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Interaction and dynamical binding of
spin waves or excitons in quantum
Hall systems

A. Wójs, A. Gładysiewicz, D. Wodziński, and J.J. Quinn

Abstract: Interaction between spin waves (or excitons) moving in the lowest Landau level is
studied using numerical diagonalization. Because of complicated statistics obeyed by these
composite particles, their effective interaction is completely different from the dipole–dipole
interaction predicted in the model of independent (bosonic) waves. In particular, spin waves
moving in the same direction attract one another, which leads to their dynamical binding.
Effective interaction pseudopotentials V↑↑(k) and V↑↓(k) for two spin waves with equal wave
vectors k and moving in the same or opposite directions are calculated and shown to obey
power laws V (k) ∝ kα at small k. A high value of α↑↑ ≈ 4 explains the occurrence of linear
bands in spin excitation spectra of quantum Hall droplets.

PACS Nos.: 71.10.Pm, 71.35.−y, 75.30.Ds

Résumé : Nous étudions par diagonalisation numérique l’interaction entre les ondes de spin
(excitons) dans le niveau de Landau le plus bas. À cause de la statistique compliquée de ces
particules composites, leur interaction efficace est complètement différente de l’interaction
dipôle–dipôle prédite par le modèle des ondes indépendantes (bosons). En particulier,
les ondes de spin se déplaçant dans la même direction s’attirent, menant à une liaison
dynamique. Nous calculons les pseudo-potentiels V↑↑(k) et V↑↓(k) pour deux ondes de spin
de même vecteur d’onde et se déplaçant dans la même direction ou en direction opposée et
observons qu’ils obéissent à des lois de puissance V (k) ∝ kα . Une haute valeur de α↑↑ ≈ 4
explique l’apparition de bandes linéaires dans le spectre d’excitation de spin de l’effet Hall
quantique.

[Traduit par la Rédaction]

1. Introduction

Description of interactions and correlations between excitons [1] (electron–hole pairs, X = e + h)
is somewhat problematic because of their complicated statistics. Being pairs of fermions, the excitons
obey Bose statistics under a “full” exchange and, consequently, condense into a Bose–Einsetin ground
state at sufficiently low density [2]. However, their composite nature comes into play when the excitons
overlap and “partial” exchanges (of only a pair of electrons or holes) can occur. And, unlike charged
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Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
J.J. Quinn. Department of Physics, University of Tennessee, Knoxville, TN 37996, USA.

1 Corresponding author (e-mail: arkadiusz.wojs@pwr.wroc.pl).

Can. J. Phys. 83: 1019–1028 (2005) doi: 10.1139/P05-046 © 2005 NRC Canada



1020 Can. J. Phys. Vol. 83, 2005

complexes (such as trions, X− = 2e + h) naturally separated by the Coulomb repulsion, the overlaps
between neutral excitons can often be significant.

In the absence of a magnetic field B, exciton correlations have been discussed [3] in connection with
four-wave mixing experiments that involve two-photon absorption [4–7]. Here, we will consider two-
dimensional systems in the high-B limit, so-called “quantum Hall systems” [8]. While the bosonization
scheme for excitons confined to the lowest Landau level (LL0) has recently been proposed [9], we will
concentrate on the numerical results for the X–X interaction pseudopotential V (k).

In analogy with the Haldane pseudopotential [10], V (k) will mean the X–X interaction energy
in the specific eigenstates of a pair of excitons (lowest eigenstates at a given total wave vector q,
and all eigenstates at q = 0), that nevertheless can be (approximately) attributed to a single-exciton
wave vector k. The pseudopotential V (k) is not equivalent to the X–X scattering matrix element [11]
v(k1, k2; �) = 〈k1, k2| V |k1 − �, k2 + �〉, which for � = 0 describes interaction of excitons with
well-defined incoming wave vectors. The different behavior of V (k) and v(k, ±k; 0) at small k is the
subject of this paper.

In LL0, a well-known statistics and (or) correlation effect is the decoupling and condensation of
k = 0 excitons in the ground state of interacting electrons and holes [12]. It can be interpreted in terms
of an inter-exciton (X–X) exchange attraction exactly compensating for a decrease in the intra-exciton
(e–h) attraction due to the phase space blocking for the coexisting identical constituent fermions.

The exciton condensation in LL0 results from the mapping of an e–h system onto a two-spin system
with spin-symmetric interactions [13]. The “hidden” e–h symmetry corresponding to the conservation
of the total spin and responsible for exciton condensation holds in LL0 because there the electron and
hole orbitals are identical despite different effective masses (in experimental systems with finite width,
this also requires symmetric doping to avoid a normal electric field that would split the e and h layers).

The mapping between e–h and two-spin systems makes inter-band excitons in an empty LL0 equiv-
alent to spin waves (SWs) in a filled LL0, i.e., in the quantum Hall ground state with the filling factor
ν = 1. A SW (or spin exciton) consists of a hole in the spin-polarized LL0 and a reversed-spin elec-
tron in the same LL0. Although excitons and SWs in LL0 are formally equivalent and the conclusions
of ref. 9 and ours apply to both complexes, they are relevant for two different types of experiments
(photoluminescence and spin relaxation).

Being charge-neutral, excitons move along straight lines and carry a linear wave vector k even in a
magnetic field B. The origin of their (continuous) dispersion [14] ε(k) in LL0 is not the (constant) e or
h kinetic energy, but the dependence of an average e–h separation on k. A moving exciton carries an
electric dipole moment d , proportional and orthogonal to both k and B.

For a pair of moving excitons, one could think that the dominant contribution to their interaction
V (k1, k2) would be the dipole–dipole term [15], specially at small values of k1 and k2, when this term
is too weak on the scale of ε(k) to cause a significant polarization of the X wave functions. Such
assumption would lead to the repulsion between excitons moving in the same direction.

However, we show that this assumption is completely false because of the required (anti)symmetry
of the wave function of overlapping excitons under exchange of individual constituent electrons or
holes. This statistics and (or) correlation effect is significant even at small k, and it reverses the sign
of the X–X interaction, compared to the dipole–dipole term. Specifically, excitons moving in the same
direction attract one another, and the ground state of a pair of excitons carrying a total wave vector q is a
(dynamically) bound state with k1 = k2 = 1

2q. More precisely, the lowest state of a pair of interacting
excitons has lower energy than any pair of noninteracting excitons with the same q.

The X–X interaction pseudopotential is calculated numerically for two special cases: k1 = ±k2,
corresponding to a pair of excitons moving with equal wave vectors k1 = k2 ≡ k in the same (↑↑)
and opposite (↑↓) direction. In addition to the sign reversal, we find that the inclusion of the statistics’
effects leads to the significant weakening of the X–X interaction, specially at small k (e.g., for the ↑↑
configuration, we find a V ∝ k4 power-law behavior).
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Fig. 1. (a) Electron–electron and (b) electron–hole pseudopotentials in the nth (n = 0, 1, and 3) LL. V is
the pair interaction energy, R is the relative pair angular momentum, k is the total pair wave vector, and λ

is the magnetic length.
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The near vanishing of the interaction between excitons moving in the same direction explains the
occurrence of nearly linear multiexciton bands found numerically in the spin-excitation spectra of finite-
size quantum Hall droplets [16,17] and of extended quantum Hall systems [18]. The attractive character
of this interaction explains the slightly convex shape of these bands, which for a confined droplet leads
to the oscillations of the total spin as a function of the magnetic field [16, 17].

2. Model

We consider spin excitations at the filling factor ν = 1, i.e., in a system of N electrons half-filling the
lowest Landau level (LL0) single-particle angular momentum (l) shell with two-fold spin degeneracy
and the orbital degeneracy g ≡ 2l + 1 = N . The interaction among the electrons in the Hilbert space
restricted to LL0 is entirely determined by the Haldane pseudopotential [10] defined as pair interaction
energy Vee as a function of relative pair angular momentum R and plotted in Fig. 1(a).

The even and odd values of R correspond to symmetric and antisymmetric pair wave functions, i.e.,
to the singlet and triplet pair spin state, respectively. Assuming large cyclotron gap �ωc between LL’s
(compared to the Zeeman gap EZ and the interaction energy scale e2/λ, where λ = √

hc/eB is the
magnetic length), similar low-energy excitations of electrons at larger odd-integral values of ν = 2n+1
occur only in the half-filled LLn, and the only difference compared with the ν = 1 case is a different
form of V (R), as shown in Fig. 1(a) for n = 1 and 3.

The two-spin system of N = N↓ + N↑ electrons can be mapped onto that of Ke = N↑ spin-↑
electrons and Kh = N − N↓ of spin-↓ holes [13]. At ν = 1, Ke = Kh ≡ K . The electrons and holes
obtained through such mapping are both spin-polarized, and their (equal) e–e and h–h interactions are
determined by the pseudopotential parameters Vee(R) corresponding only to odd values of R. The
effective e–h interaction depends on Vee(R) at both even and odd values of R, but it can be described
more directly by an e–h pseudopotential (pair e–h energy Veh as a function of pair wave vector k) plotted
in Fig. 1(b). In LL0, both e–e and e–h pseudopotentials are monotonic, while in higher LL’s they have
oscillations reflecting additional nodes of the single-particle wave functions.

Because of the exact mapping between two-spin and two-charge systems, all results discussed here
are, in principle, applicable to systems of conduction electrons and valence holes. This equivalence is
true for ideal systems (with zero layer width w and no LL mixing) considered here. However, in realistic
interband systems (realized, e.g., by optical excitation of an electron gas) the e and h wave functions are
different both in the plane of motion (because of mass-dependent LL mixing) and in the normal direction
(because of mass-dependent density profiles �(z) and an additional separation of e and h planes induced
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Fig. 2. (a) Energy spectrum (interaction energy E versus total angular momentum L) of N = 14 electrons
calculated on a sphere for 2l + 1 = N (at filling factor ν = 1). S is the total spin, K = 1

2 N − S, and λ is
the magnetic length. (b) Low-energy L = K band for different N as a function of ζ = K/N .
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by a charged doping layer). Therefore, the “hidden symmetry” is broken in experimental e–h systems,
while the equivalent conservation of the total spin S is easily realized in the corresponding two-spin
systems.

3. Spin-excitation spectrum at ν = 1

An intriguing feature known to occur in the spin-excitation spectrum at ν = 1 is the low-energy
band that is linear in spin and angular momentum. It was first identified in finite-size quantum Hall
droplets [16], and later discussed [17] in Haldane spherical geometry [19], convenient in modeling
infinite, translationally invariant systems.

The energy spectrum obtained for N = 14 electrons on a sphere is shown in Fig. 2a. The energy E

is counted from the energy E0 of the spin-polarized ν = 1 ground state, and it is plotted as a function
of total angular momentum L. Different values of the total spin S (or of the number K = 1

2N − S

of spin flips relative to the polarized ground state) are indicated by different symbols. Each point
(E, L) represents a (2L+ 1)(2S + 1)-fold degenerate multiplet of states distinguished by Lz and/or Sz.
The orbital degeneracy, on a sphere associated with different orientations of the vector L, on a plane
corresponds to different directions of the wave vector k of finite length k = L/R (where R is the sphere
radius).

It is clear in Fig. 2a that the lowest state at each L has K = L. This band is nearly linear in L

and, thus, it can be interpreted as containing states of K ordered and noninteracting SWs, each carrying
angular momentum 	 = 1 and energy ε	 = Veh(k	), where k	 = 	/R. Ordering means here that the
angular momentum vectors of the K SWs are all parallel to give a total L = K	, i.e., that all SWs move
in the same direction along the same great circle of the sphere. On a plane (corresponding to R → ∞),
this corresponds to K SWs moving in parallel along a straight line, each with an infinitesimal wave
vector k	.

Scaling of this L = K band with the size of the system is shown in Fig. 2b, where we overlay the data
for different N ≤ 14. The excitation energy E appears be a (nearly size-independent) linear function of
“spin polarization” ζ = K/N . Assuming exact decoupling of the SWs in this band, E(ζ ) ≡ Kε	 can
be extrapolated to the planar geometry, where the SW dispersion is [14]

Veh(k) =
√

π

2

(
1 − e−κ2

I0

(
κ2

)) e2

λ
(1)
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Fig. 3. (a) Low-energy part of Fig. 2(a). Labels indicate angular momenta 	 of the (interacting) SW’s
in each 14-electron state. (b) Approximate energies (“+”) of 14-electron states containing a number of
interacting SW’s each with 	 = 1 compared with the exact spectrum of Fig. 2(a).
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with κ = 1
2kλ and I0 being the modified Bessel function of the first kind. For small k	,

ε	 ≡ Veh (k	) ≈
√

π

2
κ2
	

e2

λ
(2)

Substituting k	λ = 	/R, R = √
Qλ (where 2Q is the magnetic monopole strength; 2Q · hc/e =

4πR2B), l = Q for the lowest electron shell (LL), and, at ν = 1, N = g ≡ 2l + 1, we have
k	λ = √

2/N , and finally

E(ζ ) = ζ

√
π

8

e2

λ
(3)

This slope is much smaller from that in Fig. 2b due to finite-size and (or) curvature errors on a sphere,
particularly significant at small k	. The total wave vector k = L/R = Kk	 for the L = K band scales
as

kλ = √
2Nζ (4)

i.e., on a plane is it divergent. Therefore, E(ζ ) is a lower bound for the actual excitations at a given ζ

that will have large but finite k.

4. Effective SW–SW interaction

Let us disregard the divergence of k in (4) and concentrate on the fact that the (nearly) linear behavior
of E(K) suggests decoupling of SW’s in the L = K band. This invokes a more general question of
interaction between SW’s in the lowest (or higher) LL’s. Unlike their number K = 1

2N − S, the
individual angular momenta of interacting SW’s are not conserved. For example, a pair of SW’s both
with 	 = 1 and with the total angular momentum L = 2 are coupled to a pair with the same L but with
different 	 = 1 and 2 (the vector addition of 	 and 	′ gives L going from |	 − 	′| to 	 + 	′); these two
configurations being denoted as |1 + 1; 2〉 and |1 + 2; 2〉. However, unless the single-SW energies E
of such coupled configurations (here, E = 2ε1 and ε1 + ε2) are close, this coupling can be effectively
incorporated into the SW–SW interaction. In Fig. 3(a) we have made such assignment for the lowest
excitations of the 14-electron spectrum.

Following this assignment, we can extract not only the (exact) single-SW energies, εL = E[L]−E0,
but also the parameters of an effective SW–SW interaction pseudopotential, V [	 + 	′; L] = E[	 +

© 2005 NRC Canada
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	′; L] − ε	 − ε	′ − E0. Using these two-SW interaction parameters one can describe interactions in the
states of more than two SW’s.

Let us demonstrate it on a simple example of K SW’s each with 	 = 1. In this case, there are
only two pair-SW states, at L = 0 and 2, corresponding to the relative (with respect to the center of
mass of the two SW’s) angular momenta R ≡ 2	 − L = 2 and 0 (SW’s are pairs of fermions, and
thus for two SW’s with equal 	, R must be even as for two identical bosons). Thus, there are only
two interaction parameters, in a 14-electron system equal to V2 ≡ V [1 + 1; 0] = 0.0236 e2/λ and
V0 ≡ V [1 + 1; 2] = −0.0026 e2/λ (for the subscripts in V0 and V2 we use notation VR and not VL).

The total energy of the state � of K SW’s, E = E0 + Kε	 + U , contains the inter-SW interaction
energy that can be expressed as

U =
(

K

2

) ∑
R

GRVR (5)

Here, GR are the pair amplitudes [10, 20] (pair-correlation functions) that measure the number of SW
pairs with a given R (for brevity, we omit index � in E, U , and GR). They are normalized,

∑
R GR = 1,

and satisfy an additional sum rule that on a sphere has the form [21]

L(L + 1) + K(K − 2) 	(	 + 1) =
(

K

2

) ∑
R

GR L(L + 1), (6)

where L and L ≡ 2	 − R are the total and pair SW angular momenta, respectively.
For 	 = 1, there are only two pair amplitudes, G0 and G2, and hence they are independent of the

SW–SW interaction and can be completely determined from (6). This allows expression of GR and,
using the values of VR and (5), of U and E as a function of K and L

U = L(L + 1) + 2K(K − 2)

6
(V0 − V2) + K(K − 1)

2
V2 (7)

For L = K this gives G2 = 0 and U = 1
2K(K − 1)V0, i.e., the linearity of E(K) depends on the

vanishing of V0. Energies E(K, L) obtained from (7) for all combinations of L and K are compared
with the exact 14-electron energies in Fig. 3(b). Good agreement, especially for the L = K band,
justifies interpretation of the actual spin excitations in terms of K SW’s with well-defined 	, interacting
through the effective SW–SW pseudopotentials.

5. SW–SW pseudopotential

This brings up the question of why are the SW’s in the L = K band (nearly) noninteracting (i.e., why
is V0 so small compared to V2 or ε1). And a more general one, what is the pseudopotential describing
interaction between the SW’s. The SW–SW pseudopotential V depends on the pair of wavevectors, k

and k′. However, in extension of V0 and V2 in (7), we will only consider two special cases: V↑↑(k)

and V↑↓(k), corresponding to two SW’s with equal wavevectors k moving in the same and opposite
directions, respectively.

5.1. Independent SW’s
A moving SW carries [14] an in-plane dipole electric moment d, with magnitude d proportional to

k and oriented orthogonally to the direction of k. For a pair of uncorrelated SW’s this implies simple
dipole–dipole interaction, repulsive for the ↑↑ configuration, and attractive for ↑↓. Indeed, in Fig. 4(a)
we plot V↑↑(k) and V↑↓(k) showing such behavior. Moreover, at small k we find a very regular power-law
dependence

V↑↑(k) ∼ 0.42(kλ)5/2 e2

2πR
(8)
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Fig. 4. SW–SW pseudopotentials (two-SW interaction energy V vs. single-SW wavevector k) for the
independent (a) and correlated (b) SW’s moving in the same or opposite direction (total pair wavevector
q = 2k or 0, respectively). λ is the magnetic length and R is the sphere radius.
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The curves in Fig. 4(a) have been calculated as an expectation value of the Coulomb interaction in a
trial state |k, k; q〉 describing two uncorrelated (independent) SW’s, each with the wavevector k and
with the total wavevector q = 2k (↑↑) and q = 0 (↑↓), and thus they are equivalent to the SW–SW
scattering matrix element with zero wavevector transfer, v(k, ±k; 0).

The trial states have been constructed on a sphere in the 2e+2h basis in a lowest LL with l = Q. The
two electrons (and two holes) are distinguished by different isospins σ = ± 1

2 . A pairing hamiltonian
H	 is introduced with the e–h pseudopotential in the form

V
(	)
eh

(
σe, σh, 	

′) = −δσeσh
δ		′ (9)

and the e–e and h–h interactions set to zero. At each total angular momentum L, there is exactly one
eigenstate of H	 corresponding to the eigenvalue −2. It describes two independent e–h pairs (i.e.,
excitons or SW’s), one with σe = σh = 1

2 and one with σe = σh = − 1
2 , each in an eigenstate of pair

angular momentum 	 corresponding to the pair wavevector k	 = 	/R (on a sphere, describing motion
of a charge-neutral pair along a great circle). The total angular momentum L of two pairs can also be
converted into the total wavevector, q = L/R.

We have concentrated on the trial states with L = 2	 and 0 (i.e., with q = 2k	 and 0), denoted
as |k	, k	; 2k	〉 and |k	, k	; 0〉. They describe two pairs each with the same k	 and moving in the same
and opposite directions, respectively. Discrete SW–SW pseudopotentials V↑↑(k	) and V↑↓(k	) on a
sphere have been calculated as the expectation value of the inter-SW Coulomb interaction (i.e., the
total Coulomb energy of the 2e + 2h state minus the intra-SW e–h attraction 2ε	). When the sphere
curvature R/λ = √

(Q) decreases, the discrete values quickly converge to the continuous curves
V↑↑(k) and V↑↓(k) appropriate for a planar system. The interpolated curves for the LL degeneracy
2l +1 ≡ 2Q+1 = 30 and 50 are compared in Fig. 4(a). Note that V is plotted as a function of e2/2πR

(rather than e2/λ) what reflects the fact that SW’s are extended objects confined to a great circle of
length 2πR (in contrast to electrons or holes that are confined to cyclotron orbits of radius ∼ λ).

5.2. Coupled SW’s

The SW–SW pseudopotentials obtained above describe interaction between independent SW’s (dis-
tinguished by isospins σe and σh). However, the following two correlation effects must be incorporated
into the effective SW–SW interaction to describe the actual spin excitations at ν ∼ 1 (i.e., the interacting
e–h systems).

© 2005 NRC Canada
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First, the Coulomb (charge–charge) interaction between the SW’s breaks the conservation of 	 and
causes relaxation of the individual SW wavefunctions and their energies ε	. This perturbation effect
mixes the SW states within the energy range �ε ∼ V , so it becomes negligible when V is small, i.e., at
small k. In particular, it does not affect the behavior of V↑↑(k) at small k, responsible for the linearity
of the L = K band.

Second, strictly speaking, the SW’s are not bosons but pairs of fermions, and a wavefunction of two
SW’s must not only be symmetric under interchange of the entire SW’s, but also antisymmetric under
interchange of two constituent electrons or holes. The trial paired states |k, k; q〉 with H	 = −2 do not
obey these symmetry requirements, because H	 is isospin-asymmetric and hence it does not commute
with pair e or h isospins, �e and �h. Therefore, the trial eigenstates of H	 = −2 are different from
the properly symmetrized eigenstates of �e = �h = 1. This statistics effect is generally weak for
spatially separated composite particles, but for the SW’s moving along the same line (or great circle) it
is large and cannot be treated perturbatively (even at small k when the Coulomb SW–SW interaction is
negligible).At each L, the exact form of the ground state in the �e = �h = 1 subspace depends on 	 and
on the details of the actual (Coulomb) hamiltonian, and so does the average value of H	 (measuring the
actual “degree of pairing”). However, as a reasonable approximation one can introduce the “maximally
paired” states, defined at each L as the lowest-energy state of the pairing interaction hamiltonian V

(	)
eh

within the �e = �h = 1 subspace.
The relaxation of the wavefunctions of the overlapping SW’s is evident from the analysis of the e–e

and h–h pair amplitudes G(R). For a pair of different particles, such as electrons or holes distinguished
by isospin σ in the trial state |k, k; q〉, R can be any integer. Therefore, Gee(R) and Geh(R) calculated
for the independent SW’s are positive at both even and odd R (in fact, there is no obvious correlation
whatsoever between the parity of R and the value of Gee or Geh). In contrast, for a pair of identical
fermions, such as electrons or holes in an actual, interacting state of two SW’s, Gee(R) and Geh(R) vanish
exactly at all even values of R. The change of pair amplitudes when going from the trial states |k, k; q〉
to the actual Coulomb ground states is quite dramatic, precluding adequacy of the pseudopotentials of
Fig. 4(a) for the description of many-SW systems.

Because of the above relaxation effects, interaction between the SW’s is not purely a two-body
interaction, and thus it cannot be completely described by a (pair) pseudopotential V (k). In other
words, a SW–SW pseudopotential taking these effects into account is not rigorously defined. However,
as demonstrated in Fig. 2(b), many-SW spectra can be reasonably well approximated using an effective
pseudopotential obtained for only two SW’s.

To determine such effective V↑↑(k) and V↑↓(k), we calculate the 2e + 2h Coulomb energy spectra
similar to the K ≤ 2 part of Fig. 3(a) and make analogous assignments for the K = 2 states. The lowest
state at each even value of L = 2, 4, … is interpreted as one of two SW’s each with 	 = 1

2L and moving
in the same direction. Similarly, consecutive states at L = 0 contain two SW’s each with 	 = 1, 2, … and
moving in opposite directions. In both cases, V (	) = E −2ε	 −E0. When 	 is converted into k	 = 	/R

and V is plotted in the units of e2/2πR, the discrete pseudopotentials V (k	) fall on the continuous
curves V↑↑(k) and V↑↓(k) that very quickly converge to ones appropriate for a planar system when the
sphere curvature R/λ = √

(Q) is decreased. The interpolated curves for 2l + 1 ≡ 2Q + 1 = 30 and
50 are compared in Fig. 4(b), showing virtually no size dependence. Similar curves were obtained for
the “maximally paired” states used instead of actual Coulomb eigenstates.

The justification for the above assignment comes from the observation of distinct bands in the low-
energy K = 2 spectrum. The values of L within each band are consistent with the addition of angular
momenta of two SW’s, |	 − 	′| ≤ L ≤ 	 + 	′ (with the additional requirement that L − 2	 ≡ R be
even for 	 = 	′). In the absence of the SW relaxation, these bands would contain the eigenstates of
E ≡ ε	 + ε	′ , with the intra-band dispersion reflecting interaction of the independent SW’s with 	 and
	′. In the actual spectrum, the bands mix, but remain separated, making the assignment possible. The
interband mixing and the resulting changes in the energy spectrum are precisely the relaxation effects,
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effectively incorporated into V (k). For L = 0 (↑↓), the mixing is minimal, because the contributing
“independent SW” configurations

∣∣	, 	′; L = 0
〉
must all have 	 = 	′, and thus very different single-SW

energies E . For L = 2	 (↑↑), mixing between configurations |	 + δ, 	 − δ; L = 2	〉 with close values
of E can occur, having a stronger effect on the effective V↑↑(k).

The main two findings about the effective SW–SW pseudopotentials shown in Fig. 4(b) are the
following. First, the statistics effect turns out so strong as to reverse the sign of interaction. In contrast
to the prediction of the model of independent SW’s with dipole–dipole interaction, the SW’s moving
in the same direction decrease their total energy (what can be interpreted as attraction), while the SW’s
moving in opposite direction increase their energy (i.e., repel one another). Second, the magnitude of the
↑↑ attraction at small k is greatly reduced compared to (8). It can also be approximated by a power-law
dispersion, but with a much higher exponent and a much smaller prefactor,

V↑↑(k) ∼ −0.069 (kλ)4 e2

2πR
(10)

Although the near vanishing of V↑↑ at small k was anticipated from the linearity of the L = K band
in Fig. 2, the negative sign and large exponent are rather surprising and of a wider consequence. It may
be worth stressing that the identified attraction between N SW’s (or interband excitons) moving in the
same direction is too weak to induce a stable bound ground state, with the total energy lower than N

times ground state energy of a single SW/exciton. Therefore, it does not contradict a well-known fact
that the ground state of N electrons and N holes in the lowest LL is a multiplicative state [12, 13] of
N SW’s/excitons each with k = 0 (in particular, a biexciton is unstable toward breaking up into two
k = 0 excitons, while the energy of N SW’s is never lower than Nε0 = 0, and so the ν = 1 ground
state is spontaneously polarized). However, for two or more SW’s/excitons carrying a conserved total
wavevector q > 0, the convex shape of Veh(k) causes equal distribution of q among all SW’s/excitons,
and the SW–SW or X–X attraction binds them together. Such a moving multi-SW/exciton can only
break up (into separate SW’s/excitons) through an inelastic collision taking away its wavevector. This
dynamical binding will affect spin relaxation (for the SW’s) or photoluminescence (for the excitons)
of an electron gas, but the relevant spectra are yet to be calculated. The effect will have to depend
critically on the absence of excess electrons or holes, which would capture the SW’s or excitons to form
skyrmions at ν �= 1 or trions at ν > 0.

6. Conclusion

We have studied interaction between moving SW’s (excitons) in the lowest LL. For a pair of SW’s
with equal wavevectors k and moving in the same (↑↑) or opposite (↑↓) directions, the effective
interaction pseudopotentials V↑↑(k) and V↑↓(k) have been calculated numerically. They account for
relaxation of overlapping SW’s due to the Fermi statistics of constituent (reversed-spin) electrons and
(spin-) holes, and differ completely from the prediction for independent SW’s interacting through
their dipole moments. In particular, the signs of the interactions are reversed and their magnitudes are
decreased. The former effect leads to a “dynamical binding” of mobile multiexcitons, and the latter
explains the near decoupling of excitons in the linear L = K band in the spin-excitation spectrum at
ν = 1.
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