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Abstract. In a two dimensional electron system, a spin wave (SW) of a filled Landau level consists of an electron–hole pair
in the minority and majority spin levels respectively. The energy of a single SW is a well known function of wave number k
(or of angular momentum � � kR on a spherical surface of radius R). Numerical results for the energy of a pair of SW’s as a
function of their total angular momentum are used to study SW–SW interactions.

INTRODUCTION

The spectrum of spin excitations of a two-dimensional
N-electron system at filling factor ν � N�2l � 1��1 � 1
can be determined as a function of total angular momen-
tum L and spin S by numerical diagonalization of the
Coulomb interaction [1] in the Haldane spherical geom-
etry [2]. At high magnetic field these excitations involve
only the lowest Landau level (LL0), and they consist of
K � 1

2 N�S spin flips, i.e., K e–h pairs, with each e and h
having angular momentum l � 1

2 �N � 1�. The energy of
a single spin wave (SW) can be evaluated analytically [3]
(as well as numerically); it consists of the Zeeman energy
plus the Coulomb energy. The Coulomb energy itself is
the sum of EX , the exchange energy lost due to the spin
flip, and the interaction energy Veh of the e–h pair. Veh
varies with the SW angular momentum �, but EX does
not. At � � 0, the Coulomb energy vanishes resulting in
the uniform (k � 0) spin resonance occurring at the bare
Zeeman energy.

Since it consists of a pair of fermions, a SW is often
thought of as a boson. For � � 0, the SW has a finite
electric dipole moment, and one might be tempted to
think of a pair of SW’s as bosons interacting via electric
dipole coupling. This picture gives completely erroneous
results because it ignores the composite nature of the
SW’s, thereby neglecting the Pauli exclusion principle
for identical fermions belonging to different SW’s.

HILBERT SUBSPACE OF SPIN WAVES

The simplest illustration of the importance of the com-
posite nature of the SW’s can be obtained for a sys-
tem of N � 4 electrons at 2l � 3. The allowed values
of the total angular momentum L for different values of

the total spin S can be determined by noting that each
pair of identical fermions has allowed angular momenta
l2e � l2h � 2l � j, where j is an odd integer (giving
l2e � 0� 2). Adding l2e and l2h, treated as distinguish-
able objects, gives L � 02�1�23�3�4. These values
belong to �L�S� multiplets with values of S � 0, 1, and
2. It is not difficult to see that the multiplets �L�S�nLS are
�0�2�; �1�1�, �2�1�, �3�1�; �0�0�, �2�0�2, �4�0�, where nLS
is the number of independent multiplets of given L and S.
The total number of states contained in these eight multi-
plets is ∑LS�2L�1��2S�1�nLS � 70, the number of dis-
tinct ways of putting 4 fermions in �2l � 1��2s� 1� � 8
states.

Treating the individual SW’s with � � 0� 1� 2�
3 as bosons and ignoring their composite nature gives
rise to a much larger Hilbert space of SW states; e.g.
states with � � �� � 3 would give states with L � 6.
Antisymmetrization with respect to identical fermions
constituents eliminates these extraneous states.

SIMPLE NUMERICAL RESULTS

We illustrate our numerical results and their interpreta-
tion with a slightly larger “toy” system having N � 6
and 2l � 5. The allowed multiplets �L�S�nLS with a given
value of Sz �

1
2 �N��N�� are determined in the standard

way, and they are: �0�3�; �1�2�, �2�2�, �3�2�, �4�2�, �5�2�;
�0�1�2, �1�1�, �2�1�5, �3�1�3, �4�1�5, �5�1�2, �6�1�3, �7�1�,
�8�1�; �1�0�3, �2�0�, �3�0�5, �4�0�2, �5�0�3, �6�0�2, �7�0�2,
and �9�0�. There are ��2l�1��2s�1��!�N!��2l�1��2s�
1��N�!��1 � 924 states in these 48 multiplets.

In Fig. 1 we show the energy as a function of L of
the multiplets with 0 � S � 3. The ground state occurs
at L � 0 and S � 3. This multiplet contains seven states
with �3 � Sz � 3 and L � 0. The lowest excited state
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FIGURE 1. Spin excitation spectrum of N � 6 electrons at
2l � 5. Different symbols correspond to total spin S � 0, 1, 2,
and 3. The low-energy states marked by lines and the energies
marked by the horizontal dashes are described in the text.

has S � 2 and L � 1, and is part of a band of one SW
states marked by a dashed line connecting diamonds at
L � 1 up to 5. One interesting result is the almost straight
line connecting the origin with the lowest eigenstates at
L � 1 to 5. We interpret these states as states containing
1 � n � 5 SW’s, each with angular momentum � � 1.
Because this band is almost linear, these SW’s are almost
non-interacting. The open circles at 2 � L � 4 form an
arc going from this band at L � 2 to 4, and the value
L � 3 lies between the arc of a single SW states and the
straight line representing n non-interacting � � 1 SW’s.
The S � 0 state at L � 3 is, of course, part of the band of
n non-interacting � � 1 SW’s with n � 3. This behavior
(arcs of eigenvalues consisting of different numbers of
SW’s with �� 1, 2, . . . ) persists for large systems.

Also, marked on Fig. 1 by a heavy dash at different
values of L are energies ε� � ε�� corresponding to two
SW’s with �� �� � L, where ε� is the energy of a non-
interacting SW with angular momentum �. The differ-
ence between these energies and the lowest open cir-
cles (energy of fully interacting states containing two
SW’s) can be interpreted as the binding energy of two
SW’s. Because � is not a conserved quantity in a sys-
tem containing more than one SW, the eigenstates are
actually linear combinations of different partitions ���� ��
with 1 � ���� � N�1.

In Fig.2 we show the results for the interaction energy
of two SW’s with wave number k � ��R (and � � 1

2 N)
traveling parallel to one another [4]. The interaction en-
ergy V is measured in the units of e2�2πR, where R is the
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FIGURE 2. The interaction energy V in units of e2�2πR
as a function of kλ for two spin waves of wave number k �
��R and L � 2�. The data for N � 30 and 50 are essentially
indistinguishable.

radius of the spherical surface, and the abscissa is kλ ,
where λ is the magnetic length. The calculations were
carried out for N � 30 and 50, and the two curves are es-
sentially indistinguishable. Other features of the numeri-
cal data are susceptible to simple physical interpretation
and will be reported elsewhere [4].
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