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The spin transitions in the fractional quantum Hall effect provide a direct measure of the tiny energy
differences between differently spin-polarized states and thereby serve as an extremely sensitive test of the
quantitative accuracy of the theory of the fractional quantum Hall effect, and, in particular, of the role of
Landau-level mixing in lifting the particle-hole symmetry. We report on an accurate quantitative study of
this physics, evaluating the effect of Landau-level mixing in a nonperturbative manner using a fixed-phase
diffusion Monte Carlo method. We find excellent agreement between our calculated critical Zeeman
energies and the experimentally measured values. In particular, we find, as also do experiments, that the
critical Zeeman energies for fractional quantum Hall states at filling factors ν ¼ 2 − n=ð2n� 1Þ are
significantly higher than those for ν ¼ n=ð2n� 1Þ, a quantitative signature of the lifting of particle-hole
symmetry due to Landau-level mixing.
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The role of particle-hole symmetry in the lowest Landau
level (LLL) as well as its breaking due to Landau-level (LL)
mixing has come into renewed focus in the contexts of the
competition between the Pfaffian and the anti-Pfaffian
wave functions for the ν ¼ 5=2 fractional quantum Hall
(FQH) effect [1–9] and of the nature of the composite-
fermion (CF) Fermi sea at ν ¼ 1=2 [10–24]. LL mixing
also affects various observable quantities in the FQH effect,
and a lack of its quantitative understanding has been one of
the major impediments to the goal of an accurate com-
parison between theory and experiment. The effect of LL
mixing has been treated in a perturbative approach [4–9],
but the extent of its validity for typical experiments has
remained unclear because the relevant parameter control-
ling the strength of LL mixing, namely, the ratio
of the Coulomb interaction to the cyclotron energy
κ ¼ ðe2=ϵlÞ=ℏωc, is typically ∼1 and sometimes as high
as ∼2. (Here, l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏc=eB
p

is the magnetic length, ϵ is
the dielectric constant of the background material, and
ωc ¼ eB=mbc is the cyclotron frequency).
We study in this work the effect of LL mixing through

the nonperturbative method of fixed-phase diffusion
Monte Carlo calculations [25–27]. We focus here on the
phase transitions between differently spin-polarized FQH
states as a function of the Zeeman energy, which are an
ideal testing ground for the role of LL mixing, both because
a wealth of experimental information exists for the critical
energies where such transitions occur [28–40] and because
they depend sensitively on LL mixing [40,41]. The critical
Zeeman energy Ecrit

Z quoted below in terms of the dimen-
sionless ratio αcritZ ¼ Ecrit

Z =ðe2=ϵlÞ is a direct measure of the
tiny energy differences between differently spin-polarized

states and, thus, serves as an extremely sensitive test of the
quantitative accuracy of the theory. In particular, a long-
standing puzzle has been that the observed values of αcritZ for
spin transitions at the filling factor ν ¼ 2 − n=ð2n� 1Þ are
significantly higher than those at ν ¼ n=ð2n� 1Þ. Because
particle-hole symmetry in a system confined to the LLL
guarantees that the transitions at ν and 2 − ν occur at the
same αcritZ , it is clear that LL mixing, which breaks particle-
hole symmetry, is responsible for the effect. Surprisingly,
for heterojunction samples, αcritZ for spin transitions at the
filling factor ν ¼ 2 − n=ð2n� 1Þ are higher even than the
theoretical values for systems with zero width and zero LL
mixing, which is counterintuitive because the corrections
due to finite width and finite LL mixing are both expected
to weaken the interaction and, thus, reduce αcritZ .
If the fixed-phase diffusion Monte Carlo (DMC) method

can be demonstrated to provide a quantitative account of
these experiments, it will not only reveal the role of
Landau-level mixing in a quantitative fashion but, in
principle, also enable an investigation of the effect of LL
mixing on various other issues, including the 5=2 Pfaffian
or anti-Pfaffian state and the 1=2 CF Fermi sea, in a
nonperturbative approach.
The DMC method [42,43] solves the many-body

Schrödinger equation by noting that its imaginary time
(t → it) version can be interpreted as a diffusion equation.
The wave functionΦ of interest plays the role of the density
of diffusing particles, which is valid when Φ is always real
and non-negative, such as for Bose systems in their ground
states. In order to treat Fermi statistics, a fixed-node
approximation is used which does not allow diffusion
through the nodal surface. The fixed-node DMC method,
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suitable for real wave function, cannot be applied directly
to FQH systems, which, due to the broken time-reversal
symmetry, produce complex valued eigenfunctions for
interacting fermions. For such systems, a fixed-phase
approximation was introduced by Ortiz et al. [25] who
express the wave function as ΦðRÞ ¼ jΦðRÞjeiφTðRÞ and
solve the appropriate Schrödinger equation for the real
non-negative wave function jΦðRÞj by the DMC method.
Here, R ¼ ðr1; r2;…; rNÞ denotes the coordinates
collectively, and the phase φTðRÞ is fixed with the
help of an initial “trial” or “guiding” wave function
ψTðRÞ ¼ jψTðRÞjeiφTðRÞ. The DMC algorithm gives the
lowest energy consistent with the prescribed trial phase
φTðRÞ, and the accuracy of the results depends on the
choice of φTðRÞ. It was found by Güćlü and Umrigar [44]
that the Coulomb eigenstate of the LLL subspace is an
excellent choice for ψT ; i.e., LL mixing does not signifi-
cantly alter the phase. We will, therefore, choose for our
fixed-phase DMC calculation the phases of the wave
functions of the CF theory, which are known to accurately
represent the actual Coulomb eigenstates [45,46].
We follow the method presented by Melik-Alaveridan

et al. [26,27], who have generalized the fixed-phase DMC
method to the spherical manifold [47]. The electrons are
confined to the surface of a sphere [48] of radius R0 with a
magnetic monopole of strengthQ at the center, producing a
total flux of 2Qϕ0. In order to simulate the diffusion
process conveniently, a stereographic projection is
employed to represent the electrons’ positions by planar
coordinates r ¼ ðx; yÞ ¼ ðcosϕ; sinϕÞ cotðθ=2Þ, where θ
and ϕ are the usual spherical angles. The Hamiltonian is
then written as

H ¼ 1

2mb

X
i

DðriÞ½−iℏ∇i þ eAðriÞ�2 þ VðRÞ; ð1Þ

where DðriÞ ¼ ð1þ r2i Þ2=4R2
0. The vector potential

A ¼ −ðℏcQ=eR0Þ cot θϕ̂ produces a radial magnetic field
B ¼ 2Qϕ0=4πR2

0 in the Haldane gauge. At filling factor
ν ¼ n=ð2pn� 1Þ, for trial function ψTðRÞ we choose the
wave functions of the CF theory (suppressing the spin part)
[45,46]

Ψn=ð2pn�1Þ ¼ PLLLΦ�n↑Φ�n↓Φ
2p
1 : ð2Þ

Here, Φn is the wave function for n filled Landau levels,
Φ−n ≡ ½Φn��, and PLLL denotes LLL projection performed
below using the method in Refs. [46,49–51]. The state of
spinfull composite fermions with n↑ spin-up and n↓
spin-down filled Λ levels is denoted as ðn↑; n↓Þ, with
n ¼ n↑ þ n↓.
Our goal is to compute the critical Zeeman energy where

a FQH system undergoes a transition from a fully spin-
polarized (FP) state into either a partially spin-polarized
(PP) or a spin-singlet (SS) state. We first obtain the per
particle interaction energies Eðn↑;n↓Þ of the states ðn↑; n↓Þ.

The dimensionless critical Zeeman energy αcritZ for the
transition between two successive states ðn↑; n↓Þ and
ðn↑ − 1; n↓ þ 1Þ is given by

αcritZ ¼ ðn↑ þ n↓Þ
�
Eðn↑;n↓Þ − Eðn↑−1;n↓þ1Þ

e2=ϵl

�
: ð3Þ

Many previous studies [41,51–53] have used variational
Monte Carlo (VMC) calculations to evaluate αcritZ using the
LLL wave functions of Eq. (2). (For other approaches, see
Refs. [54–57].) To study the effect of LL mixing, we
perform a DMC calculation as a function of κ, which,
for parameters appropriate for electron-doped GaAs
(ϵ ¼ 12.5, electron band mass mb ¼ 0.067me) is given
by κ ≈ 2.6=

ffiffiffiffiffiffiffiffiffi
B½T�p

≈ 1.28
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν=ðρ=1011 cm−2Þ

p
, where ρ is

the areal density. The DMC result reduces to a VMC result
in the limit of κ ¼ 0.
The nonzero transverse width of GaAs-AlxGa1−xAs

heterojunctions and quantum wells also has a quantitative
effect producing an effective two-dimensional interaction
dependent on the transverse wave function ξðzÞ:

VeffðrÞ ¼ e2

ϵ

Z
dz1

Z
dz2

jξðz1Þj2jξðz2Þj2
½r2 þ ðz1 − z2Þ2�1=2

; ð4Þ

where z1 and z2 denote the coordinates perpendicular to the
2D plane, and r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 − x2Þ2 þ ðy1 − y2Þ2

p
. VeffðrÞ is

less repulsive than the ideal 2D interaction e2=ϵr at short
distances. In this work, we calculate the critical Zeeman
energy using VeffðrÞ to include the effect of the finite
transverse width. A realistic ξðzÞ for each density and
geometry is obtained by solving the Schrödinger and
Poisson equations self-consistently through the local
density approximation [58]. Note that the finite-width
correction in the VMC results depends on the density
through ξðzÞ.
In the following, we show our numerical results for αcritZ

in the thermodynamic limit and compare them with those
obtained from transport experiments. We have used two
methods to perform extrapolation to N → ∞. In method I,
we extrapolate the energy difference to the thermodynamic
limit. For this purpose, we correct for the finite-size
deviation of the density from its asymptotic value by
multiplying the finite-size energy with a factor
ð2Qν=NÞ1=2 [59] and, if needed, also interpolate the energy
to the appropriate particle number. In method II, we
extrapolate the density-corrected per particle energies of
SS, FP, or PP states to the thermodynamic limit separately
and then obtain αcritZ according to Eq. (3). The results quoted
below are obtained from method I unless specified other-
wise [47]. The errors shown below arise primarily from the
extrapolation; the statistical error from the Monte Carlo
sampling is comparatively negligible.
We first study the FQH states with fillings ν ¼

n=ð2nþ 1Þ. The critical Zeeman energies αcritZ for
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ν ¼ 2=5; 3=7, and 4=9 are shown in Fig. 1 for an ideal 2D
system with width w ¼ 0, for GaAs-AlxGa1−xAs quantum
wells with widths w ¼ 30 and 50 nm, and also for a
GaAs-AlxGa1−xAs heterojunction (HJ). αcritZ calculated
from the DMC and VMC methods are plotted as a function
of density ρ with solid and dashed lines, respectively. The
value of κ is shown at the upper x axis. For quantum wells,
αcritZ from the VMC calculation (no LL mixing) decreases
with increasing w or ρ. The behavior of the αcritZ from the
DMC calculation, which includes the correction due to LL
mixing, is more complicated. At large ρ (small κ), the DMC
results are close to the VMC results for each width. On the
other hand, with decreasing ρ (increasing κ), the DMC
results are increasingly lower than the VMC results. For
κ ≳ 2, the DMC results are largely insensitive to w,
implying that the dominating correction here is due to
LL mixing. We note that we have not included in our
calculations any physics relating to an instability of the
FQH effect into a Wigner crystal at large κ [60].
One of the main messages of our calculation is that LL

mixing and finite-width corrections significantly reduce the
critical Zeeman energy at ν ¼ n=ð2nþ 1Þ, by a factor of 2
or more for the experimental systems. This is consistent
with the fact that, in typical experiments, the FQH states at
ν < 1=2 are fully spin polarized even with zero tilt of
magnetic field. The transitions at ν ¼ 2=5; 3=7 have been
seen by Kang et al. [32] in transport experiments only by
significantly decreasing the Landé factor g0 with the
application of hydrostatic pressure.
For FQH states at ν ¼ n=ð2n − 1Þ, where the composite

fermions are in a negative effective magnetic field, the wave
functions of nonfully spin-polarized states in Eq. (2)
evaluated with the projection method in Refs. [49,51]
are not as accurate as those for n=ð2nþ 1Þ and are known
to produce, for w ¼ 0 and κ ¼ 0, values of αcritZ that are off
by up to a factor of 2 relative to the exact results [41].

For example, for ν ¼ 2=3, the value of αcritZ ¼ 0.0082ð1Þ
obtained from the wave functions in Eq. (2) is much lower
than the value 0.0183(5) obtained from exact diagonaliza-
tion (ED) for κ ¼ 0 at w ¼ 0. The reason is because our
projection method [49,51] slightly overestimates the prob-
ability of spatial coincidence of electrons in the nonfully
polarized states and thereby overestimates their energies.
(The “hard-core” projection of Ref. [61] produces very
accurate wave functions but is not amenable to numerical
evaluations.) Fortunately, we find that for κ ≳ 2, the results
are insensitive to slight differences in the initial trial wave
function ψT because of the relatively large modification due
to LL mixing. Taking again the example of ν ¼ 2=3, for
κ ¼ 1.91, both the exact wave function and the wave
function in Eq. (2) produce αcritZ ≈ 0.0090 (see Fig. 3
and Fig. S1 in the Supplemental Material [47]).
Figure 2 shows the comparison between experimental

data (stars) and theoretical results (circles) for αcritZ for many
states at ν ¼ n=ð2n� 1Þ. The theoretical results (red and
blue circles) are obtained with DMC calculations for the
specific experimental parameters (ρ, w). The black empty
circles show the αcritZ obtained from ED with κ ¼ 0 and
w ¼ 0 taken from Ref. [41]. The experimental values for
αcritZ are significantly lower than the ED values but in
reasonably good agreement with our DMC results.
The corrections due to LL mixing enter in a more

dramatic manner when one compares the spin transitions
between the filling factor regions 0 < ν < 1 and 1 < ν < 2.
Experiments have found (see Fig. 3 of Ref. [40]) that the
αcritZ ’s for the latter are significantly higher than those for the
former. As noted above, the difference arises from and,
thus, is a measure of, the breaking of the particle-hole
symmetry by LL mixing. To address this issue, we find it
most convenient (for reasons of computational cost) to
compare the spin transitions at ν ¼ 2=3 and ν ¼ 4=3. To
obtain accurate results, we use for our ψT the exact κ ¼ 0
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FIG. 1. The theoretical critical Zeeman energies αcritZ ¼ Ecrit
Z =ðe2=ϵlÞ for ν ¼ 2=5 (left), 3=7 (middle), 4=9 (right) are shown with

empty symbols with error bars, calculated from both DMC (solid line) and VMC (dashed line) methods, for an ideal 2D system (w ¼ 0),
quantum wells with widths w ¼ 30 and 50 nm, and HJ. The symbol ρ denotes the electron density. The solid lines for quantum wells and
heterojunction display a “hill” shape, where, roughly speaking, LL mixing correction dominates on the left of the hill (at small ρ) and
finite width correction on the right (at large ρ).
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Coulomb wave functions for the SS states at 2=3 and 4=3,
Eq. (2) for the 2=3 FP state, and Φ1↑Ψ1=3↓ for the 4=3 PP
state. For the SS states, we can only calculate for small
systems, as the exact states contain a large number of Slater
determinants. Figure 3 shows the αcritZ for ν ¼ 4=3 (green
circle) and ν ¼ 2=3 (blue square) obtained from the
extrapolation method II. The value of αcritZ at κ ¼ 0 is
approximately consistent with the exact value 0.0175 [41],
giving us confidence in our calculated αcritZ with relatively
small system sizes. The main message of Fig. 3 is that the
αcritZ at 4=3 is substantially higher than that at 2=3 for the
typical experimental value of κ ≈ 1–2. Note that we only
show the zero-width results because the extrapolation of
finite-width results to thermodynamic limit has a poor
statistics for such small systems [47]. We also show in
Fig. 3 the experimental data from GaAs-AlxGa1−xAs
heterojunction samples because these have the smallest
effective width, with solid symbols for ν ¼ 2=3 (light blue)
and ν ¼ 4=3 (green). The agreement with the w ¼ 0 results
is very good, which is not surprising because we know from
Fig. 1 that at relatively large κ (≳2), αcritZ is not very
sensitive to the width w.
It is natural to ask how well our results agree with those

obtained from the perturbative approach in which the effect
of LL mixing is incorporated within the LLL theory

through an effective interaction, which contains perturba-
tive corrections to the two-body interaction and, minimally,
also a three-body interaction (because the two-body
interaction does not break particle-hole symmetry). We
discuss this issue for w ¼ 0. As seen in Fig. 3, the
perturbation theory is, in principle, valid for up to κ ≈ 1
for the states n=ð2n� 1Þ and up to κ ≈ 0.5 for the states at
2 − n=ð2n� 1Þ. In practice, one cannot keep all two-body,
three-body, and n-body terms in the calculation. We have
evaluated αcritZ [47] using the interaction given by Peterson
and Nayak [8], including corrections to the two-body

pseudopotentials Vð2Þ
m for m ≤ 5 and three-body pseudo-

potentials Vð3Þ
m form ≤ 3. Table I compares the perturbative

dðαcritZ Þ=dκ with that deduced from Fig. 3 at small κ. The
two results are substantially different. For example, if the
perturbative result is applied to κ ¼ 1.5, it would produce
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by 0.005

FIG. 2. Comparison between experimental values (stars) and
theoretical DMC values (empty circles) of αcritZ ¼ Ecrit

Z =ðe2=ϵlÞ
for a w ¼ 65 nm quantum well (blue) from Liu et al. [40], and
heterojunctions (red) from Engel et al. [30] and Kang et al. [32].
(For the experiment of Kang et al., we estimate the value of the
Landé factor g0 by assuming that it changes linearly and passes
through zero at a pressure of roughly 18 Kbar [62].) The filling
factors ν ¼ n=ð2nþ 1Þ are shown on top and 1=n at the bottom.
The black circles show the results obtained from ED without
including any LL mixing or finite-width corrections [41] (these
do not involve the DMC calculation). The results for the 65 nm
quantum well are shifted down by 0.005 for ease of depiction.
The dashed lines are a guide to the eye. For the heterojunction,
some other experimental values (theoretical predictions) of αcritZ
are 0.0109 [0.0076(4)] [29] and 0.0078 [0.0065(4)] [30] at
ν ¼ 2=3, and 0.0081[0.0080(20)] [30] at ν ¼ 3=5; these are
not shown on the figure to avoid clutter.
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FIG. 3. Theoretical critical Zeeman energies for the w ¼ 0
model as a function of the LL mixing parameter κ obtained from
the DMC method for ν ¼ 4=3 (green circle), 2=3 (blue square),
4=9 (magenta downward triangle), 3=7 (black upward triangle),
and 2=5 (red diamond). For the fractions n=ð2nþ 1Þ, the wave
functions of Eq. (2) are used to fix the phase. For ν ¼ 2=3 and
ν ¼ 4=3, the exact Coulomb state in the LLL is used to fix the
phase of the wave function. The solid lines are an approximate
guide to the eye. The filled symbols indicate the experimental
data from heterojunction samples at ν ¼ 2=3 (light blue) and 4=3
(green) taken from Eisenstein et al. [29] (circle), Engel et al. [30]
(diamond), and Du et al. [31] (rightward triangle).

TABLE I. This table compares the values of dðαcritZ Þ=dκ at
κ ¼ 0 obtained from the perturbative and the nonperturbative
DMC calculations.

ν

Perturbative Nonperturbative (DMC)

dðαcritZ Þ=dκ
2=5 −0.0023 −0.0043
3=7 −0.0025 −0.0050
2=3 −0.0135 −0.0057
4=3 0.0339 0.0184
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αcritZ ∼ 0.068 and −0.003 for ν ¼ 4=3 and 2=3, respectively,
to be compared to the DMC values of αcritZ ∼ 0.027 and
0.012. An exhaustive study of the quantitative importance
of the terms left out in the perturbative study is outside the
scope of the current study.
To conclude, we find that LL mixing substantially

suppresses the critical Zeeman energies for the ν ¼
n=ð2n� 1Þ FQH states and brings theory into satisfactory
agreement with experiment. We also find that LL mixing
causes an enhancement of the critical Zeeman energy for
ν ¼ 2 − n=ð2n� 1Þ, as also seen experimentally. In addi-
tion to providing an accurate quantitative comparison
between FQH theory and experiment, our work shows
how the quantitative study of the spin physics can shed
fundamental light on the role of LL mixing in breaking the
particle-hole symmetry of the lowest LL.
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