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Abstract. Energy spectra of a model short-range three-body repulsion are calculated for a half-filled Landau level. The
Moore–Read ground state and its quasielectron (QE), quasihole (QH), magnetoroton (QE�QH), and pair-breaking excitations
are all identified. Two- and three-body correlations of these states are analyzed. The QE/QH excitations are described by
a composite fermion model for Laughlin-correlated electron pairs. Comparison with the results obtained for the Coulomb
interaction suggests that finite-size effects are important in numerical diagonalization for the ν � 5�2 quantum Hall state.

INTRODUCTION

The Moore–Read (MR) wavefunction [1] was proposed
as a trial state for the half-filled first excited Landau
level (LL1). Although it has commonly been accepted
to explain the ν � 5

2 fractional quantum Hall (FQH)
effect [2], earlier diagonalization studies on a sphere
[3] indicated that realistic Coulomb pseudopotentials in
LL1, V 1

C, are too weak at short range to support the MR
state. We find that the discrepancy is a finite-size effect.

Laughlin-correlated states of electron pairs were pro-
posed by Halperin [4]. But because pair–pair interaction
does not conserve relative pair angular momentum � 2,
its pseudopotential is not well-defined, and Laughlin cor-
relations cannot be rigorously established. In fact, they
were incorrectly anticipated [5] for e–e pseudopotentials
V2��2� that were attractive (rather than “harmonically
repulsive,” as in LL1) at short range, and the idea was
largely ignored in the context of ν � 5

2 FQH effect.
The MR state is an exact zero-energy ground state

of a short-range three-body repulsion W0��3� � δ�3�3
[5], where �3 is the relative triplet angular momen-
tum. In spherical geometry [6], we calculate the energy
spectra of W0 and pair and triplet amplitudes (correla-
tion functions) [7] in the low-energy states. We find that
Halperin’s picture [4, 8] correctly describes the MR state
as well as its quasielectron (QE), quasihole (QH), mag-
netoroton (QE�QH), and pair-breaking excitations.

Let us also mention that an idea of composite fermion
(CF) pairing and condensation at ν � 5

2 is unjustified.
The CF model relies on Laughlin correlations that only
occur if V2��2� is superharmonic at short range (and in
LL1 it is nearly harmonic). It was shown directly [7, 8]
that CF’s carrying two flux quanta do not form in LL 1.
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FIGURE 1. Triplet amplitudes �3 as a function of α for the
lowest L� 0 states of 14 particles at ν � 1

2 interacting via Uα .

MODEL

We consider N electrons on a sphere of radius R, in a
LLn�1 shell of angular momentum l � Q� n. Magnetic
monopole strength 2Q and the magnetic length λ are
related via R2 � Qλ 2. The relation between total (L2)
and relative (�2) pair angular momenta is�2 � 2l�L2.

3-BODY CORRELATIONS

Let us define pair interaction Uα��2� � �1�α�δ�2�1 �
1
2 α δ�2�3 with parameter α controlling anharmonicity at
short range. U1�2 is harmonic for �2 � 1 through 5 and
models well V 1

C. In Fig. 1 we plot the leading triplet am-
plitudes �3��3� as a function of α , calculated in the
lowest L � 0 states at half-filling (2l � 2N�3). Clearly,
�3�3� vanishes at α � 1

2 . Just as Laughlin correlations
at ν � 1

3 could be defined as the minimization of pair
amplitude �2�1�, the correlations at ν � 5

2 have a sim-
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FIGURE 2. Energy spectra E�L� of three-body repulsion W0.
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FIGURE 3. Energy dispersion E�k� for the magnetoroton (a)
and pair-breaking (b) bands in the spectra of W0.

ple three-body form, consisting of the minimization of
�3�3�, i.e., the tendency to avoid the�3 � 3 triplet state.
And just as Laughlin ν � 1

3 state is an E � 0 eigenstate
of U0, the MR ν � 5

2 state is an E � 0 eigenstate of W0.
Large values of �2�1� and, at the same time, the van-

ishing of�3�3� support Halperin’s idea of�2 � 1 pairing
and Laughlin pair–pair correlations that can be modeled
by a flux attachment in a standard way.

SPECTRA OF 3-BODY REPULSION

Since W0 induces the same correlations as V 1
C, we can

identify elementary excitations of the MR state in the
spectra of W0. In Fig. 2(a) we show the spectrum for
N � 14 at 2l � 2N � 3. The MR ground state occurs
at E � L � 0. The excited band is a magnetoroton [9]
(at L � 1

2 N, as expected for Laughlin state of pairs). Its
continuous dispersion and a minimum at kλ � 1�5 are
visible Fig. 3(a), where we plot data for N � 6 to 14
as a function of wavevector k � L�R. In bottom frames
of Fig. 2 we show spectra for 2l � �2N� 3�� 1, whose
low-energy states contain a pair of QH’s (c) or QE’s (d)
in the Laughlin state of pairs. The neutral-fermion pair-
breaking excitation [5] is identified in Fig. 2(b) for odd
N and 2l � 2N� 3, and its continuous dispersion and a
minimum at kλ � 1 are shown in Fig. 3(b).

FINITE-SIZE EFFECTS

Earlier studies using V 1
C [3, 5, 8] showed L � 0 ground

states with a gap at 2l � 2N � 3, but no clear sign
of the QE, QH, or pair-breaking excitations. We have
calculated overlaps between the eigenstates of Uα , V 1

C,
and W0. For N � 14 and 2l � 2N � 3, the MR state
and the Coulomb ground state both turn out excellent
ground states of Uα , but for different values of α (αMR�

0�425 and αC � 0�5). This discrepancy (and small direct
squared overlaps ζ 2 � 0�5 between eigenstates of V 1

C and
W0) raises the question of whether the MR state and its
excitations actually occur in the FQH ν � 5

2 state. For-
tunately, it is largely artificial. The size-dependence of
αMR can be traced to that of the pair amplitudes �2��2�
of the triplet eigenstates, caused by the surface curvature,
which makes αMR smaller than αC. For large N, we ex-
pect that αMR � αC �

1
2 and that Coulomb and W0 spec-

tra become similar. Hence, “�3 � 3” correlations, elec-
tron pairing, MR state, and QE, QH and pair-breaking
excitations are all relevant for the ν � 5

2 FQH effect.

CONCLUSION

At half-filling of LL1, correlations consist of the maxi-
mum avoidance of the triplet state with�3 � 3. They re-
sult in incompressible MR state, described by Halperin’s
picture of a Laughlin state of electron pairs. Small over-
laps of numerical ground states on a sphere with the MR
state is a finite-size (surface curvature) effect.
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