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1. INTRODUCTION

Incompressible quantum fluid states have recently been observed at unexpected
values of the electron filling factor (e.g. ν= 4/11, 3/8, 5/13, 3/10, and 4/13). Some
of these states have been attributed to composite Fermions (CF’s) of different “fla-
vor” with the notation 2CF, 4CF, . . . used to denote CF’s with different numbers
of attached Chern–Simons (CS) flux quanta [1]. The idea of forming new quasipar-
ticles (QP’s) by attaching additional CS flux to Laughlin QP’s is not new [2], and
it is known to be invalid for certain values of νQP, the QP filling factor [3]. In this
paper we investigate QP correlations in light of our understanding of correlations in
Laughlin states [4] and in the Moore–Read state [5]. Through numerical diagonal-
ization of a system of NQP QP’s interacting through a QP pseudopotential VQP(L2),
incompressible states are found at νQE = 2/3, 1/2, 1/3 and at νQH = 1/4, 1/5, cor-
responding to novel observed fractions at electron filling factors ν = 5/13, 3/8, 4/11
and 3/10, 4/13, respectively [6]. However, the interpretation of the numerical results
in terms of QP correlations is not completely clear. Laughlin correlations among the
QP’s can be ruled out quite easily for spin polarized states [3,7]. Pairing correlations
of the Moore–Read type do not fit the numerical results for all values of NQP and do
not always have the correct relationship between NQP and the degeneracy, 2lQP + 1,
of the QP angular momentum shell [7]. Despite the lack of final resolution, some
general features of the correlations occurring with different pseudopotentials seem
worth reviewing.
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Figure 1. Pair interaction pseudopotentials (pair interaction energy V2 vs. relative
angular momentum R2) for electrons in the lowest (a) and first excited LL (b), and
for QE’s of the Laughlin ν = 1/3 state (c).

2. PAIR PSEUDOPOTENTIALS

For an interacting two dimensional Fermion system in the presence of a perpen-
dicular magnetic field B, the energy of interaction of a pair (in the Haldane spherical
geometry [8]) depends on the pair angular momentum L2 (whose allowed values are
twice the single particle angular momentum l minus an odd integer). This energy
is referred to as the pair pseudopotential V2(L2). For electrons interacting through
Coulomb forces it depends on Landau level (LL) index n as illustrated in Fig. 1 (a)
for the n = 0 (LL0) and (b) n = 1 (LL1) LL’s. In this figure we display V2 as a
function of the relative angular momentum defined by R2 = 2l−L2. The smallest al-
lowed values of R2 correspond to the smallest pair separations and largest repulsion.
Also shown in Fig. 1 (c) is the pseudopotential VQE(R2) describing the interaction
of two Laughlin quasielectrons (QE’s) [9] of the ν = 1/3 condensed state. For the
smallest values of R2, VQP can be obtained with reasonable accuracy from numerical
diagonalization of small systems of electrons at appropriate values of the magnetic
monopole strength 2Q [9,10]. The fact that the energies E2QP(R2) of the two QP
states are not all degenerate results from their residual interactions with one another.
In fact, up to an overall constant, which has no effect on correlations, E2QP(R2) is
the QP pseudopotential VQP(R2). In Fig. 2 we compare the low lying spectrum of 12
electrons at 2l = 29 with that of four QE’s of the Laughlin ν = 1/3 state interacting
through VQP(R2). The agreement gives us confidence in treating larger QP systems
interacting through the pseudopotential VQP(R2) obtained as described above.

3. PAIR ANGULAR MOMENTA AND SUM RULES

A simple theorem involving the total angular momentum L of an angular mo-
mentum eigenstate |lN ; Lη > of N Fermions, each of angular momentum l, can be
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Figure 2. Energy spectra for N = 12 electrons in the lowest LL with 2l = 29 and for
N = 4 QE’s in the first excited CF LL with 2l = 9. The energy scales are the same,
but the QE spectrum obtained using VQE(R2) is determined only up to an arbitrary
constant.

used to obtain insight into the nature of the correlations [11]. It can be written
∑

i<j

L̂2
ij = L̂2 + N(N − 2)l̂2. (1)

Here L̂ij = l̂i + l̂j is the angular momentum of pair < i, j >. The usefulness of this
theorem results from the fact that energy of a state |lN ; Lη〉 can be written [12]

Eη(L) =
N !

2!(N − 2)!

∑

L2

GLη(L2)V2(L2). (2)

The pair amplitude GLη(L2) is defined as the probability of having pairs with pair
angular momentum L2 in the multiplet |lN ;Lη〉. GLη(L2) can be expressed in terms
of the coefficients of fractional grandparentage [13], or in terms of the expectation
value of an operator Pij(L2) which projects the many body eigenfunction |lN ;Lη〉
onto a subspace in which the pair < i, j > is in pair eigenstate |l2; L2〉. For an
antisymmetric eigenfunction |lN ; Lη〉, GLη(L2) can be written

GLη(L2) = 〈lN ;Lη|P12(L2)|lN ;Lη〉. (3)

Because GLη(L2) is the probability that |lN ;Lη > contains pairs with pair angular
momentum L2, and because of Eq. (1), the relation between L̂2 and

∑
i<j L̂2

ij , we
can obtain two useful sum rules:

∑

L2

GLη(L2) = 1, (4)

and
1
2
N(N − 1)

∑

L2

L2(L2 + 1)GLη(L2) = L(L + 1) + N(N − 2)l(l + 1). (5)



An immediate result of these sum rules and Eq. (2) is the absence of correlations for
a pair pseudopotential given by VH(L2) = A+BL2(L2 +1) which we call a harmonic
pseudopotential. By the absence of correlations we mean that Eη(L) is independent
of the index η. All multiplets having the same total angular momentum L have the
same energy.

4. CORRELATIONS

The pair pseudopotential V (R) (we omit the subscript 2 on V2 and R2) can
be written as the sum of a harmonic and an anharmonic contribution; V (R) =
VH(R) + ∆V (R). Correlations are completely determined by ∆V . Consider, for
example, the model pseudopotential in which

∆V (R) ∝ Uα(R) = (1− α)δR,1 +
1
2
αδR,3, (6)

where 0 ≤ α ≤ 1. For α = 0, the lowest energy state for each value of the total
angular momentum L is the state with the smallest value of GLη(R = 1), which we
will call GL0(R = 1). Such states can be selected from the set of multiplets |lN ;Lη〉
by defining l∗ = l − (N − 1) and forming the set |l∗N ; Lη〉. In fact, if ∆V (R = 1)
is infinite, only states which completely avoid R = 1 pairs have finite energy. This
complete avoidance of R = 1 pairs corresponds exactly to the Laughlin–Jastrow
factor

∏
<i,j>(zi − zj)2 in the Laughlin wavefunction for the ν = 1/3 state [4]. The

lowest value of the single particle angular momentum l at which such states can occur
satisfies 2l = 3(N − 1), so that 2l∗ = N − 1 corresponds to a filled effective Landau
level with an L = 0 Laughlin incompressible ground state. Selection of the subset
|l∗N ; Lη〉 from the original set of multiplets [14] always yields states with low total
angular momentum and low energy (since they avoid the largest pair repulsion). This
is exactly what is meant by Laughlin correlations.

This approach can be used to justify Jain’s composite Fermion picture [15] with-
out the necessity of introducing a mean Chern–Simons field and a new energy scale
associated with CS gauge interactions among fluctuations. The only energy scale
is the Coulomb scale e2/λ, where λ is the magnetic length, and its pseudopotential
coefficients V (R). For example, the ν = 2/5 state can be obtained by starting with
electrons at filling factor ν = 2 in a dc magnetic field Bi. By adiabatically increasing
the dc magnetic field to Bf = 5Bi, and simultaneously adding adiabatically to each
electron a CS flux tube carrying two flux quanta oriented opposite to the dc field,
one automatically obtains a Laughlin correlated state at ν = 2/5. The change in the
dc magnetic field decreases the magnetic length, and the CS flux causes Laughlin
correlations between the electron pairs. To eliminate any remnant of the kinetic en-
ergy associated with electrons which were initially in LL1, the resulting wavefunction
must be projected onto LL0. Jain has shown in detail how the mean field picture [15]
with CF filling factor ν∗ satisfying ν∗−1 = ν−1 − 2p, where p is an integer, gives rise
to the Jain sequence of incompressible states at ν = n(1 ± 2pn)−1 when ν∗ is equal
to an integer n. If ν∗ is not equal to an integer, the excess CF’s go into the next
CF LL as QE’s of the Jain state (holes in nearly filled CF levels act as quasiholes
(QH’s) of the Jain state). If the QP pseudopotential VQP(L2) satisfies the necessary



conditions (i.e. behaves superharmonically at the appropriate value of the QP filling
factor νQP) the QP’s can form incompressible daughter states. For spin polarized
systems this does not happen at νQE = 1/3 and at νQH = 1/5.

For the first excited LL α = 1/2 makes Eq. (6) a model pseudopotential that can
be used to investigate the nature of the correlations. It is not difficult to demonstrate
that in this case Laughlin correlations (i.e. minimum value of GL0(R = 1)) will not
produce the lowest energy state [7]. One can transfer some pair probability away from
GL0(R = 3) to GL0(R = 1) and GL0(R > 3) in such a way that the two sum rules,
Eqs. (4) and (5), are still satisfied. The energy can be lowered by such a transfer
if α ≥ 1/2. The increase in GL0(R = 1) from its Laughlin correlated value together
with the decrease in GL0(R = 3) can be interpreted as a indication of formation
of pairs. These R = 1 pairs have angular momentum L2 = 2l − 1. The pairs can
be treated as Bosons or as Fermions (a Chern–Simons transformation can change
statistics in two dimensional systems), but the pairs cannot get too close to one
another without violating the Pauli principle with respect to constituent electrons
belonging to different pairs. This can be accomplished by restricting the allowed
angular momentum of a pair (treated as a Fermion) to the value

l∗FP = 2l − 1− 3
2
(Np − 1). (7)

Here Np is the number of Fermion pairs, and subtracting 3
2 (Np − 1) from the value

L2 = 2l − 1 changes the Boson pairs to Fermions and keeps the pairs from getting
too close to one another.
One can easily see from Eq. (7) that the Fermion pair filling factor νFP and electron
filling factor ν1 (in the first excited LL, LL1) are related by

1
νFP

=
4
ν1
− 3. (8)

Pairing would be expected for values of ν1 satisfying 2/3 ≥ ν1 ≥ 1/3, where Jain
states that avoid R = 1 occur for a superharmonic potential, as in the lowest LL,
LL0. At νFP = 1/3, 1/5, 1/7, and 1/9 one might expect Laughlin correlations among
the Fermion pairs. From Eq. (8) this would suggest condensed states at electron
filling factors (in LL1) of ν1 = 2/3, 1/2, 2/5, and 1/3. Adding to these values 2, for
the occupied spin up and spin down LL0’s, gives ν = 2 + ν1 = 8/3, 5/2, 12/5, and
7/3. Certainly the ν = 5/2 state is the most studied state of the LL1. The ν = 8/3
and 7/3 are also observed, but have not been studied in detail.

In Fig. 3 we display the spectra obtained for 8, 10, and 12 electrons at angular
momentum l satisfying 2l = 2N + 1 using the Coulomb pseudopotential for the LL1

(a)–(a′′) and the model pseudopotential, Eq. (6), with α = 1/2, (b)–(b′′). In each
case the L = 0 Moore–Read ground state is clearly separated from the excitations
by a gap. The excited state spectra of the Coulomb and model pseudopotentials are
qualitatively similar, but no harmonic contribution to the energies (which increases
as L(L + 1)) has been included in the model potential.

It is informative to evaluate the pair amplitude G2(R) for the model pseudopo-
tential given by Eq. (6). This is easily accomplished by using the eigenstates obtained
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Figure 3. Energy spectra for N electrons on a Haldane sphere: N = 8 at 2l =
17, N = 10 at 2l = 21, and N = 12 at 2l = 25, calculated for the Coulomb
pseudopotential of LL1 (a)–(a′′) and for the model pseudopotential of Eq. (6) with
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Figure 4. Dependence of pair amplitudes G2(R) on parameter α of pair interaction
Uα defined by Eq. (6), calculated on a Haldane sphere for the lowest L = 0 states of
N -particle systems.

from exact diagonalization. The resulting G2(R) are displayed as a function of the
parameter α for R = 1 and 3 in Fig. 4.
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Figure 5. Triplet interaction pseudopotentials (triplet interaction energy V3 vs.
relative triplet angular momentum R3) for pair pseudopotentials shown in Fig. 1.

5. LARGER CLUSTERS

The theorem relating the total angular momentum L̂ of a multiplet |lN ; Lη〉 can
be extended to larger clusters. It is not difficult to show for n-particle clusters [16]
that

∑

i1<i2<···<in

L̂2
i1···in

=
(N − 2)!

(n− 2)!(N − n)!

[
L̂2 + N(N − n)(N − 1)−1 l̂2

]
. (9)

Here L̂i1···in = l̂i1 + · · ·+ l̂in , and the sum is over all distinct n-particle clusters. For
n = 3 the energy of a multiplet |lN ;Lη〉 can be written

Eη(L) =
N !

3!(N − 3)!

∑

R3,β3

G(3)
Lη (R3, β3)V3(R3, β3). (10)

Here G(3)
Lη (R3, β3) is the probability amplitude of having a triplet with relative angular

momentum R3 = 3l − L3 in multiplet β3. The allowed values of R3 are 3, 5, 6, 7,
. . ., but for values of R3 smaller than 9 there is only a single multiplet for each R3.
For these values, V3(R3) can be considered a single three particle pseudopotential.

In Fig. 5 we display the triplet pseudopotential V3(R3) associated with each of
the pair pseudopotentials given in Fig. 1. As in the case of the pair pseudopotential,
normalization of the triplet probability amplitude G(3)

Lη (R3, β3) together with Eq. (9)
imply that if a triplet pseudopotential is linear in L̂2

3 (the square of the triplet angular
momentum), every multiplet |lN ; Lη〉 with the same value of L has the same energy.
In analogy with the occurrence of Laughlin correlations in the presence of short range
anharmonicity of the pair pseudopotential (∆V2(R2) = δR2,1), short range triplet an-
harmonicity ∆V3(R3) = δR3,3 is known to produce Moore–Read correlations [5]. By
this we mean the avoidance of triplets with R3 = 3. The CF picture associated with
attaching Chern–Simons flux to the Moore–Read electron pairs gives incompressible
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Figure 6. Low energy spectra and pair amplitude functions: Frames (a), (b), and
(c) show the energy spectra for N = 10 QE’s at 2l = 23, for N = 12 QE’s at 2l = 25,
and for N = 12 QE’s at 2l = 21 as a function of total angular momentum L. Frames
(d), (e), and (f) display pair amplitude functions G(R) for the ground states of the
case presented in (a), (b), and (c), as a function of relative pair angular momentum
R. The solid circles are the ground state values of G(R) for the QE pseudopotentials.
The open circles are the values for the superharmonic electron pseudopotential.

L = 0 ground states at 2l = 2N − 3 and 2l = 2N + 1, corresponding to the electron–
hole conjugate states for a half filled LL1. In addition, the low energy excitations
obtained numerically are in good qualitative agreement with the CF picture [16].

6. NUMERICAL RESULTS FOR NQP QUASIPARTICLES

In Fig. 6 we present the low energy spectra for (a) N = 10 QE’s at 2l = 23,



which corresponds to νQE = 1/3 and ν = 4/11; (b) N = 12 QE’s at 2l = 25, which
corresponds to νQE = 1/2 and ν = 3/8; and (c) N = 12 QE’s at 2l = 21, which in
a simple pairing model like that used in discussing the Moore–Read ν = 5/2 state
would be expected to give a νQE = 1/2 and ν = 3/8 state. The pseudopotential
VQE(R2) used in the numerical evaluations is taken from the work of Lee, Scarola,
and Jain [10]. The νQE = 1/3 state is one of a sequence of states occurring at
2l = 3N −7 whose spectra we have evaluated numerically for 4 ≤ N ≤ 12. The other
two states belong to the sequence 2l = 2N + 1, which together with their conjugate
states at 2l = 2N − 3 correspond to νQE = 1/2 and ν = 3/8. Frames (a) and (b)
show L = 0 ground states separated by a substantial gap from excited states. Frame
(c) does not have an L = 0 ground state, though a simple pairing model [6,17] would
predict one for this case. In frames (d), (e), and (f) the values of the pair amplitude
functions G(R) for the ground states of (a), (b), and (c) are shown as solid dots. For
the sake of contrast, G(R)’s for a superharmonic electron pseudopotential are shown
as open circles. The pairing at R = 1 and avoidance of R = 3 QP states are quite
clear.

A very simple pairing model based on Halperin’s idea [18] was used [6,17] earlier
which assumed that all the QE’s formed R = 1 pairs. The pairs can be treated as
Fermions [6] or as Bosons [17], and if Laughlin correlations between the pairs are
assumed, incompressible ground states are formed at νQE = 1/3, 1/2, and 2/3 and
νQH = 1/5 and 1/4, giving novel condensed states at the values observed experimen-
tally [1]. However, the simple complete pairing model is probably too simple. Two
major difficulties are not yet understood. First, the states obtained in our numerical
calculations occur at 2l = 3N − 7 (for νQE = 1/3) for N = 8, 9, 10, 11, and 12, and
at 2l = 3

2N + 2 (for νQE = 2/3) for N = 10, 12, 14, 16, and 18. Complete pairing
can only occur for N even, and the sequence at 2l = 3N − 7 occurs for both odd and
even values of N . In addition, the simple complete pairing model would predict the
νQE = 1/3 state at 2l = 3N − 5 and the νQE = 2/3 state at 2l = 3

2N + 1, instead of
at the values of 2l observed in the numerical study. Although this discrepancy is a
finite size effect which becomes negligible for large N , we consider it important and
are trying to understand its cause.

It is worth noting that the formation of clusters of k Fermions of angular momen-
tum l (when the clusters themselves are treated as Fermions) results in condensed
liquid states of Laughlin correlated clusters when 2l = mN−[(m−1)k+1]. This would
give correlated pair states at 2l = 2N−3 and correlated triplet states at 2l = 3N−7,
as observed in our numerical results. Of course, the occurrence of complete triplet
formation requires N to be divisible by 3, so it would only explain selected states in
the 2l = 3N − 7 sequence. We are still investigating what happens when incomplete
clustering (simultaneously having single Fermions, Fermion pairs, Fermion triplets,
etc.) occurs. The second problem is that the paired states at 2l = 2N − 3 (and its
electron–hole conjugate states at 2l = 2N + 1) do not occur at every expected even
value of N in the numerical experiments.

Our numerical results are summarized in Fig. 7, a plot of N versus 2l which
contains four straight lines 2l = 3N − 7, 2l = 3

2N + 2, 2l = 2N − 3, and 2l = 2N + 1.
The last two are conjugate pair states for νQE = 1/2. The values at which νQE = 1/3
and νQE = 2/3 states found in our numerical experiments are shown as solid squares
and solid dots, respectively. The values at which we find νQE = 1/2 states are shown
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Figure 7. The sequences of νQE = 1/3 (at 2l = 3N−7), νQE = 2/3 (at 2l = 3
2N +2),

and νQE = 1/2 (at 2l = 2N − 3 and 2N + 1) states shown as straight lines. The
values of N and 2l at which L = 0 ground states separated from excited states by
a substantial gap are shown as solid dots and solid squares (for νQE = 1/3 and 2/3,
respectively) and by open circles and open squares (for νQE = 1/2). The locations
where L = 0 ground states of N QP’s each with angular momentum l would be
expected in the simple pairing model but are not found numerically are indicated by
the symbol ‘+’.

as open circles and squares (the circles and squares surround the solid dots and solid
squares at 2l = 17, where νQE = 1/2 and νQE = 1/3 or νQE = 2/3 fit the observed
states). The expected but unobserved states at 2l = 13 (for N = 6 and 8), 2l = 21
(for N = 10 and 12), and 2l = 29 (for N = 14 and 16) are indicated by the symbol
‘+’.

We know [6] that for a model pseudopotential with Uα(R = 1) = 1 − α and
Uα(R = 3) = α/2, having approximately α ≤ 0.25 and α ≥ 0.75 leads to Laughlin
correlations with G(R = 3) À G(R = 1) and anti-Laughlin correlations with G(R =
3) ¿ G(R = 1), respectively. For α ≈ 0.5 (as in the first excited electron LL),
G(R = 3) ≈ G(R = 1). For this case, the Moore–Read state is considered a good
description, and it is directly applicable to the ν = 5/2 state which corresponds in
the Uα to α ≈ 1/2.

A model three-body pseudopotential [5] V3(R3) = δR3,3 (where R3 = 3l − L′

and L′ is the three-particle angular momentum) can be used to describe the Moore–
Read correlations. In Fig. 8 we display G3(R3 = 3), the amplitude for triplets with
R3 = 3 (the smallest allowed value) as a function of α, the parameter in the two-body
pseudopotential Uα(R). It is clear that for 0.4 ≤ α ≤ 0.5, triplets with R3 = 3 are
maximally avoided. However, for α ≈ 1, G3(R3 = 3) is restored to a value even larger
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Figure 8. Triplet amplitude G3(R3 = 3) plotted as a function of α in the lowest
L = 0 state of different numbers of Fermions N interacting through Uα in a shell
with 2l = 2N − 3.

than that for α = 0. This is certainly suggestive of clusters larger than pairs, and is
currently being studied.
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