
Physics Letters A 382 (2018) 1419–1426
Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Interband excitations in the 1D limit of two-band fractional Chern 

insulators
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We investigate the stability of the one-dimensional limit of ν = 1/3 Laughlin-like fractional Chern 
insulator with respect to the interband interaction. We propose a construction for the excitations in the 
infinite-interaction case and show that the energy gap remains finite in the thermodynamic limit. Next, 
by means of exact diagonalization and Density Matrix Renormalization Group approaches, we consider 
deviations from ideal dimerization and show that they reduce the stability of the FCI-like states. Finally, 
to show that our approach is not restricted to one model, we identify the dimer structure behind the 
thin-torus limit of other system – the checkerboard lattice.
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1. Introduction

In recent years, the possibility of realization of quantum Hall 
effect in lattice systems has been intensely studied. The idea can 
be traced back to the work of Thouless, Kohomoto, Nightingale 
and den Nijs [1], who have proven that the quantized Hall con-
ductance in integer quantum Hall effect is proportional to a topo-
logical invariant, an integer named the Chern number, which can 
be assigned to every isolated energy band in a periodic system. 
For Landau levels its absolute value is 1. A similar result can be 
obtained in a crystal: an energy band can be characterized by a 
nonzero Chern number and therefore behave like a Landau level, 
i.e. exhibit nonzero quantized Hall conductivity. In the tight bind-
ing formalism, such a crystal would require complex hopping in-
tegrals. Haldane has shown that they can be induced by a pattern 
of magnetic field which is zero on average [2]. Such systems were 
named Chern insulators. Later, they were realized experimentally, 
entirely without a magnetic field, with the complex hoppings in-
duced by the spin-orbit interaction [3] or by a periodic driving of 
optical lattices [4].

These ideas were later extended to the fractional quantum 
Hall effect (FQHE) [5,6]. Analogs of fractional quantum Hall states, 
named fractional Chern insulators (FCIs), were theoretically pre-
dicted to exist in lattice systems whose energy bands are not 
only topologically nontrivial (i.e. characterized by nonzero Chern 

* Corresponding author.
E-mail addresses: blazej .jaworowski @pwr.edu .pl (B. Jaworowski), 

piotr.kaczmarkiewicz @pwr.edu .pl (P. Kaczmarkiewicz), pawel .potasz @pwr.edu .pl
(P. Potasz), arkadiusz .wojs @pwr.edu .pl (A. Wójs).
https://doi.org/10.1016/j.physleta.2018.03.035
0375-9601/© 2018 Elsevier B.V. All rights reserved.
number), but also nearly flat [7–13]. Hence, the interaction domi-
nates over the single-particle energy (in analogy to kinetic energy 
quenching in Landau levels), which is crucial for emergence of 
strongly correlated phases such as FCIs. A number of ways to re-
alize them experimentally was proposed, including optical lattices 
[14–16] and transition metal oxide heterostructures [17] or layers 
[18,19], as well as polariton systems [20], although none of them 
has been successfully implemented so far. Such a realization would 
be beneficial from the perspective of fundamental research. On the 
one hand they would be a potentially more convenient platform 
for study of FQHE systems, available with no magnetic field and 
in higher temperatures (see the discussion in Ref. [12]). On the 
other hand, the FCI physics is richer than the one of FQHE. New 
phenomena can be studied, e.g. breaking the magnetic transla-
tion symmetry [21–23] or particle-hole symmetry [24,25], and FCI 
series on bands with Chern number higher than C = 1 [26–30]. 
Moreover, the non-Abelian FCI series [10,31,29] may find appli-
cation in quantum information processing, as they may allow to 
construct a topological quantum computer. This includes also the 
new states on the bands with Chern number C = 2, inequivalent 
to those known from FQHE [29].

An intuitive understanding of fractional quantum Hall systems 
can be gained from the so-called thin-torus limit [32–34], also 
known as Tao–Thouless (TT) limit. In this approach, one considers 
a Landau level on a torus with one of its circumferences tending to 
zero (alternatively, one may view it as neglecting all the interaction 
matrix elements other than density-density ones). The FQHE states 
are then adiabatically deformed into charge density wave (CDW) 
states [34–36]. Application of similar approach to FCI was consid-
ered in several works [37–42]. In particular, it was found [37–39]
that the 1D limit of the two-orbital Chern insulator model can be 
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mapped into the Su–Schriefer–Heeger (SSH) model of polyacety-
lene [43,44], and in the fully dimerized case (corresponding to 
exactly flat bands) the CDW ground states can be obtained analyt-
ically [37,39]. However, it was shown [39] that they are no longer 
FCIs, because they belong to a different class of topological phases. 
Instead of being topological orders like FCIs, they are symmetry-
protected topological phases, since the former are not possible in 
strictly 1D systems with conserved particle number [45,46]. How-
ever, they retain some properties of the “parent” FCI states, such as 
the degeneracy and the momentum counting, as well as the spec-
tral flow [38] (while lacking others, such as the counting of states 
in entanglement spectrum [37,39]).

One of the fundamental issues in the research on FCIs is find-
ing the conditions of their stability. The topological flat bands are 
not exact analogs of Landau levels, and the numerical calculations 
show that at some values of model parameters the FCIs do not 
exist even though the single-particle bands are flat and nontriv-
ial [47]. Some conditions of their stability were specified, based on 
the flatness of Berry curvature [21,48,49,47] and quantum distance 
[50–52]. Also, the pseudopotential formalism for FCIs was formu-
lated [53,23,54], allowing for the systematic study of the effect of 
interaction form. These factors are connected with properties of a 
single band. A separate question is the influence of other bands. 
Initial estimation of the stability conditions for FCIs was the fol-
lowing: the interaction energy scale should be much larger than 
the single-band dispersion, but smaller than the inter-band energy 
gap, since the band mixing may be detrimental to these states. 
Later numerical calculations have shown that this is not necessar-
ily true, as the 1/3 Laughlin FCIs in some two-band systems, are 
stable even for infinite interaction [55]. However, since these re-
sults were purely numerical, we do not know what details of the 
band wavefunctions are responsible for this stability.

In this work we try to shed some light on these results by 
considering the one-dimensional limit of FCI and study its stabil-
ity with respect to the interband excitations. Our starting point 
is the fully dimerized SSH Hamiltonian, for which we obtain the 
excitation energies analytically and show that the energy gap re-
mains finite even in thermodynamic limit. Next, we analyze the 
effect of inter-dimer hopping and staggered potential on the en-
ergy spectrum. We show that they decrease the energy gap and if 
their value is sufficiently high, they may eventually lead to desta-
bilization of the FCI-like states. Finally, we interpret the 1D limit of 
checkerboard model in terms of dimerized wavefunctions, suggest-
ing that our approach is valid also outside the two-orbital model.

2. The model

The system under consideration is shown in Fig. 1(a). It consists 
of a one dimensional chain of sites (dashed ellipses) with two or-
bitals A and B (red and blue circles, respectively). The most general 
Hamiltonian involving hoppings only within each site and between 
nearest neighbors is given by

H =
∑

i

�
†
i E�i +

∑
i

(
�

†
i T �i+1 + h.c.

)
, (1)

where E and T are 2 ×2 matrices and �†
i = [a†

i , b
†
i ], with a†

i , b
†
i be-

ing the creation operators corresponding to orbitals A and B. The 
extended SSH model [43,44,37–39] is given by the hopping matri-
ces

ESSH =
[−ε τ2

τ2 ε

]
, TSSH =

[
0 0
τ1 0

]
, (2)

where τ1, τ2 are the hoppings between the A and B orbitals be-
tween neighboring sites and within a site, respectively, and ε is 
the strength of staggered potential. In this work, we will consider 
Fig. 1. (a) The extended SSH model. Each unit cell of the 1D chain contains two or-
bitals A, B in the unit cells (red and blue circles, respectively) with onsite energies 
±ε. The system can be understood as a chain of sites (dashed ellipses) or dimers 
(gray ellipses), with inter-site (intra-dimer) hopping τ1 and intra-site (inter-dimer) 
hopping τ2. U is the many-body intra-site interaction between A and B orbitals 
and V is the inter-site interaction between nearest neighbors. (b) The many-body 
ground state for filling factor 1/3 of the fully dimerized SSH model (τ2 = 0). Single 
particle eigenstates γ (δ) are denoted by horizontal lower (upper) lines. The many-
body ground state is formed by populating every third γ state. An arrow represents 
a possible excitation created by moving one particle to a neighboring dimer. (For in-
terpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

mostly |τ1| > |τ2|. In such a case, it will be useful to introduce 
another way of understanding this model. We can regard it as a 
chain of dimers (gray ellipses), with intra-dimer hopping τ1 and 
inter-dimer hopping τ2. When τ2 = 0 we will call the model “fully 
dimerized”.

If ε = 0 the model can host a topological phase protected by 
chiral symmetry [56]. The topological phase transition occurs at 
|τ1| = |τ2|. If finite ε is introduced, the chiral symmetry is broken, 
and the band gap does not close during the transition.

Different variants of the interacting SSH model were considered 
in Refs. [37–39]. We choose the following interaction with onsite 
U and intrasite nearest neighbor V terms (see Fig. 1(a))

U
∑

i

nAinBi + V
∑

i

nini+1, (3)

where nAi (nBi ) is the particle density at orbital A (B) of site i, and 
ni = nAi + nBi .

2.1. SSH model – the dimer basis

In order to understand the ground state properties of this 
model, we consider the fully dimerized limit corresponding to 
τ2 = 0 and later we investigate coupling between dimers within 
the perturbation theory. The single-particle Hamiltonian can be di-
agonalized by switching to dimer basis

Hdim = ε̃
∑

i

(−γ
†
i γi + δ

†
i δi) (4)

where ε̃ =
√

ε2 + τ 2
1 , and

γi = 1

C

(
τ1b†

i −
(√

τ 2
1 + ε2 + ε

)
a†

i+1

)
,

δi = 1

C

((√
τ 2

1 + ε2 + ε

)
b†

i + τ1a†
i+1

)
,

with normalization constant C =
√

2ε2 + 2t2 + 2ε
√

t2 + ε2. When 
ε = 0, these expressions reduce to the ones considered in
Refs. [37–39]. At the single-particle level, the system has two ex-
actly flat bands with energies ±ε̃.
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The many-body ground state can be easily constructed by pro-
jecting the interaction onto the lower band. In the basis of γ
wavefunctions (which are still labeled with a site index i but 
now stretch over two sites i and i + 1), the k-th neighbor in-
teraction becomes a (k + 1)-th one. Therefore, the interaction 
in Eq. (3) becomes a second neighbor one after the projection. 
We consider the lowest band of the system with a filling factor 
ν = 1/3 and periodic boundary conditions. The interaction en-
ergy can be minimized by keeping at least two empty dimers be-
tween two filled ones (Fig. 1(b)). This corresponds to a CDW state 
with 100100100 . . . occupation pattern, with 0 and 1 denoting the 
empty and filled dimers, respectively. Two other ground states may 
be obtained by shifting this pattern by one (010010010 . . . ) or two 
dimers (001001001 . . . ), hence the ground state is three-fold de-
generate, as for ν = 1/3 Laughlin FCI [57,58,21]. We will say that 
this FCI is the parent FCI state of our thin-torus ground state. Al-
though the FCI-like CDW state is obtained within a single-band 
projection, it is in fact the exact ground state of the system, as it 
minimizes both single-particle and interaction energies separately 
at the same time.

For any Laughlin-like filling ν = 1/q we can construct a similar 
q-fold degenerate ground state by choosing a (q − 2)-th neighbor 
interaction. This construction is very similar to generalized Pauli 
principle in FCIs [58,21] although in the real space instead of the 
momentum space. Indeed, the counting of states of the thin torus 
limit of FCIs agrees with this principle for the ground state at 
ν = 1/q and quasihole states [37]. On the other hand, FCIs on a 
torus satisfy this counting also for particle entanglement spectra 
[59,10,21], which is not the case in the thin-torus limit [39,37]. 
Moreover, as it was pointed out in Ref. [39], by an appropriate 
choice of interaction one can construct q-fold degenerate ground 
states also for even q’s. They do not have a parent FCI state, as 
fermionic FCIs cannot exist at these fillings. A similar situation 
arises in the thin-torus limit of FQHE, in which one can also form 
CDW ground states for any ν = 1/q, but only the ones with odd q
are adiabatically connected to FQHE state [34].

In addition to the ground states, we can consider the band-
projected excitations, formed by moving one or more particles to 
the neighboring dimer (see Fig. 1(b)). Hence, two or more filled 
dimers will be separated by one empty dimer only, which will 
yield a finite energy proportional to the V term, due to the ef-
fective second-neighbor interaction. However, in contrast to the 
ground states, these excitations are not exact eigenstates of the 
system, which makes the band-projected picture not sufficient. In 
this work we want to determine their energies taking into account 
both bands. We will check if the energy gap will still remain finite 
when interaction is increased to infinity, and investigate how the 
gap is affected by different perturbations.

2.2. Relation to the FCI models

The extended SSH model can be related to 1D limit of different 
2D tight-binding models with nearly flat topological bands. This 
can be done by applying a basis transformation at each site defined 
by the matrix

U (φ) =
[

cosφ − sinφ

sinφ cosφ

]
.

The Hamiltonian after rotation will have the same form as Eq. (1), 
but now with �̃i = U (φ)�i , T̃SSH = U (φ)TSSHU (φ)† and ẼSSH =
U (φ)ESSHU (φ)†.

It was shown [37,38] that the SSH model is equivalent to the 
thin-torus limit of 2D two-orbital Chern insulator model, a spinless 
version of the model developed to describe the mercury telluride 
quantum wells [60] (see also Ref. [47] for additional description 
and many-body calculations). In the 1D limit, this model is defined 
by the following hopping matrices

T2orb =
[

t2 −t
t −t2

]
E2orb =

[−M ′ 0
0 M ′

]
,

where M ′ is the staggered potential and t (t2) is the hopping in-
tegral between the same (different) orbitals of neighboring sites. 
M ′ is related to the staggered potential M of the 2D model as 
M ′ = M − 2t2. In Refs. [37,38] it was shown that this model is in 
fact the SSH model with ε = 0, τ = 2t and τ2 = −M ′ , rotated by 
φ = π/4.

Note that Eq. (3) is independent on the basis rotation. There-
fore, the mapping is valid also on the many-particle level, and 
the ground states described in the previous subsection are also 
the ground states of the 1D two-orbital model, although the dimer 
wavefunctions γ , δ will no longer be dimers after rotation.

Similarly, we relate the SSH model to the thin torus limit of the 
checkerboard model [61,8]. The Tao–Thouless limit of this model in 
the spinful case was studied in Ref. [62], but we apply a different 
approach: we consider spinless particles, populating the system of 
width one instead of two unit cells. In this way, we can utilize 
the above approach, treating each checkerboard unit cell as one 
site of our chain. The mapping between such a model and the SSH 
model is only approximate, but it can become exact if we intro-
duce an additional hopping tε , not present in the original model 
from Refs. [61] and [8]. Even without this modification, it can be 
shown that the checkerboard model after rotation has a strong 
intra-dimer hopping and weaker inter-dimer ones. This is true for 
the versions with and without third-neighbor hoppings included 
(Refs. [61] and [8], respectively). We describe the details of this 
correspondence in the Appendix A.

Thus, in this work we study the extended SSH model given by 
Eq. (1) and Eq. (2), as a representative of a family of 1D limits of 
various 2D lattice models with topological flat bands. We focus on 
ν = 1/3, although the results will be easily generalizable to other 
fillings.

3. Excitations in the fully dimerized system

We start from determining the excitation spectrum of the fully 
dimerized SSH model with no staggered potential (τ2 = 0, ε = 0). 
In such a case the dimer occupation is conserved, which is a signif-
icant simplification in the construction of excitation wavefunctions. 
One kind of excitations may be constructed by moving one parti-
cle forming the many-body ground state from γ to δ eigenstate 
within a dimer. Its energy EX

0 , measured relatively to the ground 
state, is therefore equal to the band gap EX

0 = 2τ1. Another type 
of excitation, which we will call a one-particle excitation, can be 
constructed by moving one of the particles in the ground state 
to the neighboring dimer, so that there is now only one empty 
dimer between the filled ones (Fig. 1(b)). For example, starting 
from a ground state 1001001001 . . . we can get an excitation with 
1010001001 . . . occupation pattern. The two particles involved in 
the excitation are isolated from the rest and interact only with 
each other, hence we can focus on the two dimers only and neglect 
the rest of the system in our analysis. We consider both bands, so 
there are four possible ways in which the particles can be dis-
tributed between the dimer states. It is convenient to define these 
four configurations in the basis of A, B orbitals belonging to the 
two dimers, rather than using the γ , δ wavefunctions. The con-
figurations, listed in Fig. 2(a) are coupled to each other by the 
intra-dimer hopping integral τ1. The state |4〉 is the only one with 
a nonzero energy due to the V term. We are interested in the limit 
V → ∞ in which this energy is infinite, hence this state can be 
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Fig. 2. The fully-dimerized limit of the SSH model. (a) Four configurations in one-
particle excitation. Black circles denote filled A or B orbital. (b) Low-energy spec-
trum of a system with Npart = 4 particles on a chain of length L = 12 sites as a 
function of interaction strength U , and U = V , with τ1 = 2. Blue lines denote the 
analytical result in an infinite-interaction limit given by Eq. (6).

discarded from the basis. We are left with a 3 × 3 effective Hamil-
tonian

H1 =
⎡
⎣ 0 τ1 0

τ1 0 τ1
0 τ1 0

⎤
⎦ , (5)

whose lowest eigenvalue is E1 = −τ1
√

2. Using this result, we cal-
culate the energy of these excitations with respect to the ground 
state. The three-fold degenerate ground state for the system with 
Npart particles has energy EGS = −Npartτ1. The energy of the exci-
tation, including all the remaining particles staying in the ground 
state, is Ẽ1 = −τ1(Npart − 2) − τ1

√
2. Hence, the energy with re-

spect to the ground state is EX
1 = Ẽ1 − EGS = (2 − √

2)τ1. This 
energy level is highly degenerate, because we can choose differ-
ent pairs of particles to create the excitation, and because we have 
some freedom of arranging the remaining particles without chang-
ing the energy.

In a similar way, we can consider k-particle excitation by mov-
ing k particles: the first one by one dimer, the second by two 
dimers etc. As a result, k + 1 particles are separated by one empty 
dimer only. For example, starting from 100100100100 . . . ground 
state, we can obtain an excitation 101010000100 . . . with k = 2. 
The Hamiltonian of k-particle excitation will correspond to an open 
tight-binding chain of length k + 2 with a tridiagonal matrix struc-
ture as in Eq. (5). The lowest energy of k-particle excitation energy 
with respect to the ground state can be written as

EX
k = (k + 1)|τ1| − 2|τ1| cos

(
π

k + 3

)
(6)

which is the lowest in the case of k = 1. Hence E1 determines 
the many-body energy gap in the fully dimerized case with large 
interaction for arbitrary number of particles, and also in the ther-
modynamic limit. We note that the excitation is localized, so the 
energy does not depend on the system size.

We compare the above analytical results with numerical ones. 
Fig. 2(b) shows the evolution of energy spectrum with increasing 
U (U = V ) for Npart = 4 particles on chain of L = 12 sites obtained 
using the exact-diagonalization (ED) method. As U increases, the 
energies converge to analytical results for infinite interactions, de-
noted by blue horizontal lines in the plot. The first energy level 
above the ground state correspond to the k = 1 excitation. One can 
see that it does not intersect with other levels in the entire range 
of interaction strength, i.e. the k = 1 excitation is the lowest one 
also for finite U .
Fig. 3. Spectral flow in SSH chains with τ1 = 2, τ2 = −0.2, for (a) L = 3, Npart = 1
(b) L = 6, Npart = 2. The energies obtained using the exact-diagonalization method 
are labeled by dots. The insets show a closer view of three lowest states, with lines 
denoting the perturbation theory result.

4. Effects of the inter-dimer hopping

4.1. The ground state degeneracy removal

We now turn on the inter-dimer hopping integrals between 
neighboring dimers τ2 in a perturbative way, assuming that 
τ1 � τ2. The inter-dimer hoppings couple the three ground states 
to each other, lifting the perfect three-fold degeneracy. This al-
lows one to observe the spectral flow when the twisted boundary 
conditions are applied [38]. In FQHE (and hence FCI) the q quasi-
degenerate ground states flow into each other when the boundary 
phase is changed from 0 to 2π , and return to themselves when 
2qπ phase is reached [63]. Such a spectral flow is one of the char-
acteristic features that allows to identify the FCI state (see e.g. 
Refs. [8,47]), but it is not a definite proof that the system is an FCI, 
and should be complemented with other calculations (e.g. of the 
particle entanglement spectrum).

We first consider systems consisting of L = 3 sites with 
Npart = 1 particle, and L = 6 sites with Npart = 2. The effect of 
τ2 can be derived from the perturbation theory of the first and 
second order, for one and two particle cases, respectively. We start 
from the three degenerate ground states of the fully dimerized
system and introduce τ2 as a perturbation, via the Hamiltonian

HPT =
⎡
⎣ B A A exp(iφ)

A B A
A exp(−iφ) A B

⎤
⎦ ,

where A = τ2/2, B = 0 for Npart = 1, and A = τ 2
2

8τ1(2−√
2)

, B = 2A

for Npart = 2, while φ is the boundary phase (φ = 0 for ordi-
nary periodic boundary conditions and φ 	= 0 for twisted ones). 
The eigenvalues of HPT are E j = 2A cos((2π j + φ)/3) + B with 
j = 0, 1, 2, i.e. the degeneracy is removed, and the three states 
flow into each other as φ is changed. In Fig. 3, these results are 
compared to numerically obtained spectra, showing a good agree-
ment with them. The occurrence of the spectral flow is consistent 
with the results in Ref. [38], where the spectral flow was obtained 
numerically for a different kind of interaction of finite strength.

We note that these perturbation theory arguments can be ap-
plied to any filling 1/q (except q = 2), so we are able to observe 
spectral flow for even fillings also. Therefore the notion of the 
spectral flow as a remnant of properties of the parent FCI state 
should be treated with caution, as for even q there is no such state.

The degeneracy splitting is smaller for Npart = 2 than for 
Npart = 1, see Fig. 3(b) noting four times larger energy scale in the 
inset in comparison to Fig. 3(a). We expect a further decrease with 
increasing Npart, because we can obtain one ground state from the 
other only by moving all the particles, i.e. we have to use at least 
Npart-th order of perturbation theory. Hence, one can expect that 
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Fig. 4. Low-energy spectrum for the SSH model with ν = 1/3, U = 1000, τ1 = 2 and 
finite τ2. (a) Scaling of the energy of four lowest states for τ2 = −0.4 with inverse 
number of particles, obtained using DMRG method. (b) Low-energy spectrum of L =
12 chain with Npart = 4 particles, obtained using the exact diagonalization method. 
Three lowest states are denoted by red points. The black line in (b) indicates the 
single-particle topological phase transition.

for small τ2 the degeneracy splitting of the ground states will van-
ish in a thermodynamic limit.

4.2. The infinite interaction limit

When finite τ2 is introduced, the degenerate k = 1 excitations 
will couple to each other (as well as to other states). As a con-
sequence, their degeneracy will be lifted, which will affect the 
energy gap. We study this effect using the DMRG method [64]. 
This approach was successfully used to determine the properties 
of FCIs in quasi-1D geometry [65], as well as in the thin-torus 
limit [40]. We use the Matrix Product State (MPS) formulation of 
DMRG implemented in the iTensor package [66]. Periodic bound-
ary conditions were implemented by introducing hopping between 
the first and the last site in the MPS. Fig. 4(a) shows the ener-
gies of the four lowest states for U = 1000, τ1 = 2, τ2 = −0.4 and 
varying system size with constant filling factor ν = 1/3. The calcu-
lation for each energy level was continued until the difference in 
energy between two sweeps was 10−9. We note that the conver-
gence was slow, sometimes more than 100 sweeps were needed, 
even thought we accelerated the calculations by using the eigen-
states for lower values of U as an initial guess. We investigated 
also the convergence of energy as a function of bond dimension 
χ by increasing χ by 100 and setting the convergence criterion 
at 10−7. However, even after the convergence the energies fluc-
tuated, so we estimate the accuracy of these results to be 10−6, 
which is still enough for the purpose of this work. To ensure that 
DMRG does not converge to higher excited states we calculated 16 
or more excited states for χ = 200 for each system size. Also, for 
small systems (up to Npart = 7), we compared the results with ex-
act diagonalization ones and found agreement within the accuracy 
estimated above. The degeneracy splitting of the ground states de-
creases with growing system size. The energy gap to excited states 
�E ≈ 0.44 for the largest system with Npart = 10 particles, and 
seems to extrapolate to a finite value in an infinite system.

Fig. 4(b) shows the low-energy spectrum of a L = 12 system 
with Npart = 4 as a function of τ2, obtained using the exact-
diagonalization method. We have chosen negative τ2, so that the 
model can be rotated into the two-orbital model with positive 
staggered potential M ′ . In our ED calculation, the Hamiltonian is 
diagonalized in subspaces with conserved momentum. The mo-
menta of the three lowest states (red points) agree with the gen-
eralized Pauli principle for FCI. The energy splitting between these 
states grows with increasing magnitude of τ2 hopping, which leads 
to lowering of the gap between the third and fourth state. This 
is consistent with results in Ref. [38], obtained for a finite in-
teraction of different kind. It is also seen that the degeneracy of 
lowest excited state, existing for τ2 = 0, is split when |τ2| is in-
Fig. 5. Low-energy spectrum for the SSH model with ν = 1/3, U = 2, τ1 = 2 and 
finite τ2: (a) energies of four lowest states for τ2 = −0.4 as a function of in-
verse number of particles, obtained using DMRG method, (b) low-energy spectrum 
of L = 12 chain with Npart = 4 particles, obtained using the exact diagonalization 
method. The red points in (a) mark the three lowest states. In (b), they mark the 
lowest states of momentum subspaces agreeing with the generalized Pauli princi-
ple for FCIs (being also the ground states of the whole system for small τ2). The 
single-particle topological phase transition is marked by a black vertical line in (b).

creased, which also leads to the decrease of the energy gap. The 
black line denotes the single particle topological phase transition 
between trivial (|τ2| > |τ1|) and nontrivial (|τ2| < |τ1|) phases (cor-
responding to trivial and nontrivial regions of the 2D two-orbital 
model). It can be seen that the energy gap between the three low-
est states (red) and the rest of the spectrum (blue) remains open 
in the whole nontrivial region. It is small but finite even in the 
nontrivial region, which may be a result of finite-size effects.

4.3. Finite U

When U is decreased to small finite values, Eq. (5) is no longer 
valid, because the configuration |4〉 from Fig. 2(a) has to be in-
cluded in the one-particle excitation. In the fully dimerized case, 
this leads to decrease of the energy gap, as seen in Fig. 2(b). 
Further lowering of the energy gap occurs due to the lifting of 
degeneracy of both ground states and excitations when finite τ2 is 
introduced.

Fig. 5(a) shows the DMRG results for U = 2, τ1 = 2, τ2 = −0.4
and varying system size. Now the splitting between the three low-
est states is much larger than for infinite U , although it may vanish 
in the thermodynamic limit. The energy gap is smaller than in the 
previous case. It does not close for all the system sizes we consider, 
but one cannot be certain whether it survives in the thermody-
namic limit. We note that in U = 2 case the convergence was much 
faster than for U = 1000 and we were able to increase both sys-
tem size and accuracy (now being 10−7 or more for small system 
sizes). At least four excited states were calculated for each sys-
tem size. For Npart > 10 this number was larger to ensure that the 
states we capture are indeed the lowest.

Fig. 5(b) shows the evolution of the energy spectrum for L =
12, Npart = 4 with increasing |τ2|. Now, the energy gap closes 
within the nontrivial region. This may be a result of bandwidth 
(2|τ2|) becoming comparable with the interaction.

4.4. Effects of the staggered potential

When finite staggered potential ε is introduced at τ2 = 0
the model is still dimerized, however the particle density within 
each dimer is no longer evenly distributed between the A, B
orbitals (see Eq. (4)). We parametrize the model with ε = τ sin(α), 
τ1 = τ cos(α). Increasing α from 0 to π/4 induces the transi-
tion between the fully dimerized model (nontrivial bands) and 
the model with isolated individual sites (trivial bands). In this 
parametrization, the single-particle band structure remains con-
stant all through the transition, see Eq. (4). The nontrivial system 
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Fig. 6. Effect of the staggered onsite potential on Npart = 4, L = 12 SSH chain with 
τ1 = 2 and U = 1000: a) The energy spectrum in fully dimerized limit, as a function 
of parameter α. b) the energy gap between the FCI-like ground states and rest of 
the spectrum, as a function of α and t2. The black line in (a) denotes the analytical 
result for the one-particle excitation.

can be transformed into a trivial gap without closing the band gap, 
because the staggered potential breaks the chiral symmetry which 
protects the topological phase.

The ground state is three-fold degenerate as in the ε = 0 case, 
as long as α 	= π/4. However, the excitation energy varies. In 
the infinite U case, this can be seen from the effective Hamilto-
nian matrix describing one particle excitation, which, in analogy to 
Eq. (5) has the form

H1 = τ

⎡
⎣− sin(α) cos(α) 0

cos(α) 0 cos(α)

0 cos(α) sin(α)

⎤
⎦ ,

whose eigenvalues can be calculated exactly. The lowest one-
particle excitation energy is then

EX
1 = τ

(
2 − √

2
√

sin(α)2 + 1
)

,

which vanishes for α = π/4. Hence, the gap closes when the sys-
tem consists of isolated sites.

In Fig. 6(a) we show result for a system with U = 1000, τ = 2
Npart = 4, L = 12. E2, indicated by a black solid line, is the lowest 
excitation energy in the whole range α ∈ [0, π/4), hence the gap 
remains open for any α 	= π/4. If nonzero τ2 is added, its effect 
would be similar to those described in Subsection 4.2 for ε = 0
case: the removal of the degeneracy of ground states and of ex-
citations. Fig. 6(b) shows the magnitude of the energy gap as a 
function of both α and τ2 for constant U = 1000 and τ = 2. It can 
be seen that the maximum is at τ2 = 0, α = 0, i.e. the fully dimer-
ized system with no staggered potential.

These results show the importance of the dimer structure for 
stability of the FCI-like phase in our model. The deviations from 
the fully dimerized structure with ε = 0, either in the form of 
inter-dimer coupling or staggered potential, lead to the decrease, 
and eventually the vanishing of the many-body gap. We note that 
this conclusion is valid for the interaction defined by Eq. (3). For 
other kinds of interaction, the results may differ (see e.g. Ref. [39]).

4.5. The checkerboard lattice

As a last point, let us show that the gap is stable in the infinite 
interaction limit also for the checkerboard model. We still treat the 
two orbitals of the unit cell as one site, and apply the interaction 
defined in Eq. (3). This is different from the standard interaction 
used for checkerboard model. Usually one treats each orbital as 
separate site and applies the nearest-neighbor density-density in-
teraction (see e.g. Ref. [8]). Such an approach would be much more 
complicated because after rotation additional non-density-density 
terms will appear, and our construction of excited states would no 
longer be applicable.
Fig. 7. The energy spectrum of the 1D checkerboard chain of length L = 12 and 
Npart = 4, as a function of the interaction strength U . The single-particle parameters 
are t1 = √

2t2 = 1, tε = t3 = 0 (see the Appendix A for their definitions). The red 
dots denote the three lowest states.

Fig. 7 shows the evolution of energy spectrum of the thin-torus 
limit of the checkerboard model as a function of U = V . Here, the 
parameters correspond to the nearly flat band case described in 
Ref. [8]. The energy gap between three lowest states and the rest 
of spectrum tends to a finite value for U → ∞, similarly to the one 
in Fig. 2. This result can be explained in terms of the dimer struc-
ture of the wavefunctions. It can be shown that the system whose 
spectrum is shown in Fig. 7 is a rotated SSH chain plus a small 
correction (see the Appendix A for details). The parameters of the 
SSH chain are α ≈ 0.27π and τ2 ≈ 0.107τ , which corresponds to 
τ2 ≈ 0.213 in Fig. 6. This shows that, in comparison to the ideal 
α = 0, τ2 = 0 case, the gap is significantly lowered due to the stag-
gered potential, while the effect of the inter-dimer hopping τ2 is 
much smaller. The correction introduces further inter-dimer hop-
pings (including a second-neighbor one), but they are still small 
compared to τ , hence we can still attribute the stability of the FCI-
like phase to the dimerization. A similar reasoning can be applied 
to the version of the checkerboard model presented in Ref. [61], 
involving the third-neighbor hoppings (see the Appendix A for 
details). Its validity is confirmed by the exact-diagonalization cal-
culations, which yield the dependence of energy spectrum on U
similar to the one in Fig. 7.

5. Summary and conclusions

Motivated by Ref. [55], we studied the simplified version of 
the problem of stability of Fractional Chern Insulators with re-
spect to interband excitations by considering the system in the 
thin-torus limit. We focused on the extended SSH model, related 
to the 1D limit of the two-orbital flat-band model by a basis ro-
tation. For the fully dimerized case with no staggered potential, 
we have obtained analytical expressions for the excitation energies 
and shown that for infinite interaction the many-body energy gap 
between the ground state manifold and excited states remains fi-
nite even in the thermodynamic limit. Next, we investigated the 
effect of inter-dimer hopping and staggered potential. We have 
shown that both perturbations lower the many-particle gap, al-
though it remains open if they are small enough. This indicates 
that the dimer structure is responsible for the stability of the FCI-
like ground state. Finally, by considering the thin-torus limit of the 
checkerboard model, we show that the interpretation of the excita-
tions in terms of dimerized wavefunctions is not restricted to one 
lattice model.
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Appendix A. Relation to checkerboard model

The 1D limit of the checkerboard limit is defined by the follow-
ing hopping matrices

T̃CB =
[

t2 0√
2t1 −t2

]
, ẼCB =

[−2t2
√

2t1√
2t1 2t2

]
.

The notation is the same as in Ref. [8] for 2D model. We set 
t1 = √

2t2 which guarantees the minimal flatness ratio (i.e. band 
dispersion divided by band gap) [8]. In such a case, the nearest-
neighbor hopping matrix reads

T̃CB = T̃1 + T̃2, T̃1 =
[

t2 −tε
2t2 −t2

]
T̃2 =

[
0 tε
0 0

]
,

where tε is a new term, corresponding to fourth-neighbor hopping 
in the 2D checkerboard model. We introduce it to divide the hop-
ping matrix into the part which can be rotated into the SSH model 
(T̃1) and the remaining corrections (T̃2). If tε = t2/2, T̃1 is a hop-
ping matrix of the SSH model with τ1 = 5/2t2 rotated by an angle 
φ = arcsin(−1/

√
5). If we rotate the Ẽ matrix back by this angle, 

it will become

ECB =
[

− 14
5 t2 − 2

5 t2

− 2
5 t2

14
5 t2

]
.

Hence, if we neglect the presence of T̃2, i.e. we consider the 
checkerboard model with additional hopping tε , we obtain a ro-
tated SSH model. It is characterized by strong staggered potential 
ε = 14

5 t2, relatively strong nearest-neighbor (intra-dimer) coupling 
τ1 = 5

2 t2 and relatively low inter dimer hopping τ2 = − 2
5 t2. Using 

the notation from Subsection 4.4, we have τ =
√

ε2 + τ 2
1 ≈ 3.75t2

and α = arctan(ε/τ2) ≈ 0.27π .
For the exact checkerboard model, the neglected T̃2 term has 

to be taken into account. After the rotation, it takes the form

T2 =
[

1
5 t2

2
5 t2

− 1
10 t2

1
5 t2

]
.

It slightly reduces the intra-dimer hopping τ1, but also introduces 
new terms not present in SSH model, corresponding to additional 
couplings between nearest-neighbor dimers as well as additional 
second-neighbor inter-dimer couplings. Nevertheless, they are still 
small compared to τ , hence the intra-dimer terms still dominate.

To further flatten the lower band, another term t3 can be intro-
duced, corresponding to the third-neighbor hopping in the original 
2D model [61]. The hopping matrices in such a case are given by

T̃CB2 =
[

t2 + t3 0√
2t1 −t2 + t3

]
,

ẼCB2 =
[−2t2 + 2t3

√
2t1√

2t1 2t2 + 2t3

]
.

To minimize the flatness ratio, t2 = t1

2+√
2

and t3 = t1

2+2
√

2
is used 

[61]. Again, we can introduce tε and divide the T̃CB2 into two parts. 
The first yields the SSH model rotated by φ = arctan(1/(2

√
2 + 2)), 

while the second contains small corrections.
The fact that t3 flattens the lower band may be also understood 

in terms of dimer wavefunctions, by the means of the perturbation 
theory. Let us consider only the lowest band of a fully dimerized 
system and introduce the inter-dimer terms as a perturbation. If 
t2 = t1

2+√
2
, t3 = 0, the inter-dimer terms yield a negative inter-

dimer coupling. Since the t3 terms are proportional to unit matrix, 
they are not affected by the rotation. As a result, the contribution 
of t3 is positive, so the effective inter-dimer hopping amplitude is 
lowered and the band gets flattened. On the other hand, in the up-
per band both contributions are positive, hence the addition of t3
increases the band dispersion.
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