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Abstract. Energy spectra of a model short-range three-body repulsion are calculated for a half-filled Landau level. The
Moore—Read ground state and its quasielectron (QE), quasihole (QH), magnetoroton (QE+QH), and pair-breaking excitations
are all identified. Two- and three-body correlations of these states are analyzed. The QE/QH excitations are described by
a composite fermion model for Laughlin-correlated electron pairs. Comparison with the results obtained for the Coulomb
interaction suggests that finite-size effects are important in numerical diagonalization for the v = 5/2 quantum Hall state.

INTRODUCTION

The Moore-Read (MR) wavefunction [1] was proposed
as a trial state for the half-filled first excited Landau
level (LL1). Although it has commonly been accepted
to explain the v = g fractional quantum Hall (FQH)
effect [2], earlier diagonalization studies on a sphere
[3] indicated that realistic Coulomb pseudopotentials in
LLg, Vcl, are too weak at short range to support the MR
state. We find that the discrepancy is a finite-size effect.

Laughlin-correlated states of electron pairs were pro-
posed by Halperin [4]. But because pair—pair interaction
does not conserve relative pair angular momentum %5,
its pseudopotential is not well-defined, and Laughlin cor-
relations cannot be rigorously established. In fact, they
were incorrectly anticipated [5] for e-e pseudopotentials
V(%) that were attractive (rather than “harmonically
repulsive,” as in LL1) at short range, and the idea was
largely ignored in the context of v = g FQH effect.

The MR state is an exact zero-energy ground state
of a short-range three-body repulsion Wo(#3) = 62,3
[5], where %5 is the relative triplet angular momen-
tum. In spherical geometry [6], we calculate the energy
spectra of Wy and pair and triplet amplitudes (correla-
tion functions) [7] in the low-energy states. We find that
Halperin’s picture [4, 8] correctly describes the MR state
as well as its quasielectron (QE), quasihole (QH), mag-
netoroton (QE+QH), and pair-breaking excitations.

Let us also mention that an idea of composite fermion
(CF) pairing and condensation at v = % is unjustified.
The CF model relies on Laughlin correlations that only
occur if V(%) is superharmonic at short range (and in
LL; it is nearly harmonic). It was shown directly [7, 8]
that CF’s carrying two flux quanta do not form in LL ;.
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FIGURE 1. Triplet amplitudes ¢3 as a function of o for the
lowest L = O states of 14 particles at v = % interacting via Uy,

MODEL

We consider N electrons on a sphere of radius R, in a
LLn—1 shell of angular momentum | = Q + n. Magnetic
monopole strength 2Q and the magnetic length A are
related via RZ = QA2. The relation between total (L»)
and relative (%) pair angular momenta is %, = 2| — L,.

3-BODY CORRELATIONS

Let us define pair interaction Uy (%2) = (1 — ) 6,1 +
%a 0,3 With parameter o controlling anharmonicity at
short range. Uy , is harmonic for %, = 1 through 5 and
models well Vcl. In Fig. 1 we plot the leading triplet am-
plitudes ¢3(#3) as a function of o, calculated in the
lowest L = O states at half-filling (21 = 2N — 3). Clearly,
“5(3) vanishes at o ~ % Just as Laughlin correlations
at v~ % could be defined as the minimization of pair

amplitude %,(1), the correlations at v ~ % have a sim-
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FIGURE 2. Energy spectra E(L) of three-body repulsion Wp.

(a) N even, 2I=2N-3 (b) N odd, 2I=2N-3
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FIGURE 3. Energy dispersion E(k) for the magnetoroton (a)
and pair-breaking (b) bands in the spectra of W.

ple three-body form, consisting of the minimization of
93(3), i.e., the tendency to avoid the %3 = 3 triplet state.
And just as Laughlin v = % state is an E = 0 eigenstate
of Up, the MR v = % state is an E = 0 eigenstate of W.

Large values of ¢»(1) and, at the same time, the van-
ishing of ¥3(3) support Halperin’s idea of %, = 1 pairing
and Laughlin pair—pair correlations that can be modeled
by a flux attachment in a standard way.

SPECTRA OF 3-BODY REPUL SION

Since W induces the same correlations as V&, we can
identify elementary excitations of the MR state in the
spectra of Wy. In Fig. 2(a) we show the spectrum for
N =14 at 2| = 2N — 3. The MR ground state occurs
at E = L = 0. The excited band is a magnetoroton [9]
(atL < %N, as expected for Laughlin state of pairs). Its
continuous dispersion and a minimum at kA ~ 1.5 are
visible Fig. 3(a), where we plot data for N = 6 to 14
as a function of wavevector k = L/R. In bottom frames
of Fig. 2 we show spectra for 2| = (2N — 3) & 1, whose
low-energy states contain a pair of QH’s (c) or QE’s (d)
in the Laughlin state of pairs. The neutral-fermion pair-
breaking excitation [5] is identified in Fig. 2(b) for odd
N and 2l = 2N — 3, and its continuous dispersion and a
minimum at kA ~ 1 are shown in Fig. 3(b).
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FINITE-SIZE EFFECTS

Earlier studies using VC1 [3, 5, 8] showed L = 0 ground
states with a gap at 21 = 2N — 3, but no clear sign
of the QE, QH, or pair-breaking excitations. We have
calculated overlaps between the eigenstates of Uy, Vé,
and Wp. For N = 14 and 2| = 2N — 3, the MR state
and the Coulomb ground state both turn out excellent
ground states of U, but for different values of o (amr ~
0.425 and ac ~ 0.5). This discrepancy (and small direct
squared overlaps {2 ~ 0.5 between eigenstates of VC1 and
Wp) raises the question of whether the MR state and its
excitations actually occur in the FQH v = g state. For-
tunately, it is largely artificial. The size-dependence of
ommr C€an be traced to that of the pair amplitudes ¥2(%#-)
of the triplet eigenstates, caused by the surface curvature,
which makes ogpr smaller than oc. For large N, we ex-
pect that oymr — oc = % and that Coulomb and W spec-
tra become similar. Hence, “%3 > 3” correlations, elec-
tron pairing, MR state, and QE, QH and pair-breaking
excitations are all relevant for the v = % FQH effect.

CONCLUSION

At half-filling of LL1, correlations consist of the maxi-
mum avoidance of the triplet state with %3 = 3. They re-
sult in incompressible MR state, described by Halperin’s
picture of a Laughlin state of electron pairs. Small over-
laps of numerical ground states on a sphere with the MR
state is a finite-size (surface curvature) effect.
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