �2p + n� , �3�

extrapolating to �� lim�N /2��= �p+n−1�−1 on a plane �some
fractions � result for two combinations of p and n�. By con-
struction, Eq. �3� includes the �p ,n�= �4,1� zero-energy state
at 2�=5N−9. Remarkably, the �= 1

3 state at 2�=3N−7 also

TABLE IV. Numbers � of zero-energy angular momentum multiplets L in the spectrum of model interaction V=
3�R� for different
particle numbers N�9 and shell angular momenta �= 1

2 �5N−9+K�; �= 1
2KN �see text�.

K N

� for �−L

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 6 1 1 1 2

7 1 1 1 2

8 1 1 1 2 2

9 1 1 1 2 2

3 6 1 1 1 2 1 3 2

7 1 1 1 2 2 3 2 3 2 1

8 1 1 1 2 2 4 2 5 3 4 1 3

9 1 1 1 2 2 4 3 5 5 5 4 5 1

4 6 1 2 1 4 2 6 2 6 2 4 4

7 1 2 1 4 3 7 5 10 5 10 5 7 1 5

8 1 2 1 4 3 8 6 13 9 17 10 18 8 13 2 8

9 1 2 1 4 3 8 7 14 12 21 17 28 18 28 16 20 5 11

TABLE V. Difference between numbers � of zero-energy angular momentum multiplets L from Table IV and numbers �a predicted for
corresponding systems of K Abelian quasiholes.

K 2 3 4

�−L 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

�−�a 1 1 1 1 2 2 1 2 2 5 5
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emerges as �4,−1�, while �1,1� reproduces another familiar
�= 1

2 series at 2�=2N−3.
Different only by the sign of n �direction of effective

magnetic field�, the �= 1
3 state �4,−1� might have similar CF

correlations to the �= 1
5 state �4,1�. This connection suggests

non-Abelian QP excitations at �e= 4
11. Unfortunately, the nu-

merical spectra of V=
3 for N�12 at 2�
3N−7 �not
shown� are not conclusive: they contain low-energy QP
bands predicted by transformation �2� but show no obvious
sign of non-Abelian statistics.

To check which of the �p ,n� states of Eq. �3� actually
occurs for the interacting CFs, we computed ground-state
energies of N�10 fermions interacting through V=
3 or
through a more realistic CF pseudopotential of Lee et al.17 as
a function of 2�. Results for N=10 are shown in Fig. 2. The
largest excitation gaps � occur for �p ,n�= �4,−1� and �1,1�,
corresponding to the known13 FQH states at �e= 4

11 and 3
8 .

Sizable gap is also found for �4,−2�, suggesting a �so far
undetected� FQH state at �e= 9

25. Other states, including the
parent state �4,1�, show only marginal incompressibility.

In conclusion, we postulate emergence of non-Abelian
statistics in the lowest LL, in a family of second-generation
liquids of correlated CFs. The argument involves: �i� identi-
fication of zero-energy state of a model CF-CF interaction;
�ii� definition of flux attachment scheme converting this state
into a filled shell; �iii� demonstration of non-Abelian statis-
tics of its QHs; and �iv� construction of the hierarchy of
IQLs, including known FQH states at �e= 4

11 and 3
8 and a new

state at �e= 9
25. These concepts were confirmed by exact di-

agonalization studies.
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FIG. 2. �Color online� �a� Ground-state energy per particle E /N
�also, lowest energy at L=0� of N=10 particles with model interac-
tion V=
3 on a sphere as a function of shell angular momentum �.
�b� Same as �a� but energy E shifted by const�� so that E1,1

=E4,1 �to emphasize cusps�. �c� Excitation gaps of L=0 ground
states. �d�–�f� Same as �a�–�c� but for pseudopotential in CF-LL1

taken from Ref. 17.
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