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Interaction and particle —hole symmetry of Laughlin quasiparticles
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The pseudopotentials describing interaction of Laughlin quasielect@Bs and quasiholesQH) in an
infinite fractional quantum Hall system are studied. The QE and QH pseudopotentials are similar, which
suggests théapproximate particle—hole symmetry recovered in the thermodynamical limit. The problem of
the hypothetical symmetry-breaking QE hard-core repulsion is resolved by the estimate that the “forbidden”
QE pair state has too high an energy and is unstable. Strong oscillations of the QE and QH pseudopotentials
persist in an infinite system, and the analogous QE and QH pair states with small relative angular momentum
and nearly vanishing interaction energy are predicted.
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An important element in our understanding of theter” states athp=(2pr+1)‘1, in addition to the “par-
incompressibile-fluid ground states formed in a two-  ent” states a=(2p+1)"*. For example, the incompress-

dimensional electron g42DEG) in high magnetic fields has jple =2 state can be viewed as trg,= % state of QH's in
been the identification of Laughlin correlatidris a partially the parenty=1 state of electrons.

filled lowest Landau leve(LL). These correlations can be  The criterion for the “short range” of the two-body re-

defined® as a tendency to avoid pair eigenstates with the;uision that causes Laughlin correlations is expresse
largest repulsior(smallest relative pair angular momentum terms of the interaction pseudopotentiglR), defined® as

.R) in the Iow—energy many—.body states. The mcompres&bﬂ-the pair interaction energy as a function ofR. Therefore,
ity results at a series of filling factor®umber of particles

divided by the number of states=(2p+ 1)~ at which the the knowledge oNV(R) is necessary to predict the type of
o leading pair states aR=1,3 -1 are completely correlations (and possible incompressibilityin a given

avoided in the nondegenerateaughlin ground state, but many-b_ody system. . . . .
not in any of the excited states. In this note we continue our earlier stddyf interactions

Each Laughlin-correlated state can be understood in termetween Laughlin QP’s. The QE and QH Interaction pseudo-
of two types of quasiparticle@P’s): quasielectron$QE’s) potentials are calculated for the Laughlis 5 and 5 states
and quasiholegQH’s), moving in an underlying Laughlin Of Up to 8 and 12 electrons on a Haldane spliemrespec-
ground staté“reference” or “vacuum” statd. The QP’s are tively, and extrapolated to an infinite planar system. Our re-
the elementary excitations of the Laughlin fluid and corre-sults lead to the following two main conclusions.
spond to an excessiV@H) or missing(QE) single-particle (i) Opposite to what seemed to follow from finite-size
state, compared to an exact (2p+1) ! filling. They have  calculations:**?the sign and magnitude of the pseudopoten-
finite size andfractiona) electric charge of-(2p+1) e, tial coefficients calculated for an infinite plane agree with the
and thus(in analogy to LL's of electronsthe single-QP expectation that, being charge excitations, the QP’s of the
spectrum in a magnetic field is degenerate at a finite energyame type must repel and not attract one another. However,
denoted assqp. For the QP’s at a complex coordinate  the oscillations in the QP charge density cause oscillations in
=0, their wave functions are obtained by applying the pref-V(R), and the QP pair states with sm&I(small radiug and
actorsll,d/ 9z, (QE) andIl,z, (QH) to the Laughlin wave nearly vanishing interaction energy are predicted. The van-
function ®,,, 1=1l;-j(z —z]-)ZP*l. ishing of repulsion in these states rules out incompressibility

The partially filled lowest LL is not the only many-body of such hypotheticat ground states in Haldane’s hierarchy
system with Laughlin correlations, which generally occurasv= £ or &, and limits the family of valid hierarchy states
when the single-particle Hilbert space is degenerate and tHe the (experimentally observédJain sequencé at v
two-body interaction is repulsive and has short rahgje. =n(2pn=1)~1. This vanishing is also essential for the sta-
Among other Laughlin-correlated systems are a two-bility of fractionally charged excitot8 hQE, (n QE’s
component system of electrons and charged excitofis ( bound to a valence holebserved in photoluminescence of
two electrons bound to a valence holéormed in an the 2DEG.

electron—hole plasma in a magnetic fiéitlor a system of (i) From the similarity of QE and QH pseudopotentials
(bosonig electron pairs formed near the half-filling of the we conclude that it is only due to its large repulsion energy
first excited LL® (Moore—Reafl state atv=3). that the QE pair state witlR=1 (the counterpart of the

Due to their LL-like macroscopic degeneracy and thehighest-energy QH pair states not a stable eigenstate of an
Coulomb nature of their interaction, Laughlin correlationsunderlying electron system. We find that the highest QE
can also be expected in a system of Laughlin QP’s. The@seudopotential parametev,og(1), exceeds the Laughlin
concept of Laughlin ground states formed by Laughlin QP’sgapA = eqe+ £qy to create an additional QE—QH pair. This
gave rise to Haldane’s hierarchgf incompressible “daugh- makes the QE pair state &= 1 unstable by pushing it into
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the 3QE+ QH continuum. The most important implication of an antisymmetric combination of vectorslqy. Although
this result is that the asymmetry between the two-QE andhey seem to agree with the “numerical experimerits*6
two-QH spectra that is observed in numeiiaad that can be no explanation exists for a hard core in the QE—QE repulsion
accounted for by introduction of a phenomenological hard{and its absence i¥qy) or the resulting asymmetry between
core QE—QE repulsidfiat R=1) does not originate from a lon andlgE.

hypothetical asymmetry between QE and QH Hilbert spaces. This asymmetry is inherent in Jain’s CF pictdfein
This agrees with Haldane’s intuitive picture of both QE’s which QE’s and QH'’s are converted into particles and va-
and QH’'s being bosonic QP’s placed “between” the cances in different CF LL's whos@lifferent angular mo-

electrons) and thus, for example, having equal angular mo-menta are equal ttfyc andlqy, respectively. However, the

menta on a sphere. W_e hope to clarify that _the ungbse_rvegffective magnetic field leading to the correct valuesggg
highest-energy QE pair state is not mysteriously “forbid-

den” or absent in the two-QE Hilbert space, but that it is?ndtﬁQH ||r_1| thetCFtkf)'Ctl#e qoesf. nlgt.physmaflly eX'.Sbtl' WE'Ie.
simply energetically unstable. This instability explains why orthe Q states the effective field is one of possible physi-
Jain’s composite fermiofiCF) picturé= correctly predicts cal rea_lhzatlons (_)f the MF (_ZS transformation describing
the lowest-energy bands of states, despite the unjustiﬁe'dauqh_IIn cor_relatlon_s(the av0|dan_ce of the most strongly
asymmetry of QE and QH LL's introduced by &anphysi- repulswg pair statesr) the underlying elgctron ;ysteﬁng
cal) effective magnetic field. A minor conclusion is that the €xplanation fogge being smaller thagy is possible within
similarity of the QE and QH pair states and energies prethe CF model itself.
cludes qualitatively different response of a Laughlin- To resolve this puzzle we have examined the QE and QH
correlated 2DEG to a positively and negatively chargedoseudopotentials calculated for the systems N&12
perturbation-* electrons atv=3% and £. In Fig. 1(a) we compareVoe
The knowledge of pseudopotentials defining interactionsand in Fig. 1b) Vqy obtained atv=1 for different values
of Laughlin QP’s is essential in Haldane’s hierartlof the  of N. In both framesR=2I—L, with loe=lon=32(N+1).
fractional quantum Hall effect;® in which they determine To obtain the values oW, the energies of the Laughlin
those of Laughlin fillings at which the QP’s fortdaughtel  ground state and of the two QP’s are subtracted from the
Laughlin incompressible _states of their own. _Although 'FhGYenergies of the appropriate QP pair stité&(such as the
are to a large extent equivalent, Haldane’s hierarchy dlffer%E pair states foN=11 and 12 shown in the ins¢tsThe

from Jain’s CF picture in the “symmetric” description of the energy is measured in the units @/, and\ is the mag-
two types of QP’s. Haldane’s elegant arguniethiat both netic length '

QE and QH excitations are bosons placed “between” khe In the limit of N—c, the sphere radiug~ yN diverges
(effectively one-dimensionaklectrons yields equal numbers . ' .

. ~ ~ . and the numerical values ®(R) converge to those describ-
of possible QE and QH stategoe=gou=N+1 (tldes . o, infinite 2DEG on a plane. In thiplana) geometryR
mean bosonswhich on a stherS correspond to quaI S'~ng|e'is the usual relative pair angular momentum. Remarkably,
particle angular momentd,ge=Ton=3N (becauseg=2I whenR e is defined as Rye— L rather than 25— L, the QE
+1; the I%WﬁStiL_L onh aIstIdane sprr:er;e IS ar] angular MO%nd QH pseudopotentials become quite similar. The main
mgﬂf)uprgé ir? tr?e Eesr;téglﬁt e strength of Dirac's magnetic yigterence is the obvious lack of theqe=1 state and stron-

' ger oscillations in theVoe(R), but the maximum aRR=5

In a system oh QP’s, a mean-fieldMF) Chern—Simons o o
(CS) transformatiof®=?°can further be used to convert such and the minima aR =3 and 7 are common for bom?E and
Von. The same structure occurs also for the QP’s inithe

bosonic QP's to more convenient fermions wg g+ (n =1 state!! Most unexpected in Fig. 1 are the negative signs

. - _~ l y .
—1), yieldingl =1 +3(n—1). However, for QE's this value o'y, The only positive pseudopotential coefficient is

of | seemed to predict an incorrect number of low-energy, (1), which might indicate that, despite QP’s being
states in the numerical energy spectra unless the pair state arge'excitations both QE—QE al,wd QH—OQH interactions

the_ maxllénum angular momen'Fuanax=2I—1 was o generally attractive.
forbidden:® On a sphere, the relation betweer |l +1,| . : : .
In Fig. 2 we plot a few leading pseudopotential coeffi-

andR isL=2l—"7R, and thus the exlusion of the pair state atcients (those at the smallest values &) Vo and Vo at
Lmax iS equivalent to a hypothetical hard-core repulsion,” 1 . 1 QH QE <
v=73 andz as a function oN~*. Clearly, the corresponding

Voe(1)=2. - 4 .
Such a hard-core interaction can be formally removed b}poefflments of all four pseudopotentials behave similarly,

an appropriate redefinition of the single-particle Hilbert Which confirms the correct use bje rather thanige in the
space. This is accomplished by a fermion-to-fermion MF cefinition of Rqe. It is also clear that all coefficientg in-
transformatiorf;'*?1:22 which replacesg by g*=g—2(n crease with increasindl (although at a different rate for

—1), and I=iN+%(n—1) by I*=iN-%(n—1). By QFE'sand QH'$, and it seems that none of them will remain
“elimination” we mean that the angular momentaqe of ~ negative in theN— oo limit. In attempt to estimate the mag-
states containing QE’s can be obtained by simple and un- nitude of V in this limit we have drawn straight lines that
restricted addition ofi individual angular momentum vectors approximately extrapolate our data for some of the coeffi-
ok followed by antisymmetrizatioiQE’s are treated as in- cients. The most noteworthy values aNéqgy,-1/3(1)
distinguishable fermionsjust asL o could be obtained by ~0.03 e’/\ being about three times larger than
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Von.»-15(1) as expected from the comparison of interactingRqe= 11 state below the continuum. An example of such

charges £e and te, respectively, the V(3) coefficients

(seemingly vanishing in all four plots, and/qy ,—1/5(5)

~0.005 e?/\ being about twice smaller thaWioe - 1/3(5).
The predicted small value 0¥(3) and of some other

leading coefficients is by itself quite interesting, although it
can be understood from the fact that QP’s are more compli

cated objects than electrons, and the oscillationgda(R)

“rescaling” procedure is shown in Fig.(&) with the line
obtained by stretchin/ oy so that it crossed/qg(5) and
Voe(3) atL=7 and 9, respectively. Similar lines are shown
in Fig. 1(d) for the 12-electron spectrum corresponding to
two QE’s in the lowest band (&= 31). Certainly, this pro-
cedure, based on the assumption ¥gg(3) andVq(3) are
Small and that/(1) is proportional tov(5), is notaccurate.
Nevertheless, having in mind the similarities\G§e andV oy

reflect the oscillations in their more complicated charge denm Figs. 1 and 2, and in the absence of any physical reason
sity profile (similar oscillations occur in the electron pseudo- why the Roe=1 state might not exist while th®qu=1
potentials in higher LL's The consequences of this fact are state does, we believe that it is more reasonable to assume

even more important.

First, from a general criteridr? for Laughlin correlations
at v~(2p+1)"! (defined as the avoiding of pair states
with R<2p+1 in the low-energy many-body stajeis a
system interacting through a pseudopotenfiflR) we

thatVqg(1) is finite, although larger thah. The fact that the
Roe=1 state is pushed into the 3@EH continuum sim-

ply means that it is unstable toward spontaneous creation of
a low-energy QE—QH pair with finite angular momentum
(magnetoroton

find that the QP’s of the parent Laughlin state of electrons The assumption thak <Vog(1)< restores the elegant

form Laughlin states of their own only aIQp=%. These

symmetry of Haldane’s picture of QP’s “placed” between

states and theinE:% daughters exhaust Jainis=n(2pn electfrsonﬁ It repla}ces the problgm of explaining the QE hard
+1)! sequence. No other incompressible daughter state“s‘?re1L by a question of whyqe is larger tharVq, at a short
occur in the hierarchy, including th@uled out earlief) — distance(e.g., atR=1 and 5; see Fig.)1 But the fact that

4 or i states or the hypothetiddl v=2 or & Voe andVgy are not equal at short distances is by no means

V=11 15 Vo .
states. Despite all the differences between Haldane's hierapUrPrising since the QE and QH have different wave func-

chy and Jain’s CF model, our conclusion makes their predict'ons'

. . - . ; In conclusion, we have calculated the pseudopotentials
tions of the incompressibility at a givancompletely equiva- L . .
lent P y g pletely eq Vop,(R) describing interaction of QE’s and QH'’s in Laugh-

- — _1 . . - _
Second, the(nea) vanishing of Voe(3) explains the lin v=(2p+1) - states of an infinite 2DEG. These pseudo

o I ) . potentials are all similar, showing strong repulsioriRat 1
st_ablhty of the hQEZ. complex® in the ZDEG_ Interacting and 5, and virtually no interaction &=3. The unexpected
with an (optically injected valence hole. Being the most

o 3 2" QE-QE and QH-QH attraction that results in few-electron
strongly bound and the only radiative state of all “fraction- ¢4\ ations disappears in the limit of an infinite system. Be-
ally charged excitons”hQE,, the hQE, is most likely

) cause the QP charge at=(2p+1)"! decreases with in-

th? complex observédin the PL spectra of the 2DEG at creasingp, the QP interaction at=1 is stronger than at
>3, = 1. Because of different QE and QH wave functiovge is

Third, sinceVog(5) is about twice larger thavioy(5), it larger thanVey, at smallR (short distance The coefficient
is also plausible thaVqg(1) could be much larger than V(1) exceeds the Laughlin gap to create an additional
Von(1), sothat the Rge=1 state would fall in the con- QE-QH pair, which makes the QE pair stateTat1 un-
tinuum and could not be identified in the energy spectra. Irstable. This instability, rather than a mysterious QE hard core
Fig. 1(c), on top of the 1l-electron spectrum at Dirac’s or an inherent asymmetry between the QE and QH angular
monopole strengththe number of magnetic flux quanta momenta, is the reason for the overcounting of few-QE
piercing the Haldane sphére?) 2S=28, marked with full  states when, following Haldane, QE'’s are treated as bosons
dots, in which the lowest-energy states contain two QE’s atvith T= iN. In particular, it explains the absence of the
v=13, with open circles we have marked another spectrunL=N multiplet in the low-energy band of states
calculated for the samid=11 but at =32, whose lowest- in the N-electron numerical spectra at the values & 2
energy band contains two QH’s. The second spectrum is ver=(2p+1)(N—1)—2, corresponding to two QE’s in the
tically shifted so that the energies of the QE and QH pairLaughlin »=(2p+1)~' state. The(nea) vanishing of
states coincide dt=1 (i.e. atR =11) at whichV g andVoy Vop(3) is the reason why no hierarchy states other than those
are both negligible, but the energy unie2(\) are the same. from Jain'sy=n(2pn+1)~* sequence are stable. It is also
Since the Laughlin gap to the continuum of states with the-reason for the strong binding of the fractionally charged
additional QE—QH pairs involves the sum of QE and QHeXCitonhQE,.

energies, it is roughly the same in both spectra. However, the 1,4 5 thor gratefully acknowledges discussions with John
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