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We investigate an interaction-driven transition between crystalline and liquid states of strongly correlated
spinless fermions within topological flat bands at low density (with filling factors ν = 1

5 , 1
7 , 1

9 ). Using exact
diagonalization for finite-size systems with periodic boundary conditions, we distinguish different phases, whose
stability depends on the interaction range, controlled by the screening parameter of the Coulomb interaction.
The crystalline phases are identified by a crystallization strength, calculated from the Fourier transforms of
pair correlation density, while the fractional Chern insulator (FCI) phases are characterized using momentum
counting rules, entanglement spectrum, and overlaps with corresponding fractional quantum Hall states. The
type of the phase depends on a particular single-particle model and its topological properties. We show that for
ν = 1

7 and 1
5 it is possible to tune between the Wigner crystal and fractional Chern insulator phase in the kagome

lattice model with the band carrying the Chern number C = 1. In contrast, in the C = 2 models, the Wigner
crystallization was absent at ν = 1

5 , and appeared at ν = 1
9 , suggesting that C = 2 FCIs are more stable against

the formation of crystalline order.

DOI: 10.1103/PhysRevB.104.085107

I. INTRODUCTION

One of the most remarkable findings of the solid-state
physics in the last few decades is the discovery of topologi-
cal orders. They have changed the paradigm of matter phase
classification and provided a potential way to construct a
fault-tolerant quantum computer, based on the non-Abelian
fractional (anyonic) statistics [1,2].

Among the most thoroughly studied examples of the
topological orders are the fractional quantum Hall (FQH)
states [3–5]. They were initially observed in the two-
dimensional (2D) electron gas in a strong magnetic field,
where they appear at a fractional filling of the first or second
Landau level [6]. Alternative realizations were proposed in
lattice systems. In this case, the role of a Landau level is
played by a topological flat band, i.e., an energy band with
a small dispersion and nonzero Chern number, and the FQH-
like states arising in this setting are called fractional Chern
insulators (FCIs) [7–10]. They were experimentally realized
in moiré lattices in graphene in a strong magnetic field [11],
and there are strong indications that they can also be created
without an external magnetic field [12]. Alternative realiza-
tions include the optical lattices [13–21] or arrays of optical
cavities [22–28], which can be easier to control than electronic
systems.

The existence of FCIs in simple lattice models of spin-
less fermions is now well established by many theoretical

*michal.kupczynski@pwr.edu.pl
†blazej@phys.au.dk
‡arkadiusz.wojs@pwr.edu.pl

works [7–10,29–37]. The FCIs can exhibit several phenom-
ena which are missing in the usual continuum FQH effect.
The most striking is the possibility of obtaining bands with
arbitrary Chern number C. For |C| = 1 the FCIs are the lattice
analogs of the well-known FQH states (Laughlin, Moore-
Read, etc.) [7–10,29,30]. However, in the case of |C| > 1,
one finds a new series of states [31–34,38,39], which are a
modified version of the multilayer Halperin FQH states [40].

In order to design experiments, it is important to determine
the stable regions of the desired phase. For both FQH and FCI,
one of the factors determining this stability is the competition
with other phases, e.g., the charge order. Being essentially flat
bands, the Landau levels allow for the existence of a Wigner
crystal (WC). In the presence of the long-range Coulomb
interaction, WC becomes lower in energy than the FQH states
as the filling factor decreases [41–49], which was confirmed
experimentally [50,51]. The competition of FCIs with charge
density waves was studied for large filling factors [52–59].
The existence of such charge-ordered states depends on the
commensuration with the lattice. On the other hand, in our
earlier work [60], we have shown that analogously to FQH
systems, Wigner crystals also emerge at a low filling factor of
topological flat bands for certain types of long-range interac-
tion. In such cases, significant commensuration effects were
absent. In general, the existence of Wigner crystal depends on
the filling factor and the type of interaction. For example, in
the Landau levels, one can use the Haldane pseudopotential
formalism to construct a parent Hamiltonian for a Laughlin
state at arbitrarily low filling [5], for which a Coulomb inter-
action would generate a Wigner crystal. Thus, by changing
the pseudopotential parameters, one can trigger a transition
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from FQH state to WC at a constant filling factor [48] (some
control of these parameters in an experiment can be exerted,
e.g., by changing the width of a quantum well [61]). Inspired
by these findings, we investigate the stability of various liquid
and crystal phases, and transitions between them, in different
lattice models.

In this work, we study fractionally filled topological flat
bands in the presence of a density-density interaction with
a screened Coulomb (Yukawa) potential by utilizing the ex-
act diagonalization (ED) method to compute the spectra and
eigenstates for finite-size systems, with periodic boundary
conditions. Our main results are following: (i) it is possible to
trigger a transition between FCI and WC on bands with C = 1
at fillings ν = 1

7 and 1
5 by varying the range of the interaction,

(ii) the FCIs at C = 2 are more stable against WC formation
than the FCIs at C = 1, (iii) nevertheless it may be possible to
observe a WC-FCI transiton in C = 2 bands at filling ν = 1

9 .
The paper is organized as follows. In Sec. II we describe

the C = 1 and 2 tight-binding models used by us, as well as
the details of the exact diagonalization (ED) procedure. Next,
in Sec. III, we show that for ν = 1

7 of a C = 1 band, the long-
and short-range interactions give rise to, respectively, WC and
FCI phases, we introduce the WC and FCI characteristics and
study them as a function of interaction range. Then, in Sec. IV,
we compare the C = 1 and 2 systems at filling ν = 1

5 , showing
that the former display a WC-FCI transition, while in the latter
we observe the FCI for all considered interaction ranges. Also,
we study the C = 2 bands at ν = 1

9 , and observe both the
FCI and WC phases, although their behavior as a function of
the interaction range strongly depends on the system size and
chosen lattice model. Section V summarizes the results.

II. MODELS AND METHODS

A. Lattice models

We consider various tight-binding models which exhibit a
nonzero Chern number of the lowest band. Within an energy
band, the crystal momentum eigenstates are given by the
Bloch wave functions

ψk(r) = eik·ruk(r), (1)

where ur(r) is lattice periodic. The Chern number is defined
as the integral of Berry curvature divided by 2π , i.e.,

C = i

2π

∫∫
BZ

[〈
∂uk

∂ky

∣∣∣∣∂uk

∂kx

〉
−

〈
∂uk

∂kx

∣∣∣∣∂uk

∂ky

〉]
dkxdky, (2)

where BZ denotes the Brillouin zone. The Chern number (2)
is proportional to the Hall conductivity of the fully filled band.

As an example of a model with C = 1 of the lowest
band, we take the kagome lattice described by the Hamilto-
nian [10,62]

Hkag = −
∑
〈i, j〉

(t1 ± iλ1)c†
i c j −

∑
〈〈i, j〉〉

(t2 ± iλ2)c†
i c j, (3)

where ci (c†
i ) annihilates (creates) a particle on ith lattice

site, 〈. . .〉, 〈〈. . .〉〉 denote nearest and next-nearest neighbors,
respectively. The “+” corresponds to the hoppings along the
arrows in Fig. 1(a) and the “−” to the hoppings in the opposite
direction. At λ1 = λ2 = t2 = 0, the model is gapless, with one

FIG. 1. The lattice models used in our work: (a) kagome lattice,
(b) triangular lattice, (c) generalized Hofstadter model on square
lattice. Only the hoppings starting and/or ending within a given unit
cell (purple parallelograms) are shown.

band being exactly flat. Introducing nonzero λ1 creates a pat-
tern of effective magnetic flux, which is zero on the average,
but breaks the time-reversal symmetry, which is necessary for
nonzero Chern numbers. At λ2 = t2 = 0, the middle band has
C = 0, and the two other bands have opposite Chern numbers
with |C| = 1 (except from λ1 = 0 and λ1 = ±√

3t1 where
the model is gapless). Inclusion of nonzero second-neighbor
hoppings t2, λ2 allows to tune the band dispersion. Although
the lowest band has C = 1 in a wide range of parameters, it is
nearly flat (resembling a Landau level) only in a certain part of
this range. Moreover, even if we disregard the single-particle
energies in the ED computation (see Sec. II B), making the
bands artificially flat, not all parameter values are favorable
for FCIs, due to, e.g., the fluctuations of the Berry curva-
ture [10]. Considering systems with ν = 1

5 filling, we use
the parameters t1 = 1, t2 = −0.3, λ1 = 0.28, and λ2 = 0.2,
corresponding to a nearly flat lowest band with C = 1 [62],
which is shown to host a fermionic FCI phase at ν = 1

3 [10].
As we will show later, the ν = 1

5 FCI can also exist there. In
the case of ν = 1

7 , for which the FCI phase is much less stable
than for higher fillings, we keep t1 = 1 and t2 = −0.3, but we
use λ1 = 0.5 and λ2 = 0.2, for which allow to increase the
FCI stability (see Appendix A).

In addition to the kagome lattice, we also study two models
with a C = 2 lowest band. In general, the |C| > 1 mod-
els [33,63] can be created systematically by stacking several
layers of |C| = 1 models. However, the first model we use, the
triangular lattice model, was found independently from this
method [32]. It is defined by the Hamiltonian

Htri = ±t
∑
〈i, j〉

exp(iφi j )c
†
i c j ± t ′ ∑

〈〈i, j〉〉
c†

i c j exp(iφ′
i j ). (4)

Here, “+” and “−” refer to the hopping denoted by solid and
dashed lines in Fig. 1(b), respectively. Each of the phases has
three possible values φ′

i j ∈ {−2φ, 0, 2φ}, φi j ∈ {−φ, 0, φ},
where the positive sign refers to the hopping along the arrows
in Fig. 1(b), negative sign to the hopping in the opposite
direction, and 0 to the hoppings without an arrow. Follow-
ing Ref. [32], we choose t = 1, t ′ = 1

4 , φ = π/3, for which
we obtain a nearly flat lowest band with C = 2, while the
two other bands have C = −1 each. At these values of pa-
rameters, the lowest band can host bosonic FCIs at different
fillings [32,34], thus, we expect that the same will happen for
fermions.
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The second C = 2 model is a generalized Hofstadter model
on the square lattice, i.e., a Hofstadter model with second-
neighbor hoppings [64],

HHof = −
∑
n,m

(
tc†

n,mcn+1,m + λode2π iφ(n+ 1
2 )c†

n,mcn+1,m+1

+ λode−2π iφ(n+ 1
2 )c†

n,mcn+1,m−1 + λde2π iφnc†
n,mcn,m−1

)
.

(5)

Here, instead of labeling sites with a single index i, we label
them with two indices n, m denoting their x and y positions
in the lattice, respectively. The model is highly tunable. At
λod = 0, λod = t it reduces to an ordinary Hofstadter model
on square lattice [65]. At rational values of the flux, φ = a/b,
with a ∈ Z, b ∈ N+ and a, b coprime, the model has b bands.
At small flux, these bands are a lattice approximation of the
continuum Landau levels, and thus have |C| = 1. At higher
flux, the Landau level structure is no longer visible, but the
bands still are topologically nontrivial. The second-neighbor
hopping λod can mix them, leading to topological phase tran-
sitions and changes in the Chern numbers. Reference [64]
shows that even in the relatively simple case of φ = 1

3 one
can obtain a rich phase diagram, with Chern number up to
|C| = 4 in the middle band and up to |C| = 2 in two other
bands. In this work, we use φ = 1

3 , which results in the unit
cell containing three sites. The other parameters are fixed at
t = 1, λd = 1, λod = − 1

2 , which leads to the presence of a
nearly flat C = 2 lowest band, which was shown to host a
ν = 1

3 bosonic FCI [66].

B. Interaction Hamiltonian

We study finite-size systems with N1 × N2 unit cells along
two real-space lattice vectors and Npart particles. We impose
periodic boundary conditions, so the total momentum is a
good quantum number. We consider two-body interaction in a
form of the screened Coulomb (Yukawa) potential

V̂ =
∑
i, j

V (ri j )nin j, (6)

where ni, n j are the particle densities at i and j sites, ri j is the
smallest distance between the sites i and j on the torus (i.e.,
with periodic boundary conditions taken into account). The
interaction potential is

V (r) = exp[−α(r − rNN)]/r, (7)

where rNN is the distance between the nearest-neighboring
sites, and α is the screening parameter that will be varied to
trigger the phase transition. We note that in general, instead
of considering only the closest periodic image of a given site,
we could have calculated the sum of contributions of all its
periodic images, however, since we consider strong screening,
we expect that the differences between these two approaches
will be small. Without the loss of generality, we set rNN = 1.

To focus only on the interaction effects and to reduce the
computational complexity of our calculations, instead of the
full Hamiltonian, we diagonalize

Hint = PV̂ P, (8)

where P is the operator of projection to the lowest band. Thus,
we first diagonalize the single-particle Hamiltonians given
by Eqs. (3)–(5), and then construct the many-particle basis
by distributing Npart particles over the momentum eigenstates
in the lowest band. In order to focus on interaction effects,
we use the flat-band approximation by neglecting the band
dispersion. For a given filling factor ν = Npart

N1N2
, the result-

ing Hamiltonian matrix is diagonalized using the implicitly
restarted Arnoldi method implemented in the ARPACK pack-
age.

III. PHASE TRANSITION BETWEEN CRYSTAL AND
LIQUID PHASES AT FILLING ν = 1

7

To study the crystal and liquid phases, we need indica-
tors which have large values when the given phase is stable
and small (or vanishing) values when the phase is absent. In
Secs. III A and III B, these indicators are introduced on the
example of N1 × N2 = 5 × 7 plaquette of the kagome lattice
at filling factor ν = 1

7 . Finally, in Sec. III C the phase transi-
tion between the liquids and crystal phases at filling ν = 1

7 is
analyzed.

A. Crystal phase for C = 1 band at ν = 1
7

We begin with the long-range limit of screened Coulomb
interaction, in which the Wigner crystallization is expected.
The crystalline properties of many-body eigenstates |ψ〉 are
determined using the pair correlation density (PCD), defined
as

G(i, j) = 〈ψ |c†
i c†

j c jci|ψ〉
〈ψ |c†

i ci|ψ〉 . (9)

For future analysis, we replace every site with a Gaussian
function and make the PCD continuous (see Appendix B for
details).

Figure 2(a) shows the many-body spectrum for α = 0.5.
The energy differences are very small and decrease as the
screening increases (which means that distant particles inter-
act less strongly), thus the energies are renormalized through
division by the next-nearest-neighbor interaction strength
VNNN [in kagome lattice, VNNN = V (

√
3)].

Figure 2(b) shows the PCD of the ground state. The PCD
in the plaquette is shown together with its periodic repetitions.
The peaks of the PCD and the fixed particle indicated by
red triangles form an almost-hexagonal lattice. Within the
plaquette, there are four peaks, which correspond to the four
particles, plus one fixed particle giving Npart = 5.

The periodicity of the Wigner crystal can be character-
ized by the peaks in the Fourier transform of PCD either
in Cartesian or polar coordinates, similarly as it has been
done in our previous work [60]. The Cartesian transform is
performed along two real-space lattice vectors, yielding the
quantity Fmn, where m, n are integers describing the momenta
(see Appendix B for definition). For the comparison of dif-
ferent plaquettes, it is convenient to normalize Fmn by the
F00 = Npart − 1. We define F̃mn as F̃mn = Fmn/F00. To avoid
the effects of the periodicity related to the periodic repetition
of the considered plaquette, only the Fourier peaks F̃mn of m
and n smaller than plaquettes sizes are taken into account. In
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FIG. 2. Wigner crystal in a N1 × N2 = 5 × 7 kagome sys-
tem with Npart = 5 particles for the screening parameter α =
0.5. (a) Energy spectrum normalized by the interaction between
next-nearest-neighbor interaction VNNN. The color scale indicates
Cartesian crystallization strength. (b) Pair correlation density of the
ground state (located in K = [0, 0] subspace). The plaquette is drawn
together with periodic images to make the crystal structure more
visible. The red triangles denote a fixed particle in the center and
its periodic images. (c) The Cartesian Fourier transform of the PCD
from (b). (d) The polar Fourier transform of the PCD from (b).
Only the even components are drawn. The upper limit of the plot
corresponds to the red circle indicated in (b).

Fig. 2(c) we plot the magnitude of the normalized Cartesian
Fourier coefficients |F̃mn|. A clear reciprocal lattice, with a
unit cell smaller than in the reciprocal lattice of the underlying
kagome lattice, is seen as brighter peaks around the peak at
zero. This is a necessary condition for the presence of the
Wigner crystals. The magnitude of these Fourier peaks decay
as we move away from m = 0, n = 0, which is a consequence
of particles having a finite spatial extent (see Ref. [60] for
details).

We note that the Fourier transform of PCD is in fact much
less anisotropic than it looks in Fig. 2(c) at the first glance.
The apparent anisotropy comes from the fact that the Fourier
transform is performed in the direction of the two primitive
vectors of the kagome lattice, which are not orthogonal: the
angle between them is 60◦. The m and n integers describe
the Fourier components in these directions; in other words,
they describe the coordinates of the points in reciprocal space
along the reciprocal lattice vectors, the angle between which
is 120◦. Thus, if we plotted Fig. 2(c) in true reciprocal space,
with 120◦ angle between the axes, and with n and m rescaled
according to Eq. (B3), the Fourier peaks would be arranged in
a lattice much closer to hexagonal (see Fig. 1 in [60]). How-
ever, plotting F̃mn as in Fig. 2(c) makes it easier to determine
m and n of the peaks.

At a given particle number Npart, there is only a finite
number NW of possible Wigner lattices, each characterized
by two Fourier components at momenta (mi, ni ) and (oi, pi ),
i = 1, 2, . . . , NW , corresponding to the two fundamental vec-
tors of the reciprocal Wigner lattice. To obtain periodicity in
both directions, both of these components should be nonzero.
We define the crystallization strength as the square product of
the magnitudes of these two components, normalized by the
zeroth momentum component, maximized over all possible
crystals

W = max
i∈[1,NW ]

√∣∣F̃mini

∣∣∣∣F̃oi pi

∣∣. (10)

In contrast to our previous work (Ref. [60]), the square root
is added to the definition of W to obtain a magnitude of W
comparable to a single Fourier peak F̃mn. Ideally, W should be
0 for a perfectly flat PCD and 1 for an array of Dirac deltas
(i.e., pointlike particles). However, because of the existence
of “exchange-correlation hole” around the fixed particle, the
PCD is never perfectly flat even for liquids, and thus even
liquids can have small nonzero W . Nevertheless, the transition
between a liquid and a crystal should be accompanied by an
increase of W . The crystallization strength W is shown as a
color scale in Fig. 2(a) and one can notice that a set of the
lowest-energy states are of a crystalline character.

Alternatively, we can look at polar coordinates and ob-
tain the transform F̃θ (r, kθ ) in the angular direction only (see
Appendix B for details). Here, r is the distance to the fixed
particle and kθ is an integer describing momentum in the
angular direction. To define angular crystallization strength,
let us first define the peak strength at given kφ as the normal-
ized magnitude of the Fourier component maximized over all
possible values of the radius

F̃peak (kφ ) = max
r<rmax

|F̃θ (r, kθ )|, (11)

where rmax is defined in Appendix B. The angular crystalliza-
tion strength is defined as Wθ = maxkθ=2,4,6 F̃peak (kθ ). The Wφ

alone is not sufficient to determine the existence of the crystal,
as twofold symmetry is exhibited also, e.g., by the stripe order.
On the other hand, it probes not only the existence of WC but
also its symmetry.

The angular Fourier transform is shown in Fig. 2(d). The
range r corresponds to the red circle indicated in Fig. 2(b).
There is a maximum of angular density at kθ = 0 (the zeroth
Fourier component) around maximal r, which corresponds to
the six peaks closest to the fixed particle. At this radius, we
observe also a relatively strong kθ = 6 Fourier component,
showing that the PCD is approximately sixfold rotationally
symmetric, i.e., close to the hexagonal lattice. Note that
we also have a nonzero Fourier component at kθ = 4 (and,
weaker, at kθ = 2), which occurs because the Wigner crystal
is not perfectly hexagonal, as the perfectly hexagonal Wigner
lattice is not permitted by the boundary conditions for a 5 × 7
system.

B. Liquid phase for C = 1 band at ν = 1
7

In the limit of short-range interaction the FCI state is
expected as the ground state. To study this state, we fix the
parameter as α = 6.0. The fractional Chern insulator phase
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1�10�3 1�10�3

FIG. 3. FCI in a N1 × N2 = 5 × 7 kagome system with Npart = 5
particles for the screening parameter α = 6.0. (a) Energy spectrum
normalized by the interaction between next-nearest-neighbor inter-
action VNNN. The color scale indicates overlap O with model FQH
states. The overlaps in the momentum subspaces that do not corre-
spond to a model FQHE ground state are set to 0 by a definition.
(b) Entanglement spectrum of the absolute ground state (located
in the K = [0, 6] subspace) obtained after tracing out all but NA =
2 particles. (c) Energy spectrum normalized by the next-nearest-
neighbor interaction VNNN. The color scale indicates entanglement
entropy S. (d) Pair correlation density of the absolute ground state.
The plaquette is drawn along with periodic images to make the
crystal structure more visible. The red triangles denote the periodic
images of the fixed particle. (e) The Cartersian Fourier transform of
the PCD from (d). (f) The polar Fourier transform of the PCD from
(d). Only the even components are drawn. The upper limit of the plot
corresponds to the red circle shown in (d).

is identified by looking at various signatures of topologi-
cally nontrivial liquid state [9,40,67–71]. For the Laughlin
states at filling ν = 1/q, q ∈ N+, we expect q quasidegenerate
states separated by a gap from the rest of the spectrum. The
momenta of these states are determined by the appropriate
generalized Pauli principle [9,67]. Figure 3(a) shows the seven
nearly degenerated states separated by the energy gap to
excited states. The momenta of the quasidegenerate ground
states agree with predictions from the generalized Pauli prin-
ciple of ν = 1

7 Laughlin FCI [9,67]. To avoid confusion, we
note that throughout this work, in the cases where we observe
quasidegeneracy, we will use the phrase “quasidegenerate
ground states” to refer to the entire manifold and “absolute
ground state” to refer to the lowest-energy one.

The ground-state momentum counting rule is not a definite
proof of FCI existence. It should be supplemented, e.g., by the
analysis of the particle entanglement spectrum [68,69], which
should reveal a nonzero gap 
ζ between the low-energy sec-
tor with an appropriate number of states below the gap in each
momentum sector that agree with the appropriate generalized
Pauli principle. While typically in the literature one constructs
the density matrix as an equally weighted superposition of
pure state density matrices of all the quasidegenerate ground
states, we construct it from a single ground state (see Ap-
pendix C), which turns out to be sufficient to obtain the correct

FCI entanglement energy-level counting. The entanglement
spectrum is obtained after tracing out all but NA = 2 particles
(we use NA = 2 for all the systems investigated in this work).
In Fig. 3(b), 
ζ is denoted by the red dashed line with a
correct number of states below the gap confirming FCI. We
note that there are also more gaps higher in the entanglement
spectrum. They are absent for model FQH states, where the
lowest gap is infinite. For FCIs, some of these gaps were con-
nected with another generalized Pauli principle, which may
reflect different types of correlations that can be generated by
the Hamiltonian [10]. However, for the identification of the
type of topological order in the given state, only the lowest
gap is relevant.

We also calculate the entanglement entropy S, computed
in the particle partition (the same as for the entanglement
spectrum). The numerical value for S can be compared with
exact bounds Smax (the largest entropy permitted by the gen-
eralized Pauli principle) and Smin (the entropy of a single
Slater determinant). For FQHE, S was shown to be close to
the former limit [70,71], and we expect that the same will
happen for FCI. Although, as we will see later, this approach
is less reliable than the entanglement spectrum, in some cases
it does detect the transition between FCI and WC. The def-
initions of entanglement-related quantities can be found in
Appendix C. In Fig. 3(c), entanglement entropy is shown as
the color scale on the energy spectrum. The quasidegenerated
ground state is characterized by the high-entropy values. For
the investigated system, the lower and upper bounds for the
entanglement entropy are Smin ≈ 2.30 and Smax ≈ 5.95 (see
Appendix C for the definitions). The entropy for all states in
the ground-state manifold is close to the upper limit, as in the
FQH systems [70,71].

We also compare the overlaps O = | 〈ψ |ψFQH〉 |2 between
the state |ψ〉 and the ground state |ψFQH〉 of a model FQH
Hamiltonian within the same momentum subspace. The gauge
is fixed according to the prescription from Ref. [40]. The color
scale in Fig. 3(a) shows corresponding overlaps which are
O > 0.88 for the seven quasidegenerate ground states. The
comparison is performed only for the momentum subspaces,
in which there is a model ground state. For all the others, we
simply assign a zero overlap. More details of these calcula-
tions can be found in Appendix D.

Figure 3(d) shows the PCD of the absolute ground state at
a limit of short-range interactions for α = 6. A nearly uniform
PCD, apart from the vicinity of the fixed particle, indicates it
is a liquid state. This is confirmed by the Cartesian Fourier
spectrum shown in Fig. 3(e) and the polar Fourier spectrum
shown in Fig. 3(f), which do not show any clear reciprocal
Wigner lattice, thus the state is approximately rotationally and
translationally invariant.

C. Phase transition between crystal and liquid phases
for C = 1 band at ν = 1

7

In the two previous subsections, we have shown a few
signatures which allow for distinguishing liquid and crystal
phases. In the example system, the FCI state is a true ground
state in the limit of the short-range interaction, and many
low-energy states are Wigner crystals in the limit of the long-
range interaction. Thus, the phase transition between liquid
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1�10�3

1�10�3 1�10�3 1�10�3

1�10�3

FIG. 4. The energy spectrum of a 5 × 7 kagome system as a
function of α, normalized by the next-nearest-neighbor interaction
VNNN. The color denotes Wigner crystallization indicators in the
upper row: (a) Cartesian crystallization strength, (b) polar crystal-
lization strength; and FCI indicators in the lower row: (c) overlap
with model FQH states, (d) the gap in the entanglement spectrum,
(e) entanglement entropy. In (c), the overlaps in the momentum
subspaces not corresponding to a model FQHE ground state are set
to 0 by definition.

and crystal is expected by tuning α parameter in the screened
Coulomb interaction (6).

We begin from studies of the phase transition on the pre-
viously considered kagome plaquette N1 × N2 = 5 × 7 at the
filling ν = 1

7 . Figure 4 shows the evolution of the energy
spectrum as a function of α, measured with respect to the
absolute ground-state energy, with crystallization and liquid
signatures indicated by color scales.

The color scale in Fig. 4(a) shows the Cartesian crystal-
lization strength W and the polar crystallization strength Wθ

in Fig. 4(b). For low α, there is a single ground state with
relatively large W and Wθ . Low-lying excited states also dis-
play a crystalline order with even larger W and Wθ , compared
to the ground-state crystallization strength. As the interaction
range is decreased (larger α), crystallization strength W and
Wθ decrease for all states.

Above α ≈ 1.32 the seven states with the lowest energy
become separated from the rest of the spectrum by the gap
indicated by a red dashed line. The momenta of these states
agree with predictions from the generalized Pauli principle of
ν = 1

7 Laughlin FCI [9]. The energy split between that states
is minimized at α ≈ 1.65, and leads to the level crossing at
this point. These seven states are characterized by different
crystallization strengths W and Wθ . After the crossing, for
larger α, the crystallization strength of low-energy states is
small, but there are some states above the energy gap, which
display relatively large W and Wθ even above α = 2. However,
for sufficiently large α the crystalline order disappears from
all the states.

The quasidegenerate states at large α are indeed the FCI
states, which was confirmed by calculating the FCI signatures
in Figs. 3(c)–3(e). The overlap between the energy eigenstates
and the model FQHE ground states is denoted in Fig. 4(c). The
seven states forming the ground-state manifold have overlap

with the model states O > 0.55 in the entire range of α, even
below the gap closure at α 	 1.32, but reach O > 0.88 in the
limit of large α. The overlap of the model ground state with
the excited states is close to zero.

The evolution of the gap in the entanglement spectrum 
ζ

is shown as a color scale in Fig. 4(d). It can be seen that this
gap is open for the seven quasidegenerate ground states at
large α, and decreases (eventually vanishing), as α decreases.
In contrast, in the excited states the entanglement gap is much
smaller or nonexistent.

The evolution of entanglement entropy of the states is
shown as a color scale in Fig. 4(e). For the investigated sys-
tem, the lower and upper bounds for the entanglement entropy
are Smin ≈ 2.30 an Smax ≈ 5.95 (see Appendix C for the defi-
nitions). For α ≈ 6 the entropy for all states is S ≈ 5.8, which
is close to the upper limit, as in the FQH systems [70,71].
As α is lowered and the system undergoes the transition to
WC, the entropy decreases. The entropy can therefore be a
good signature of the FCI. Nevertheless, even for crystalline
states it remains well above the minimal value corresponding
to a single Slater determinant. While some excited states have
similar values of entropy as the ground states we note that the
bound Smax is valid only for the ground states, so the compari-
son with this bound does not tell us anything about the nature
of excited states. We also notice that the low-lying excited
states (some of which exhibit crystalline order even when the
FCI ground-state manifold is fully formed) have significantly
lower entanglement entropy than the quasidegenerate ground
states. Also, we observe that in the entire energy spectrum the
entanglement entropy decreases with decreasing α.

We can conclude that the crystalline phase is stable for
the long-range interactions, and is replaced by the FCI phase
in the limit of the short-range interaction on the considered
5 × 7 kagome plaquette. For the analysis of finite-size effects,
the signatures of both phases are plotted in Fig. 5 for three
kagome plaquettes with sizes 4 × 7, 5 × 7, 6 × 7 at filling
ν = 1

7 . We do not consider a 7 × 7 system, as on N1 = N2

plaquettes the degeneracy of the crystal may prevent its de-
tection [60]. Because these characteristics behave differently
for each state, here we plot them for a state selected in the
following way: we choose the momentum subspace in which
the absolute ground state is located at low α (e.g., K = [0, 0]
for the 5 × 7 system), and then we select the lowest state
from this subspace at each α. Because this subspace fulfills
the FCI generalized Pauli principle, the state in question turns
into one of the states from quasidegenerate FCI manifold as α

increases. The full spectrum with the WC and FCI indicators
is shown in Appendix E 1. For every considered system, the
crystallization strength, both Cartesian W [Fig. 5(a)] and polar
Wθ [Fig. 5(b)], decreases when α increases from values around
0.3–0.2 in the crystal phase to, below 0.2 in the liquid phase.
In the limit of the short-range interaction for all plaquettes
seven quasidegenerated states are separated by the energy gap
from the rest of the spectrum. Momenta of the ground states
are in full agreement with the counting rules for the Laugh-
lin state ν = 1

7 . Moreover, the increase of overlap O with
FQHE state [Fig. 5(c)], and normalized entanglement entropy
[Fig. 5(e)] when crystallization strengths decrease, proves that
the the crystal phase is replaced by the FCI phase. The similar
behavior is visible in the gap in the entanglement spectrum
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FIG. 5. The FCI and WC characteristics as a function of α for
three kagome systems with C = 1 at filling ν = 1

7 (a) Cartesian
crystallization strength, (b) polar crystallization strength, (c) overlap
with model states, (d) entanglement gap, (e) renormalized entan-
glement entropy S̃ = (S − Smin )/(Smax − Smin ). The dashed vertical
lines denote the α values for which the gap above the seven quaside-
generate FCI states closes. The dotted vertical lines correspond to the
location of the characteristic crossing of all seven quasidegenerate
states (there are two such crossings for the 6 × 7 system, see Fig. 11).

[Fig. 5(d)] for plaquettes 5 × 7 and 6 × 7. The gap in the
entanglement spectrum is not visible for the chosen state in
the 4 × 7 system, but it exists in a few other quasidegenerate
ground states, so that the value of the average gap over all
FCI states is nonzero. It indicates that the fractional Chern
insulator in that system is not as stable in the smallest systems,
as in the bigger ones. It is important to notice here, that calcu-
lating entanglement spectrum for only one state instead of the
superposition of all FCI states is not the standard approach,
so the lack of the gap in the entanglement spectrum is not
equivalent to the lack of the FCI state.

Previous subsections identify the crystal and the liquid
phases in the limit of small α (long-range interaction, a crystal
limit) and large α (short-range interaction, a liquid limit). In
Figs. 4 and 5, one can notice that that the phase transition does
not occur abruptly, it is rather continuous: the phase indicators
change smoothly and can remain relatively large even when a
given phase fully vanishes. However, this lack of sharp jumps
may be a result of the small size of investigated systems.
Moreover, the fact overlap remains relatively high in the WC
phase strongly suggests that FCI states have some crystal-
like correlations built in. Similar behavior was reported for
analogous phase transition in FQHE models [48].

Because the changes in most FCI and WC characteristics
are gradual, it is hard to define a transition point. Definitions
using some threshold on the values of these indicators would
always be arbitrary. Another way to define the transition point
is to look at characteristics which can take only the binary
“yes” or “no” values, for example, the existence of the energy
gap above the seven states described by generalized Pauli
principle. The level crossing leading to the closure of this gap
occurs in all three systems, at α ≈ 1.8, α ≈ 1.32, α ≈ 0.7
for 4 × 7, 5 × 7, and 6 × 7 systems, respectively (they are

denoted by dashed vertical lines in Fig. 5). While from these
results there seems to be a general trend of the transition
point moving to the lower α with increasing system sizes, in
such small systems, strong finite-size effects prevent us from
estimating the transition point in the thermodynamic limit.

We note that while our results are limited to the kagome
lattice model and a certain set of parameter values, in our
previous paper we have shown that the stability of the Wigner
crystal does not strongly depend on the model [60]. Thus,
the observed phase transition should be visible in any model
for any set of parameter values, for which the FCI phase
exists for short-range interaction. Moreover, these phenomena
should not be limited to the considered screened Coulomb
interaction, but should be visible in other similar types of
density-density interaction, which allows manipulation of the
interaction range.

IV. CRYSTAL-LIQUID PHASE TRANSITION
ON THE C = 2 MODELS

In the previous section, the phase transition between
Wigner crystal and fractional Chern insulator phases has been
analyzed at filling ν = 1

7 on the flat band with Chern number
C = 1. In this section, the results are extended to the models
with Chern number C = 2 at ν = 1

5 and 1
9 (in the former case,

we also compare it with a C = 1 band at the same filling
factor). The C > 1 FCIs can be understood as multilayer FQH
states with “color-entangling” boundary conditions, which
mix the layers [31,32,40,72]. For example, the ν = 1

5 and 1
9

FCIs on C = 2 bands, studied in this section, are modified
Halperin states at filling ν = 2

5 and 2
9 , respectively (the dif-

ference in fillings is a consequence of different definitions of
filling factor for FCI and FQHE).

The indicators of crystal and liquid phases at C = 2 are
the same as for C = 1. Counting rules are more complicated
comparing to the C = 1 case [72], but instead of implement-
ing them, we simply compare the momenta of the ground
states (or entanglement energy levels) with results for a model
FQH system [40,72]. These model states can also be used to
compute overlaps.

A. Topological phase transition at ν = 1
5 for C = 1 and 2 bands

The FCIs in C = 2 bands do not exist at ν = 1
7 . Therefore,

to compare the C = 1 and 2 cases, we study the ν = 1
5 filling.

In the case of C = 2 at ν = 1
5 , Fig. 6(a) shows a low-energy

spectrum as a function of the α parameter on the 6 × 5 tri-
angular lattice plaquette with Npart = 6 particles. The energy
gap between five low-energy states and higher-energy states
is visible in the whole range of α parameter. Momenta of
these states agree with the momenta of the FQH states, which
strongly suggests that the system is in the FCI phase. The
color scale denotes strength of the Cartesian Fourier transform
of the Wigner crystallization W . The low values of W < 0.05
mean that none of the quasidegenerate ground states is a
Wigner crystal. The lack of crystallization is confirmed by
visual inspection of the PCDs. To prove that the system is in
the FCI phase, the overlap of the energy eigenstates with the
FQHE ground states is shown in Fig. 6(c). It is high for the
ground state on the whole α range. Its value is the highest in

085107-7
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FIG. 6. The energy spectrum of 6 × 5 C = 1 and 2 plaquettes as
a function of α, normalized by the next-nearest-neighbor interaction
VNNN at filling ν = 1

5 . The left column corresponds to the triangular
lattice system with the flat band with Chern number C = 2 [(a) and
(c)], the right column corresponds to the kagome system with the
flat band with Chern number C = 1 [(b) and (d)]. The color denotes
Cartesian Wigner crystallization strength in the upper row [(a) and
(b)], and overlap with the model FQHE state in the lower row [(c) and
(d)]. The overlaps in the momentum subspaces not corresponding to
a model FQHE ground state are set to 0 by definition.

the limit of the long-range interactions, and its minimum value
is equal to approximately O ≈ 0.75 in the limit of short-range
interaction. In conclusion, in the considered system the WC
phase does not exist, and the FCI state is more stable for the
long-range interaction than in the short-range limit.

The results for Chern number C = 2 at filling ν = 1
5

are compared with the system with the same filling but
with Chern number C = 1. In Fig. 6(a) the crystallization
strength W is presented on the low-energy spectrum of 6 × 5
kagome plaquette with Npart = 6 particles, and Fig. 6(c) shows
the overlap with model FQHE states for the same system.
The Cartesian crystallization strength is about W ≈ 0.17 in
the absolute ground state at low α (which is doubly degenerate
in this case) and even higher in some excited states, indicating
the presence of crystalline order. The five quasidegenerate
ground states become separated from the rest of the spectrum
at α ≈ 1.80. The momenta of these states fully agree with the
counting rules. The ground states become FCI in the limit
of the short-range interaction, confirmed by calculating the
overlap with the FQHE states, which achieves O ≈ 0.9. Thus,
the phase transition between FCI and WC phases exists at
C = 1 at filling ν = 1

5 , and is similar as the one occurring at
ν = 1

7 . This indicates that the lack of phase transition in the
system with Chern number C = 2 is not an effect of the filling
ν = 1

5 only, and it suggests that it could be an effect of the
Chern number value.

We study the phases at filling ν = 1
5 for different plaquettes

and models (including the generalized Hofstadter model). The
results for a single, selected state are shown in Fig. 7. The state

FIG. 7. The FCI and WC characteristics as a function of α for
different models and plaquettes at filling ν = 1

5 for the one cho-
sen state. The left column corresponds to the kagome lattice with
the flat band with Chern number C = 1 [(a), (c), (e), (g), (i)], the
right column corresponds to the triangular lattice model (T ) and
Hofstadter model (H ) with the flat band with Chern number C = 2
[(b), (d), (f), (h), (j)]. The different plaquette sizes are denoted by
different colors. In the first row the Cartesian crystallization strentgh
W is shown [(a) and (b)], in the next row shows polar crystal-
lization strength Wθ [(c) and (d)]. In the last three rows the FCI
characteristics are presented: the overlap with model FQHE state
[(e) and (f)], the entanglement gap [(g) and (h)], and the renormal-
ized entanglement entropy S̃ = (S − Smin )/(Smax − Smin ) [(i) and (j)].
The dashed vertical lines denote the α values for which the gap
above the five quasidegenerate FCI states closes. The dotted vertical
line corresponds to the location of the characteristic crossing of all
five quasidegenerate states. The results for the 8 × 5 plaquette are
obtained only for some characteristics and only in a limited range of
α because of the numerical complexity of the considered system and
problems with numerical convergence of diagonalization problem,
especially in the limit of high-α values.

is chosen in the same way as in Fig. 5. If there is exact de-
generacy, the degenerate states display similar characteristics,
so just one subspace is chosen. The full spectrum for these
other systems with the WC and FCI indicators is shown in
Appendix E 2 for the case with C = 1 and in Appendix E 3 in
the case with C = 2. From Fig. 7 we can see that the phase
transition occurs in systems with the Chern number C = 1
and does not occur in considered systems with C = 2. The
crystallization strength for C = 1 is, in general, smaller for
ν = 1

5 than for ν = 1
7 . This shows that the Wigner crystals

at ν = 1
5 are more fragile than for ν = 1

7 , which is in line
with the results from [60], showing that the crystallization
strength increases as the filling is lowered (although we note
that here we use different single-particle parameters at ν = 1

5
and 1

7 , see Sec. II A). The gap closing for C = 1 occurs at
α ≈ 1.78, α ≈ 0.96, α ≈ 2.16 for 6 × 5, 7 × 5, and 8 × 5
systems, respectively (see the dashed vertical lines in Fig. 7).
Contrary to the ν = 1

7 case, here we do not observe any clear
trend in the location of the transition point as a function of the
system size, which may be due to geometric effects.

The results presented in this section show that the consid-
ered phase transition and the stability of the crystal strongly
depend on the value of the Chern number.
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FIG. 8. The energy spectra of ν = 1
9 C = 2 systems as a function

of α. The colors in the rows 2, 4 and 1, 3 denote the Cartesian
crystallization strength and the overlap with the model FQH wave
functions, respectively. The first two rows correspond to the gener-
alized Hofstadter model: (a), (c) 4 × 9, and (b), (d) 6 × 6. The next
two rows contain the results for the triangular lattice model: (e), (h)
4 × 9, and (f), (i) 6 × 6, and (g), (j) 5 × 9. We note that the energy
levels are often degenerate, and these states can strongly differ in W
(i.e., each data point can coincide with an another one with lower or
higher W ).

B. Topological phase transition at ν = 1
9 for C = 2 band

The next available filling for a fermionic C = 2 FCI is
ν = 1

9 . For such a case, we study the following systems: 4 × 9
and 6 × 6, both with Npart = 4, for the generalized Hofstadter
model, and 4 × 9, 6 × 6 and 5 × 9 with Npart = 4, Npart = 4
and Npart = 5, for the triangular lattice model. The Npart = 5
case is not considered for the Hofstadter model, as for rectan-
gular Bravais lattice the WCs are degenerate on the classical
level, which can prevent their detection using W or Wθ .

Figure 8 shows the energy spectra color coded with W
and overlap O for these systems. Let us start by analyzing
the overlaps. For all systems but one (Hofstadter 6 × 6), we
observe the presence of nine states with quite high overlap
with model FQH states (we have O > 0.75 in all these systems
at some values of α). For each of these systems, there is a
range of α where these states are the lowest. Obviously, these
states have also the same momenta as the model FQH ground
states. Therefore, it seems that at these values of α the systems
is in the FCI phase.

Further WC and FCI characteristics for selected states are
shown in Fig. 9. The procedure of choosing the state is similar
as in Figs. 5 and 7, but we have to adjust it for two reasons.
First, the absolute ground state at low α does not always lie

FIG. 9. The FCI and WC characteristics as a function of α for
triangular lattice (T ) and Hofstadter model (H ) and plaquettes at
filling ν = 1

9 . The different plaquette sizes are denoted by different
colors. The upper row corresponds to the Wigner crystallization
strength, polar (a) and Cartesian (b). The lower row corresponds
to the FCI indicators: overlap with the FQHE state (c), gap in the
entanglement spectrum (d), renormalized entanglement entropy S̃ =
(S − Smin )/(Smax − Smin ) (e). The results are plotted for a state chosen
using the procedure described in the main text. The dashed vertical
lines correspond to the locations of gap closings.

in a subspace consistent with FCI counting rules. Therefore,
we focus only on the momenta corresponding to model FQH
ground states. From these subspaces, we choose the ones
where, at α = 0.5, the lowest state has the lowest energy. Typ-
ically, this energy level is exactly degenerate, as degeneracy is
common in the ν = 1

9 case. Therefore, there are several such
subspaces. Second, unlike the ν = 1

5 cases, the degenerate
states can differ significantly in crystallization strengths (i.e.,
the data points in rows 1 and 3 of Fig. 8 can coincide with
ones with higher or lower W ). Therefore, among the selected
subspaces, we choose the one in which the lowest state at low
α has highest W . Then, we plot all the characteristics for the
lowest state of this subspace for all α.

From Fig. 9(d) one can see that only the 5 × 9 triangular
lattice system displays an entanglement gap. Similarly, the
entanglement entropy of the selected state is closest to Smax

for this system [Fig. 9(e)]. In contrast, for the 4 × 9 Hof-
stadter plaquette the entanglement entropy is far from the
maximal value [S̃ = (S − Smin)/(Smax − Smin) ≈ 0.6]. This
suggests that the FCI state is weaker and less stable than in
the cases studied previously.

Moreover, the behavior of the FCI phase differs qualita-
tively between systems, as can be seen in Fig. 8. In the 6 × 6
and 5 × 9 triangular lattice systems [Figs. 8(i) and 8(j)] the
energy gap above the FCI ground-state manifold remains open
in the entire investigated range of α. In the 4 × 9 systems of
both lattices [Figs. 8(c) and 8(h)] we observe two α values
where the gap closes: an upper and lower limit to the FCI
phase (note that the upper limit was not observed for the
systems investigated previously in this work). Moreover, in
the 4 × 9 Hofstadter system the gap is very small compared to
the energy splitting of the ground-state manifold. In the 6 × 6

085107-9
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Hofstadter system [Fig. 8(d)], there is no FCI phase. Qualita-
tive differences between systems can also be seen in Fig. 9,
where the curves of FCI and WC characteristics can have
significantly different shape for different plaquettes. These
differences might be another signature of the fact that the FCI
phase is weak and unstable, but may also have geometrical
reasons: the shape of our systems varies strongly. We study the
plaquettes with aspect ratio 1 or close to 1 [6 × 6 triangular,
4 × 9 Hofstadter (remember that the Hofstadter unit cell has
aspect ratio 3)], as well as elongated ones (6 × 6 Hofstadter,
4 × 9 and 5 × 9 triangular).

In addition to the FCI, we also observe Wigner crystals.
By investigating W and Wθ [rows 1 and 3 of Figs. 8, 9(a),
and 9(b)], as well as inspecting the PCDs visually, we find that
all the systems exhibit some form of crystalline order at low α.
This happens even for the 5 × 9 triangular system, where W
is low for all states, and all values of α. In this case the crystal
is weak [i.e., the particles are not as localized as in Fig. 2(b)]
and deformed (i.e., the PCD maxima are displaced from their
ideal periodic position), which may be a reason for low values
of W . Nevertheless, there are four PCD maxima, signifying
the localization of particles, and the formation of the crystal
coincides with a slight increase in the W .

If we define the phase transition point as the FCI gap
closing, then such transitions exist only in the 4 × 9 systems,
at α ≈ 1.72, α ≈ 2.90 (Hofstadter) and α ≈ 1.33, α ≈ 4.90
(triangular). Nevertheless, as noted above, we observe some
form of crystalline order also for other triangular lattice sys-
tems. In the cases investigated before within this work, we
observed that the crystalline order starts to develop already at
α higher than the gap closing. This may also be the case here,
i.e., the gap might close at α < 0.5. Another possibility is that
the gap remains open due to the finite-size effects, and will
close in the thermodynamic limit (provided that neither WC
nor FCI disappears in infinite systems).

Another interesting case is the 4 × 9 Hofstadter system.
Figures 8(a) and 9(a) show that W remains high even when
the system is in the FCI phase, while, as noted before, the
entanglement entropy is far from Smax [Fig. 9(e)]. The visual
inspection of the PCD shows that it displays crystalline order,
i.e., the system simultaneously exhibits characteristics of WC
and FCI. This is in line with the suggestion by Yang et al. [48]
(discussed also in Sec. III C), that the FQH states have some
crystal-like correlations built in. Because of such effects, the
gap closing is not necessarily a good definition of transition
point for the C = 2 ν = 1

9 .
The differences between the systems studied in this sub-

section make any extrapolation to the thermodynamic limit
even less reliable than for other cases considered in this work.
The importance of the geometric effects can be seen when one
compares the 4 × 9 and 6 × 6 plaquettes of the same lattice
model, even though the number of sites is the same in both
cases, and both have Npart = 4, the difference in aspect ratio
leads to significantly different behavior of the two systems.

In summary, both Wigner crystal and FCI can exist at
ν = 1

9 of C = 2 bands (at least in finite-size systems), and
the transition between them can be triggered by controlling
the interaction range. However, there are strong, qualitative
differences in the behavior of these phases in systems of
various size, shape, and underlying lattice model. Moreover,

by combining these findings with results from Sec. IV A, we
conclude that forming a Wigner crystal is harder in C = 2
bands than in C = 1 ones, in the sense that one has to consider
lower filling factors. In other words, the C = 2 FCIs seem
to be more stable against WC formation than their C = 1
counterparts. The difference between C = 2 and 1 is striking,
compared to the small difference between the C = 1 and 0
cases reported in [60], although we note that the comparison in
Ref. [60] was made for α too small for the FCI to be observed
at C = 1.

V. CONCLUSIONS

In this work, we performed a finite-size exact diagonaliza-
tion study of transition between the FCI and Wigner crystal
as a function of interaction range in the C = 1 and 2 flat-band
lattice models.

First, we studied the example of the C = 1 band of the
kagome lattice at ν = 1

7 . We analyzed five different charac-
teristics of FCI and WC, all leading to the same conclusion:
the FCI and WC emerge respectively for short- and long-range
interaction, and hence it is possible to trigger a WC-FCI tran-
sition by controlling the interaction range. The results were
qualitatively similar for three investigated systems.

Next, to see how the WC formation is affected by band
topology, we compared the behavior of C = 1 and 2 models at
ν = 1

5 . The former displayed an FCI-WC transition, although
the WC was weaker than for ν = 1

7 . In the latter, however,
the WC was absent, which suggests that the C = 2 FCIs are
more stable against the crystal formation than their C = 1
counterparts at the same filling.

Finally, we studied the C = 2 models at ν = 1
9 . In such a

case, we observed both FCI and WCs, suggesting that one
may be able to observe the FCI-WC transition for C = 2
systems. However, the behavior of these phases as a function
of α exhibited significant, qualitative differences between the
lattice models and system sizes.

We note that for the systems whose size is small enough
for exact diagonalization, the geometry of the system and the
number of particles plays an important role, e.g., by limit-
ing the possible Wigner crystals consistent with the periodic
boundary conditions. This may be an explanation for qualita-
tive differences between the systems. Therefore, our results,
strictly speaking, can be applied to finite-size systems only,
and while we can speculate about the thermodynamic limit,
we cannot make any definite conclusion about it. However,
working on few-particle systems, with similar number of par-
ticles as discussed in this work, might be a feasible way of
creating an FCI in optical lattices [73], and in such case one
does not need to analyze the thermodynamic limit. While the
periodic boundary conditions were chosen by us for computa-
tional convenience, we note that an optical-lattice realization
of a fractional Chern insulator in a torus geometry was pro-
posed [74]. However, typical schemes of creating an FCI in
optical lattices consider short-range interaction [14–18], so
creating a tunable long-range interaction remains an experi-
mental challenge.

Further exploration of the transition for larger systems
(perhaps also with open boundary conditions) may be per-
formed using the density matrix renormalization group
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FIG. 10. Energy gap 
E , average entanglement entropy 〈S〉, average overlap of the FCI state with the FQHE state 〈O〉, respectively.
Signatures of the FCI phase on the 4 × 7 plaquette with filling ν = 1

7 as the function of the lattice parameters λ1, λ2 with fixed values t1 = 1,
t2 = −0.3, screened Coulomb interaction with α = 6.0.

(DMRG) method [75] or using model wave functions [40,76],
as these methods were successful in investgating the WC-to-
FQH transition in Landau levels [42,43,49].
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APPENDIX A: CHOICE OF KAGOME LATTICE
PARAMETERS

The stability of the FCI phase depends not only on the
many-body interaction, but also on the lattice parameters. In
most cases, we have used well-known parameters from the
literature [10,32,62,64]. The only exception is the kagome lat-
tice with filling ν = 1

7 , for which the FCI phase was not stable
enough for various considered system sizes and interaction
parameters.

To determine more suitable values of parameters, we cal-
culated signatures of the FCI phase as the function of the
Hamiltonian (3) parameters λ1 and λ2 with fixed values t1 =
1, t2 = −0.3. We focused on the 4 × 7 plaquette with N = 4
particles with the screened Coulomb interaction in short-range
limit (screening parameter α = 6.0) (see Fig. 10). The sim-
plest signature of the FCI state is the energy gap 
E between
the sevenfold quasidegenerate FCI ground state at lattice mo-
menta K ∈ {(2, 0), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)}
and the first excited state. If one of the six lowest states

has a momentum which does not belong to this set, i.e., the
generalized Pauli principle is not fulfilled, we set 
E = 0.
Additionally, we calculated average particle entanglement en-
tropy 〈S〉 and average overlap with FQHE state 〈O〉. The
average is taken over seven states with the lowest energy. By
looking for that three signatures of the FCI state, we chose
λ1 = 0.5 and λ2 = 0.2. These parameters are marked by the
× sign on the Fig. 10. We note here that the question as to what
is the influence of single-particle parameter on the stability of
WC and properties of WC-FCI transition is still open.

APPENDIX B: SIGNATURES OF THE WIGNER
CRYSTAL: DETAILS

Here we provide a more detailed summary of the def-
initions of crystalization strength. For even more details,
see [60]. The PCD is turned into a continuous quantity by
replacing every site with a Gaussian,

Gi(r) =
N∑

j=1

G(i, j)
1

σ
√

2π
exp

(
−|r − rj|2

2σ

)
, (B1)

where σ is the width of the Gaussian, and r is the vector
connecting site i (where the fixed particle is located) and a
given point in space. We use σ = 0.5. Typically, the results
do not differ significantly for different starting sites i, hence,
we can choose any site and drop this index, provided that we
measure r with respect to that site.

To obtain the Cartesian Fourier transform, we first dis-
cretize this continuum PCD on a regular grid Ngrid,1 × Ngrid,2,
obtaining a matrix

G̃mn = G

(
mN1

Ngrid,1
a1 + nN2

Ngrid,2
a2

)
, (B2)

where a1, a2 are the lattice vectors of the tight-binding model.
We perform a discrete Fourier transform of G̃mn using the
fast Fourier transform (FFT) algorithm and obtain the Fourier
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coefficients Fmn, which we normalize by dividing by the mag-
nitude of the zeroth component F̃mn = Fmn/|F00|. Thus, the
pair correlation density in the momentum space is given, up
to normalization, by

Fc(k) =
∑
mn

F̃mnδ
(

k − m

N1
b1 − n

N2
b2

)
, (B3)

where c denotes “Cartesian” and b1, b2 are the reciprocal
lattice vectors obtained from a1, a2. The Fourier peaks located
at m, n being multiples of N1, N2, respectively, correspond to
the reciprocal lattice of the tight-binding model. Any m, n
smaller than N1, N2, respectively, are responsible for features
varying on a scale larger than a single unit cell, i.e., a possible
Wigner crystal. However, not every such pattern is a WC:
it needs to be periodic in two directions, i.e., two Fourier
components should be nonzero, and the number of maxima
of the corresponding real-space pattern should match the
number of particles. Thus, for every Npart there are a finite
number NW of possible Wigner crystals, each labeled with
two integer vectors (mi, ni ), (oi, pi ). We determine them by
listing all possible combinations of these integers, and ne-
glecting all these with incorrect number of maxima. Then, for
every possible crystal, we calculate the corresponding crystal-
lization strength by multiplying the two Fourier components
described by these vectors. Next, we take the maximum value
of this product over all crystals as the crystalization strength
[Eq. (10)]. We note that G̃mn does not have the exact periodic-
ity of the reciprocal lattice of the Wigner crystal, as the “hole”
at the position of the fixed particle breaks the periodicity of the
original PCD (see the Appendix A 3 of [60] for details). This
can generate nonzero W for a noncrystalline PCD pattern, but,
compared to W for a Wigner crystal in the same system, it is
generally smaller.

We can also perform the angular Fourier transform, which
we do by discretizing G(r) on a polar grid and performing
FFT at each r separately. This yields the r-dependent Fourier
coefficients Fθ (r, kθ ). As noted in the main text, we look
at kθ = 2, 4, 6, related to (2,4,6)-fold rotational symmetry.
However, we should bear in mind that PCD is periodic with
plaquette periodicity. That is, even if PCD is uniform far away
from the fixed particle, the periodic images of the “hole”
around its position will introduce an artificial angular peri-
odicity. Thus, we need to introduce a cutoff radius rmax. As
a compromise between avoiding the “holes” and capturing as
many particles as possible, we choose rmax equal 0.6 times
the distance to nearest periodic image of the fixed particle.
Having this in mind, we define the normalized angular Fourier
transform as

F̃θ (r, kθ ) = Fθ (r, kθ )

maxr<rmax |Fθ (r, 0)| . (B4)

Then we proceed as described in Sec. III A.

APPENDIX C: ENTANGLEMENT SIGNATURES OF FCI

The existence of the FCI phase can be seen using entan-
glement methods. Here, we focus on the particle partition.
Typically in the FCI literature [9,69], one constructs a den-
sity matrix as an equal-weight superposition of the pure-state

density matrices of all q quasidegenerate ground states,

ρ = 1

q

q∑
i=1

|ψi〉 〈ψi| . (C1)

Then, one divides the system into two subsystems A and B,
with NA and NB particles (NA + NB = Npart), and performs a
trace over the B subsystem ρA = TrBρ. From the eigenvalues
λi of the reduced density matrix ρA one constructs the entan-
glement energies ζi = − ln λi.

In our work, we follow this approach, but instead of using
ρ defined by Eq. (C1) we construct a pure-state density matrix
of each energy eigenstate separately:

ρi = |ψi〉 〈ψi| . (C2)

This definition also works for i > q, i.e., the excited states.
As we noted in the main text, in most of the studied cases,

even such a single-state entanglement spectrum displays the
gap and correct counting of states below it for FCI. We define
the entanglement gap in the following way. Let nP(K1, K2)
be the number of entanglement energy levels consistent with
the generalized Pauli principle [9,67] in the K = [K1, K2]
subspace. We denote the ith entanglement energy level
in the K subspace as ζi(K1, K2) [we assume that they are
sorted in an increasing order, i.e., ζi(K1, K2) � ζ j (K1, K1)
for i < j]. We define two sets of entanglement energies:
ζbelow = {ζi(K1, K2) : i � nP(K1, K2), K1 = 0, . . . , N1 −
1, K2 = 0, . . . , N2 − 1} and ζabove = {ζi(K1, K2) : i >

nP(K1, K2), K1 = 0, . . . , N1 − 1, K2 = 0, . . . , N2 − 1}. The
entanglement gap is defined as


ζ = max {0, min {ζabove} − max {ζbelow}}. (C3)

In the case of C = 2 states, instead of implementing the gen-
eralized Pauli principle, we compare the entanglement spectra
of the topological flat-band systems, obtained using (C2), to
the entanglement spectra of the model continuum Halperin-
type states, computed using (C1). That is, nP(K1, K2) used
in the calculation of 
ζ for the investigated systems is the
number of entanglement energy levels below the gap in the
corresponding model state.

Instead of looking at the structure of the entanglement
spectrum, we can use the entanglement entropy,

S = −
∑

i

λi ln λi. (C4)

In Refs. [70,71], an exact upper bound for the entanglement
entropy of Laughlin states was obtained:

Smax = ln
∑
K1,K2

nP(K1, K2). (C5)

It is derived by assuming that all ζi below the gap are equal,
and all the others are infinite, i.e., the corresponding λi

equal 0 and do not contribute to the entropy. The authors of
Refs. [70,71] found numerically that the entanglement entropy
of the continuum Laughlin states is close to that bound. We
expect that the same will happen for FCI, both at C = 1
and 2.

There is also a lower bound on the entanglement entropy,
obtained by assuming that the state |ψi〉 is a single Slater
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determinant

Smin = ln

(
Npart

NA

)
. (C6)

We expect that the entanglement entropy of the FCIs will be
far larger than this minimum value.

APPENDIX D: OVERLAP WITH MODEL FQH STATES

To calculate the overlap with a model wave function, three
problems need to be solved. First of all, the FQH and FCI
states should carry the same quantum numbers. That is, in the
single-particle bases |φFCI(k)〉, |φFQH(k)〉 for FQH and FCI,
the same sets of values of k = [k1, k2] momenta should be
allowed. If we fully exploit the translational symmetry of the
FCI fully, we have k1 = 0, . . . , N1 − 1 and k2 = 0, . . . , N2 −
1 as allowed momenta. However, in the Landau gauge for the
FQH systems, the Brillouin zone is different: it is one dimen-
sional, with k = 0, 1, . . . , N1N2, Therefore, another basis for
FQH systems should be used.

The second problem is that on a torus, we can add a phase
eiγ1 , eiγ2 at the boundary conditions in the directions a1, a2.
After such a modification, the system stays in the FCI-FQH
phase; indeed, these phases are varied during the calculation
of FCI-FQH signatures, such as spectral flow or many-body
Chern number (see, e.g., [8,77]). These phases control the
Berry phase of a particle encircling the torus around its fun-
damental cycles (large Wilson loops), and to maximize the
overlap, we should demand that the respective large Wilson
loops are equal for FCI and FQH. This does not necessarily
mean that the boundary condition phases are equal for FQH
and FCI. Therefore, we fix γ1 = γ2 = 0 for FCI and search
for the optimal γ1, γ2 in FQH.

Third, we should specify the mapping between FQH and
FCI precisely. To compute the overlap 〈ψ |ψFQH〉 between
the ED result and the model wave function, we need to
know 〈φFCI(k)|φFQH(k′)〉, i.e., the overlap between the single-
particle basis functions for FCI and FQH systems. Since
|φFCI(k)〉, |φFQH(k)〉 describe different systems, it is up to
us to define the relation between them by fixing the val-
ues of 〈φFCI(k)|φFQH(k′)〉. It is natural to identify the states
with the same momenta, i.e., to set 〈φFCI(k)|φFQH(k′)〉 = 0
if k 
= k′. However, this still leaves us with some ambiguity.
Let us assume that the basis |φFCI(k)〉 are the lowest-band
eigenfunctions resulting from the numerical diagonalization
of the single-particle model. We can define a different basis for
the FCI, by multiplying every basis vector by a momentum-
dependent phase |φ̃FCI(k)〉 = eiθk |φFCI(k)〉. We can require
either that 〈φFCI(k)|φFQH(k)〉 = 1 or 〈φ̃FCI(k)|φFQH(k)〉 =
1. These two options result in two different values of the
overlap. Therefore, we have to find a mapping for which
〈ψ |ψFQH〉 is maximal. That is, given |φFCI(k)〉, we have to
find the phases θk which transforms it into an another basis
|φ̃FCI(k)〉, which maximizes 〈ψ |ψFQH〉 under the condition
〈φ̃FCI(k)|φFQH(k)〉 = 1. This is what we mean by “fixing the
gauge.”

The solutions for all the three problems were given in
Ref. [40]. The authors proposed a Bloch basis for FQH sys-
tems, indexed by a momentum in N1 × N2 Brillouin zone,
and an algorithm which provides appropriate θk, γ1, and γ2.

The algorithm computes the Berry connection and the large
Wilson loops in the FCI case and compares with the result for
FQH, adjusting the γ1, γ2 accordingly. The gauge θk is found
by imposing a discrete analog of Coulomb gauge condition
for the FCI and solving a discretized Poisson equation with
Berry curvature fluctuation as a source. The algorithm was
implemented in the DIAGHAM software [78], and in our work
we use a DIAGHAM-based code to optimize the overlap.

The basis |φ̃FCI(k)〉 is then fed to the ED calculation, i.e.,
the Hamiltonian (8) is diagonalized in the many-particle basis
constructed as Slater determinants of these wave functions.
The model FQH states for the overlap are constructed by
diagonalizing the appropriate pseudopotential Hamiltonian in
the Bloch basis, taking into account the boundary condition
phases γ1, γ2. This is true for both C = 1 and 2. In the latter
case, a bilayer system is considered, with boundary conditions
mixing the layers. The Bloch basis is constructed following
Refs. [40,72]. The model wave functions for ν = 1

5 are ob-
tained with two first pseudopotentials V0 = V1 = 1 and the
rest equal to zero, while for ν = 1

9 four first pseudopotentials
are equal to unity, and the rest is zero.

APPENDIX E: SYSTEM-SIZE ANALYSIS

In this Appendix, we present the signatures of WC and FCI
phases in the low-energy spectrum of the systems partially
described in the main paper.

1. C = 1, ν = 1
7

In Sec. III we have shown the WC and FCI signatures
for the kagome lattice system at filling ν = 1

7 , for the whole
energy spectrum for the 5 × 7 plaquette and a single selected
state for 4 × 7 and 6 × 7 plaquettes. The energy spectrum
with the WC and FCI signatures for the last two systems is
plotted in Fig. 11. The Cartesian WC strength W is shown in
Figs. 11(a) and 11(b), and the overlap with the model FQHE
states is shown in Figs. 11(c) and 11(d).

The behavior of these systems is similar to the 5 × 7 case
described in Sec. III, in the sense that for large α we ob-
tain an FCI with seven quasidegenerate ground states, and
as we lower α this ground-state manifold splits while the
Wigner crystals emerge. The spectra from Fig. 11 display
also some differences with respect to the 5 × 7 case. For the
4 × 7 system, the gap above the FCI ground-state manifold
closes temporarily between α ≈ 3.1 and 3.6. Nevertheless, in
that region, these states still have a large overlap with model
FQHE states (O > 0.83). As for the 6 × 7 system, we can see
that the gap closing occurs for much smaller α than for two
other systems. We also note that similarly to the 5 × 7 case,
the Wigner crystals arise in the excited states as well, some-
times with larger W than in the ground state. Interestingly, in
both the 4 × 7 and the 6 × 7 systems, in some of the excited
states we obtain a different Wigner lattice than in the ground
states.

2. C = 1, ν = 1
5

In Sec. IV A we have shown the phase transition between
WC and FCI phases on the kagome lattice system at filling
ν = 1

5 , for the whole energy spectrum for the 6 × 5 plaquette
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1�10�3 1�10�3

1�10�3 1�10�3

FIG. 11. The Cartesian strength of Wigner crystallization W (up-
per row) and overlap O with the model FQHE states (lower row) on
the energy spectrum of the 4 × 7 (left column) and 6 × 7 (right col-
umn) kagome lattice at filling ν = 1

7 . The overlaps in the momentum
subspaces not corresponding to a model FQHE ground state are set
to 0 by definition.

and the one selected state for 7 × 5 and 8 × 5 plaquettes.
Figure 12(a) and 12(b) show the energy spectra as a function
of α color coded with Cartesian crystallization strength for
the plaquettes 7 × 5 and 8 × 5, respectively. The overlap with
the FQHE state for the 7 × 5 system is shown in Fig. 12(c).
The results for the plaquette 8 × 5 are obtained only in the
limited range of α because of the numerical complexity of
the computation and problems with numerical convergence of
the diagonalization problem, especially in the limit of high-α
values. For all systems at large α, we observe five quaside-
generate ground states, which momenta match FCI counting

1�10�1

1�10�1

1�10�2

FIG. 12. The Cartesian strength of Wigner crystallization W
[(a) and (b)], and overlap O with the model FQHE state (c) on the
the energy spectrum of the 7 × 5 [(a) and (c)] and 8 × 5 (b) kagome
lattices at filling ν = 1

5 . The overlaps in the momentum subspaces
not corresponding to a model FQHE ground state are set to 0 by
definition.

1�10�2

FIG. 13. Signatures of WC and FCI on the low-lying energy
spectrum for models with Chern number C = 2 with the filling factor
ν = 1

5 for different plaquettes: Hofstadter model (hof) 3 × 10 (first
column) and 5 × 7 (second column), and triangular lattice (tri) 7 × 5
(third column). In the upper row, we plot the Cartesian crystallization
strength W , and the lower row displays the overlap O with model
FQH states. The overlaps in the momentum subspaces not corre-
sponding to a model FQHE ground state are set to 0 by definition.

rules. Also, all ground states have crystalline order in the
long-range interaction limit.

From Fig. 12 and the consideration in Sec. IV A, it can be
seen that as we decrease α, the gap above the FCI quasidegen-
erate ground-state manifold decreases and eventually closes.
This process looks slightly different than in the case of ν = 1

7 :
not all ground states cross before the gap closing occurs [e.g.,
in Fig. 12(a) the absolute ground state does not cross with any
other state all through the transition]. As α is lowered, the
crystallization strength increases in one or two states which
eventually become the absolute ground states. It is, however,
interesting to note that in the 7 × 5 system, the crystallization
strength in the ground state has a maximum at α = 0.91. Upon
further decrease of α, the crystallization strength drops, and at
α = 0.5 the Wigner crystal is nonexistent. This is an explicit
example that a too-small screening can be detrimental for
Wigner crystals. Similarly to the ν = 1

7 case, in a few excited
states, the crystalline order exists and is visible even when the
FCI phase is well established.

3. C = 2, ν = 1
5

In Sec. IV A we have shown the phase transition between
WC and FCI phases at filling ν = 1

5 on the lattice systems
with Chern number C = 2. The signatures of both phases
have been plotted on the low-energy spectrum for the 6 × 5
Hofstadter lattice in Fig. 6 and for the one selected state in the
Fig. 7 for the following plaquettes: 3 × 10, 5 × 7 Hofstadter
model and 7 × 5 triangular lattice. In Fig. 13 is shown the full
spectrum of the last mentioned plaquette with the color-coded
Cartesian crystallization strength W [in Figs. 13(a)–13(c)]
and the overlap with the FQH states [in Figs. 13(d)–13(f)].
The behavior of each system is similar: in the entire studied
range of α a fivefold quasidegenerate ground-state manifold
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is separated by a gap from the rest of the spectrum (see the
dashed red horizontal line in Fig. 13). The momenta of these
states are the same as the momenta of the model FQH system,
and the overlap with them remains large (the lower row of

Fig. 13). Also, the crystallization strength of the ground state
(the upper row of Fig. 13) remains small for all α values for
all states, but a few excited states are characterized by a larger
value of the WC strength W in the small values of α.
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quantum hall states in driven optical lattices, Phys. Rev. A 100,
053624 (2019).

[74] H. Kim, G. Zhu, J. V. Porto, and M. Hafezi, Optical Lat-
tice with Torus Topology, Phys. Rev. Lett. 121, 133002
(2018).

085107-16

https://doi.org/10.1103/PhysRevB.101.235312
https://doi.org/10.1103/PhysRevB.103.075132
https://doi.org/10.1103/PhysRevLett.115.126401
https://doi.org/10.1103/PhysRevB.97.035159
https://doi.org/10.1103/PhysRevLett.110.106802
https://doi.org/10.1143/JPSJ.47.394
https://doi.org/10.1103/PhysRevB.28.4349
https://doi.org/10.1103/PhysRevB.30.473
https://doi.org/10.1103/PhysRevLett.70.335
https://doi.org/10.1103/PhysRevB.58.4019
https://doi.org/10.1088/0953-8984/4/6/004
https://doi.org/10.1016/0038-1098(95)00606-0
https://doi.org/10.1103/PhysRevB.64.081301
https://doi.org/10.1143/JPSJ.72.664
https://doi.org/10.1103/PhysRevLett.60.2765
https://doi.org/10.1103/PhysRevLett.72.3594
https://doi.org/10.1103/PhysRevB.82.115125
https://doi.org/10.1103/PhysRevB.86.205125
https://doi.org/10.1103/PhysRevB.86.235118
https://doi.org/10.1103/PhysRevB.96.205117
https://doi.org/10.1103/PhysRevLett.113.216404
https://doi.org/10.1103/PhysRevB.89.125411
https://doi.org/10.1103/PhysRevB.97.085108
https://doi.org/10.1103/PhysRevB.103.125406
https://doi.org/10.1088/1367-2630/aac690
https://doi.org/10.1103/PhysRevB.92.245401
https://doi.org/10.1103/PhysRevLett.106.236802
https://doi.org/10.1103/PhysRevB.86.241111
https://doi.org/10.1103/PhysRevLett.111.186804
https://doi.org/10.1103/PhysRevB.14.2239
https://doi.org/10.1103/PhysRevB.99.045136
https://doi.org/10.1103/PhysRevB.85.075128
https://doi.org/10.1103/PhysRevLett.101.010504
https://doi.org/10.1103/PhysRevLett.106.100405
https://doi.org/10.1103/PhysRevLett.98.060401
https://doi.org/10.1103/PhysRevB.76.125310
https://doi.org/10.1103/PhysRevB.89.155113
https://doi.org/10.1103/PhysRevA.100.053624
https://doi.org/10.1103/PhysRevLett.121.133002


INTERACTION-DRIVEN TRANSITION BETWEEN … PHYSICAL REVIEW B 104, 085107 (2021)

[75] A. G. Grushin, J. Motruk, M. P. Zaletel, and F. Pollmann,
Characterization and stability of a fermionic ν = 1/3 fractional
Chern insulator, Phys. Rev. B 91, 035136 (2015).

[76] H.-H. Tu, A. E. B. Nielsen, J. I. Cirac, and G.
Sierra, Lattice Laughlin states of bosons and fermions

at filling fractions 1/q, New J. Phys. 16, 033025
(2014).

[77] Q. Niu, D. J. Thouless, and Y.-S. Wu, Quantized Hall conduc-
tance as a topological invariant, Phys. Rev. B 31, 3372 (1985).

[78] DIAGHAM wiki, https://nick-ux.org/diagham/index.php.

085107-17

https://doi.org/10.1103/PhysRevB.91.035136
https://doi.org/10.1088/1367-2630/16/3/033025
https://doi.org/10.1103/PhysRevB.31.3372
https://nick-ux.org/diagham/index.php

