
PHYSICAL REVIEW B, VOLUME 63, 235322
Interaction and particle –hole symmetry of Laughlin quasiparticles
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The pseudopotentials describing interaction of Laughlin quasielectrons~QE! and quasiholes~QH! in an
infinite fractional quantum Hall system are studied. The QE and QH pseudopotentials are similar, which
suggests the~approximate! particle–hole symmetry recovered in the thermodynamical limit. The problem of
the hypothetical symmetry-breaking QE hard-core repulsion is resolved by the estimate that the ‘‘forbidden’’
QE pair state has too high an energy and is unstable. Strong oscillations of the QE and QH pseudopotentials
persist in an infinite system, and the analogous QE and QH pair states with small relative angular momentum
and nearly vanishing interaction energy are predicted.
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An important element in our understanding of t
incompressibile-fluid ground states1–3 formed in a two-
dimensional electron gas~2DEG! in high magnetic fields has
been the identification of Laughlin correlations1 in a partially
filled lowest Landau level~LL !. These correlations can b
defined4,5 as a tendency to avoid pair eigenstates with
largest repulsion~smallest relative pair angular momentu
R) in the low-energy many-body states. The incompressi
ity results at a series of filling factors~number of particles
divided by the number of states! n5(2p11)21 at which the
p leading pair states atR51,3, . . . ,2p21 are completely
avoided in the nondegenerate~Laughlin! ground state, but
not in any of the excited states.

Each Laughlin-correlated state can be understood in te
of two types of quasiparticles~QP’s!: quasielectrons~QE’s!
and quasiholes~QH’s!, moving in an underlying Laughlin
ground state~‘‘reference’’ or ‘‘vacuum’’ state!. The QP’s are
the elementary excitations of the Laughlin fluid and cor
spond to an excessive~QH! or missing~QE! single-particle
state, compared to an exactn5(2p11)21 filling. They have
finite size and~fractional! electric charge of6(2p11)21e,
and thus~in analogy to LL’s of electrons! the single-QP
spectrum in a magnetic field is degenerate at a finite ene
denoted as«QP. For the QP’s at a complex coordinatez
50, their wave functions are obtained by applying the pr
actors)k]/]zk ~QE! and )kzk ~QH! to the Laughlin wave
function F2p115) i , j (zi2zj )

2p11.
The partially filled lowest LL is not the only many-bod

system with Laughlin correlations, which generally occ
when the single-particle Hilbert space is degenerate and
two-body interaction is repulsive and has short range4,5

Among other Laughlin-correlated systems are a tw
component system of electrons and charged excitons (X2,
two electrons bound to a valence hole! formed in an
electron–hole plasma in a magnetic field,6,7 or a system of
~bosonic! electron pairs formed near the half-filling of th
first excited LL5 ~Moore–Read8 state atn5 5

2 ).
Due to their LL-like macroscopic degeneracy and t

Coulomb nature of their interaction, Laughlin correlatio
can also be expected in a system of Laughlin QP’s. T
concept of Laughlin ground states formed by Laughlin Q
gave rise to Haldane’s hierarchy9 of incompressible ‘‘daugh-
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ter’’ states atnQP5(2pQP11)21, in addition to the ‘‘par-
ent’’ states atn5(2p11)21. For example, the incompress
ible n5 2

7 state can be viewed as thenQH5 1
3 state of QH’s in

the parentn5 1
3 state of electrons.

The criterion for the ‘‘short range’’ of the two-body re
pulsion that causes Laughlin correlations is expressed4,5 in
terms of the interaction pseudopotentialV(R), defined10 as
the pair interaction energyV as a function ofR. Therefore,
the knowledge ofV(R) is necessary to predict the type o
correlations ~and possible incompressibility! in a given
many-body system.

In this note we continue our earlier study11 of interactions
between Laughlin QP’s. The QE and QH interaction pseu
potentials are calculated for the Laughlinn5 1

3 and 1
5 states

of up to 8 and 12 electrons on a Haldane sphere,9 respec-
tively, and extrapolated to an infinite planar system. Our
sults lead to the following two main conclusions.

~i! Opposite to what seemed to follow from finite-siz
calculations,11,12 the sign and magnitude of the pseudopote
tial coefficients calculated for an infinite plane agree with t
expectation that, being charge excitations, the QP’s of
same type must repel and not attract one another. Howe
the oscillations in the QP charge density cause oscillation
V(R), and the QP pair states with smallR ~small radius! and
nearly vanishing interaction energy are predicted. The v
ishing of repulsion in these states rules out incompressib
of such hypothetical11 ground states in Haldane’s hierarch
asn5 6

17 or 6
19 , and limits the family of valid hierarchy state

to the ~experimentally observed! Jain sequence13 at n
5n(2pn61)21. This vanishing is also essential for the st
bility of fractionally charged excitons14 hQEn (n QE’s
bound to a valence hole! observed15 in photoluminescence o
the 2DEG.

~ii ! From the similarity of QE and QH pseudopotentia
we conclude that it is only due to its large repulsion ene
that the QE pair state withR51 ~the counterpart of the
highest-energy QH pair state! is not a stable eigenstate of a
underlying electron system. We find that the highest Q
pseudopotential parameter,VQE(1), exceeds the Laughlin
gapD5«QE1«QH to create an additional QE–QH pair. Th
makes the QE pair state atR51 unstable by pushing it into
©2001 The American Physical Society22-1
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the 3QE1QH continuum. The most important implication o
this result is that the asymmetry between the two-QE
two-QH spectra that is observed in numerics~and that can be
accounted for by introduction of a phenomenological ha
core QE–QE repulsion16 at R51) does not originate from a
hypothetical asymmetry between QE and QH Hilbert spac
This agrees with Haldane’s intuitive picture of both QE
and QH’s being bosonic QP’s placed ‘‘between’’ th
electrons,9 and thus, for example, having equal angular m
menta on a sphere. We hope to clarify that the unobser
highest-energy QE pair state is not mysteriously ‘‘forb
den’’ or absent in the two-QE Hilbert space, but that it
simply energetically unstable. This instability explains w
Jain’s composite fermion~CF! picture13 correctly predicts
the lowest-energy bands of states, despite the unjust
asymmetry of QE and QH LL’s introduced by an~unphysi-
cal! effective magnetic field. A minor conclusion is that th
similarity of the QE and QH pair states and energies p
cludes qualitatively different response of a Laughl
correlated 2DEG to a positively and negatively charg
perturbation.14

The knowledge of pseudopotentials defining interactio
of Laughlin QP’s is essential in Haldane’s hierarchy9 of the
fractional quantum Hall effect,1–3 in which they determine
those of Laughlin fillings at which the QP’s form~daughter!
Laughlin incompressible states of their own. Although th
are to a large extent equivalent, Haldane’s hierarchy diff
from Jain’s CF picture in the ‘‘symmetric’’ description of th
two types of QP’s. Haldane’s elegant argument9 that both
QE and QH excitations are bosons placed ‘‘between’’ theN
~effectively one-dimensional! electrons yields equal numbe
of possible QE and QH states,g̃QE5g̃QH5N11 ~tildes
mean bosons!, which on a sphere correspond to equal sing
particle angular momenta,l̃ QE5 l̃ QH5 1

2 N ~becauseg̃52 l̃
11; the lowest LL on a Haldane sphere is an angular m
mentum shell ofl 5S, half the strength of Dirac’s magneti
monopole in the center4,9,17!.

In a system ofn QP’s, a mean-field~MF! Chern–Simons
~CS! transformation18–20can further be used to convert suc
bosonic QP’s to more convenient fermions withg5g̃1(n
21), yielding l 5 l̃ 1 1

2 (n21). However, for QE’s this value
of l seemed to predict an incorrect number of low-ene
states in the numerical energy spectra unless the pair sta
the maximum angular momentumLmax52l21 was
forbidden.16 On a sphere, the relation betweenL5u l11 l2u
andR is L52l 2R, and thus the exlusion of the pair state
Lmax is equivalent to a hypothetical hard-core repulsio
VQE(1)5`.

Such a hard-core interaction can be formally removed
an appropriate redefinition of the single-particle Hilbe
space. This is accomplished by a fermion-to-fermion MF
transformation,4,11,21,22 which replacesg by g* 5g22(n
21), and l 5 1

2 N1 1
2 (n21) by l * 5 1

2 N2 1
2 (n21). By

‘‘elimination’’ we mean that the angular momentaLnQE of
states containingn QE’s can be obtained by simple and u
restricted addition ofn individual angular momentum vector
lQE* followed by antisymmetrization~QE’s are treated as in
distinguishable fermions!, just asLnQH could be obtained by
23532
d

-

s.

-
ed

ed

-

d

s

y
rs

-

-

y
at

t
,

y
t
S

an antisymmetric combination ofn vectors lQH. Although
they seem to agree with the ‘‘numerical experiments,’’4,11,16

no explanation exists for a hard core in the QE–QE repuls
~and its absence inVQH! or the resulting asymmetry betwee
l QH and l QE* .

This asymmetry is inherent in Jain’s CF picture,13 in
which QE’s and QH’s are converted into particles and v
cances in different CF LL’s whose~different! angular mo-
menta are equal tol QE* and l QH, respectively. However, the
effective magnetic field leading to the correct values ofgQE*
and gQH in the CF picture does not physically exist. Whi
for the QH states the effective field is one of possible phy
cal realizations of the MF CS transformation describi
Laughlin correlations~the avoidance of the most strong
repulsive pair states! in the underlying electron system,4 no
explanation forgQE* being smaller thangQH is possible within
the CF model itself.

To resolve this puzzle we have examined the QE and
pseudopotentials calculated for the systems ofN<12
electrons atn5 1

3 and 1
5 . In Fig. 1~a! we compareVQE

and in Fig. 1~b! VQH obtained atn5 1
3 for different values

of N. In both frames,R52l 2L, with l QE5 l QH5 1
2 (N11).

To obtain the values ofV, the energies of the Laughlin
ground state and of the two QP’s are subtracted from
energies of the appropriate QP pair states11,12 ~such as the
QE pair states forN511 and 12 shown in the insets!. The
energy is measured in the units ofe2/l, andl is the mag-
netic length.

In the limit of N→`, the sphere radiusR;AN diverges
and the numerical values ofV(R) converge to those describ
ing an infinite 2DEG on a plane. In this~planar! geometry,R
is the usual relative pair angular momentum. Remarka
whenRQE is defined as 2l QE2L rather than 2l QE* 2L, the QE
and QH pseudopotentials become quite similar. The m
difference is the obvious lack of theRQE51 state and stron-
ger oscillations in theVQE(R), but the maximum atR55
and the minima atR53 and 7 are common for bothVQE and
VQH. The same structure occurs also for the QP’s in then
5 1

5 state.11 Most unexpected in Fig. 1 are the negative sig
of VQP. The only positive pseudopotential coefficient
VQH(1), which might indicate that, despite QP’s bein
charge excitations, both QE–QE and QH–QH interactio
are generally attractive.

In Fig. 2 we plot a few leading pseudopotential coef
cients ~those at the smallest values ofR) VQH and VQE at
n5 1

3 and 1
5 as a function ofN21. Clearly, the corresponding

coefficients of all four pseudopotentials behave similar
which confirms the correct use ofl QE rather thanl QE* in the
definition of RQE. It is also clear that all coefficientsV in-
crease with increasingN ~although at a different rate fo
QE’s and QH’s!, and it seems that none of them will rema
negative in theN→` limit. In attempt to estimate the mag
nitude of V in this limit we have drawn straight lines tha
approximately extrapolate our data for some of the coe
cients. The most noteworthy values areVQH,n51/3(1)
'0.03 e2/l being about three times larger tha
2-2
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FIG. 1. The comparison of~a!
quasihole and~b! quasielectron
pseudopotentialsV(R) calculated
at n5

1
3 in N-electron systems on

a Haldane sphere. Insets: Th
comparison of~c! 11-electron and
~d! 12-electron energy spectra i
which the lowest-energy band
contains two quasielectrons. I
~c!, open circles show the~shifted
in energy! 11-electron spectrum o
two quasiholes.

FIG. 2. The leading ~a,c!
quasihole and~b,d! quasielectron
pseudopotential coefficientsV(R)
calculated at~a,b! n5

1
3 and ~c,d!

n5
1
5 in N-electron systems on a

Haldane sphere, plotted as a fun
tion of N21. Thin dotted lines
show extrapolation toN→`.
235322-3
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ARKADIUSZ WÓJS PHYSICAL REVIEW B 63 235322
VQH,n51/5(1) as expected from the comparison of interact

charges (13 e and 1
5 e, respectively!, the V(3) coefficients

~seemingly! vanishing in all four plots, andVQH,n51/3(5)
'0.005 e2/l being about twice smaller thanVQE,n51/3(5).

The predicted small value ofV(3) and of some othe
leading coefficients is by itself quite interesting, although
can be understood from the fact that QP’s are more com
cated objects than electrons, and the oscillations inVQP(R)
reflect the oscillations in their more complicated charge d
sity profile ~similar oscillations occur in the electron pseud
potentials in higher LL’s!. The consequences of this fact a
even more important.

First, from a general criterion4,5 for Laughlin correlations
at n'(2p11)21 ~defined as the avoiding of pair state
with R,2p11 in the low-energy many-body states! in a
system interacting through a pseudopotentialV(R) we
find that the QP’s of the parent Laughlin state of electro
form Laughlin states of their own only atnQP5

1
3 . These

states and theirnQE5 1
3 daughters exhaust Jain’sn5n(2pn

61)21 sequence. No other incompressible daughter st
occur in the hierarchy, including the~ruled out earlier11!
n5 4

11 or 4
13 states or the hypothetical11 n5 6

17 or 6
19

states. Despite all the differences between Haldane’s hie
chy and Jain’s CF model, our conclusion makes their pre
tions of the incompressibility at a givenn completely equiva-
lent.

Second, the~near! vanishing of VQE(3) explains the
stability of the hQE2 complex14 in the 2DEG interacting
with an ~optically injected! valence hole. Being the mos
strongly bound and the only radiative state of all ‘‘fractio
ally charged excitons’’hQEn , the hQE2 is most likely
the complex observed15 in the PL spectra of the 2DEG atn
. 1

3 .
Third, sinceVQE(5) is about twice larger thanVQH(5), it

is also plausible thatVQE(1) could be much larger tha
VQH(1), so that the RQE51 state would fall in the con-
tinuum and could not be identified in the energy spectra
Fig. 1~c!, on top of the 11-electron spectrum at Dirac
monopole strength~the number of magnetic flux quant
piercing the Haldane sphere9,4,17! 2S528, marked with full
dots, in which the lowest-energy states contain two QE’s
n5 1

3 , with open circles we have marked another spectr
calculated for the sameN511 but at 2S532, whose lowest-
energy band contains two QH’s. The second spectrum is
tically shifted so that the energies of the QE and QH p
states coincide atL51 ~i.e. atR511) at whichVQE andVQH

are both negligible, but the energy units (e2/l) are the same
Since the Laughlin gapD to the continuum of states with
additional QE–QH pairs involves the sum of QE and Q
energies, it is roughly the same in both spectra. However,
minima and maxima inVQE(R) are stronger than those i
VQH(R), and the differenceuVQE2VQHu increases at large
L. While it is hardly possible to rescaleVQH so as to repro-
duce VQE at L<9 and convincingly predict its value atL
511 (RQE511), it seems likely thatVQE(11) is indeed
larger thanD, which would explain the absence of th
23532
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RQE511 state below the continuum. An example of su
‘‘rescaling’’ procedure is shown in Fig. 1~c! with the line
obtained by stretchingVQH so that it crossesVQE(5) and
VQE(3) at L57 and 9, respectively. Similar lines are show
in Fig. 1~d! for the 12-electron spectrum corresponding
two QE’s in the lowest band (2S531). Certainly, this pro-
cedure, based on the assumption thatVQE(3) andVQH(3) are
small and thatV(1) is proportional toV(5), is notaccurate.
Nevertheless, having in mind the similarities ofVQE andVQH
in Figs. 1 and 2, and in the absence of any physical rea
why the RQE51 state might not exist while theRQH51
state does, we believe that it is more reasonable to ass
thatVQE(1) is finite, although larger thanD. The fact that the
RQE51 state is pushed into the 3QE1QH continuum sim-
ply means that it is unstable toward spontaneous creatio
a low-energy QE–QH pair with finite angular momentu
~magnetoroton!.

The assumption thatD,VQE(1),` restores the elegan
symmetry of Haldane’s picture of QP’s ‘‘placed’’ betwee
electrons.9 It replaces the problem of explaining the QE ha
core16 by a question of whyVQE is larger thanVQH at a short
distance~e.g., atR51 and 5; see Fig. 1!. But the fact that
VQE andVQH are not equal at short distances is by no me
surprising since the QE and QH have different wave fu
tions.

In conclusion, we have calculated the pseudopotent
VQP,n(R) describing interaction of QE’s and QH’s in Laugh
lin n5(2p11)21 states of an infinite 2DEG. These pseud
potentials are all similar, showing strong repulsion atR51
and 5, and virtually no interaction atR53. The unexpected
QE–QE and QH–QH attraction that results in few-electr
calculations disappears in the limit of an infinite system. B
cause the QP charge atn5(2p11)21 decreases with in-
creasingp, the QP interaction atn5 1

3 is stronger than atn
5 1

5 . Because of different QE and QH wave functions,VQE is
larger thanVQH at smallR ~short distance!. The coefficient
VQE(1) exceeds the Laughlin gapD to create an additiona
QE–QH pair, which makes the QE pair state atR51 un-
stable. This instability, rather than a mysterious QE hard c
or an inherent asymmetry between the QE and QH ang
momenta, is the reason for the overcounting of few-Q
states when, following Haldane, QE’s are treated as bos
with l̃ 5 1

2 N. In particular, it explains the absence of th
L5N multiplet in the low-energy band of state
in the N-electron numerical spectra at the values ofS
5(2p11)(N21)22, corresponding to two QE’s in the
Laughlin n5(2p11)21 state. The ~near! vanishing of
VQP(3) is the reason why no hierarchy states other than th
from Jain’sn5n(2pn61)21 sequence are stable. It is als
the reason for the strong binding of the fractionally charg
excitonhQE2.
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