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Abstract

The center-of-mass excitations are identi�ed in the spectrum of electrons on a two-dimensional surface in the lowest
Landau level. The correspondence between the quantum numbers labeling electron states on a sphere and on a plane is
drawn. The excitation spectrum on a sphere with increasing radius is shown to converge to that on a plane. In particular, in
the presence of a lateral con�nement (i.e. for the case of quantum dots), identical series of magic states appear in both cases.
Also, a class of interaction potentials which lead to the fractional quantum Hall e�ect in an extended system are identi�ed.
? 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

The discovery of the fractional quantum Hall ef-
fect (FQHE) [1] raised great interest in the properties
of interacting two-dimensional electron gas (2DEG)
in high magnetic �elds. In the degenerate lowest
Landau level (LL), the electron–electron (e–e) in-
teraction cannot be treated perturbatively. Instead,
numerical diagonalization techniques have often been
used, which, however, limit the system to a �nite
(small) number of electrons. In order to model an
extended 2DEG by a �nite system, electrons can be
put on a closed surface (sphere) [2]; alternatively,
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a lateral (parabolic) potential [3] or periodic bound-
ary conditions (PBC) [4] can be used on a plane.
While all these approaches aim at the description of
the same 2DEG system, di�erent geometry leads to
di�erent symmetries, di�erent �nite-size e�ects, etc.
Analysis of the excitation spectra shows that di�erent
sets of good quantum numbers appear in di�erent
cases: e.g., total angular momentum and its projection
on a sphere, and center-of-mass (CM) and relative
(REL) angular momentum projections on a plane in
the circular gauge.

In this paper we shall explore the correspondence
between these sets of quantum numbers and demon-
strate that the underlying CM symmetry appears for
a 2DEG on both surfaces. The resulting similarities
between the excitation spectra on both surfaces will
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be pointed out. Also, we shall study the e�ect of the
form of e–e repulsion on the excitation spectrum; par-
ticularly on the occurrence of incompressible ground
states (GS’s) at the fractional �lling factors known in
the context of the FQHE.

On a plane, electrons con�ned by a lateral po-
tential were also used as a model of experimentally
realizable systems called quantum dots, where a few
electrons are indeed bound in a small area [5]. In
analogy, we shall study a spherical model of a quan-
tum dot, where electrons are con�ned around a pole.
In both models (on a sphere and on a plane), a lat-
eral con�nement of varied strength will be shown to
drive the 2DEG through the same sequence of magic
states.

2. Model and single-particle states

The system of N interacting electrons moving on
a smooth 2D surface and subject to a magnetic �eld
B perpendicular to the surface is considered. The
intensity of the �eld, B, is constant. As speci�c ex-
amples, two surfaces: a plane and a sphere, will be
discussed. Within the surface, a lateral potential VL

con�nes the system to a �nite area, a quantum dot.
The total single-particle (SP) hamiltonian, i.e. both
the geometrical constraint de�ning the surface and
the lateral con�nement, are assumed to be rotation-
ally symmetric around the z-axis. We assume the
Zeeman gap to spin-polarize the electron gas in both
cases, so that the spin degree of freedom can be
ignored.

In the absence of a lateral con�nement, the SP en-
ergies, ”nm, form degenerate LL’s separated by gaps
of the order of the cyclotron energy, ˜!c = eB=�c (e
and � are electron charge and e�ective mass, respec-
tively), and labeled by the LL index n= 0; 1; : : : . The
states within each (nth) spin-polarized LL, |n; m〉, are
labeled by the projection of orbital angular momen-
tum, m. We shall discuss the strong �eld limit, i.e.
neglect the LL mixing due to the lateral con�nement
and=or e–e interaction. The SP states in the lowest,
spin-polarized LL are denoted by |m〉, and their en-
ergy is ”m = 1

2˜!c.
The lateral (quantum-dot) con�nement VL removes

degeneracy of the lowest LL. It will be chosen in such
a form, that the dispersion is linear, ”m = 1

2˜!c − m�.

The eigenstates in the presence of VL are the same as
without VL, since without the LL mixing (�.˜!c)
each SP m-subspace contains only one state, |m〉.

The particular forms of the hamiltonian which
give the model SP spectrum postulated above in
cases of planar and spherical surfaces are presented
below.

On a plane, the magnetic �eld perpendicular to
the surface is a uniform �eld, B=Bẑ. The lateral
potential that gives a linear dispersion of LL’s is an
isotropic harmonic well, VL(x; y) = �!2

0(x2 + y2)=2.
The SP eigenstates are those of a pair of uncoupled
harmonic oscillators, |n; m〉= (a+)n(b+)n−m |0; 0〉=√

n!(n− m)!. The energies are ”nm =˜!+(n + 1=2)
+ ˜!−(n− m + 1=2), where !± = (
 ± !c)=2 and

2 =!2

c + 4!2
0. In high magnetic �elds, the intra-

LL excitation energy is �=˜!− ≈˜!2
0=!c and the

inter-LL separation is ˜
≈˜!c. The LL mixing at
a �nite !− :!+ ratio replaces the magnetic length
lB =

√
˜c=eB by a new length scale, l0 =

√
!c=
 lB.

The lowest-LL wavefunctions, 〈r|m〉, correspond to
circular orbits with increasing radii ≈ √

m lB (the
ux through the area inside the orbit is m�0, where
�0 = hc=e is the ux quantum).

On a sphere, the magnetic �eld perpendicular to
the surface is an isotropic radial �eld, B=±B
̂
(here, 
̂ = r=r is the radial versor), produced by
a magnetic monopole of strength 2S placed at the
origin. The total ux through the sphere of radius R
is 4�BR2 = 2S�0 (i.e., R2 = Sl2

B); positive S means
B pointing outwards. 2S is an integer, as required
by Dirac’s monopole quantization condition. In
the absence of a lateral con�nement, the SP states
(monopole harmonics) are the eigenstates of the
angular momentum, l, and its projection, m, with the
LL index n= l− S [6]. The angular momentum lad-
der operators l± = lx ± ily connect states within each
LL, |n; m〉=

√
(l + m)!=(l− m)!=(2l)! (l−)l−m |n; l〉.

The energy levels are ”nm =˜!c[n + 1=2 + n(n +
1)=2S]. The lowest-LL wavefunctions, 〈r|m〉, cor-
respond to circular orbits around the z-axis, at the
height 〈z=R〉≈m=(S + 1).

The lateral potential VL that gives a linear disper-
sion of LL’s on a sphere (in analogy to a quantum dot
on a plane) is linear in z, VL(z) = − (S + 1)� z=R.
For S¿0, VL con�nes electrons around the north pole
(z =R). It follows from the orthogonality of Jacobi
polynomials that the only nonvanishing matrix
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elements are the diagonal ones and those between the
neighboring LL’s:

〈n; m|z=R|n; m〉=
S

l(l + 1)
m; (1)

〈n− 1; m|z=R|n; m〉=

√
(l2 − m2)(l2 − S2)

l2(4l2 − 1)
: (2)

The LL mixing due to the o�-diagonal terms in VL is
fairly weak and the resulting deviations from the linear
dispersion are negligible even when neighboring LL’s
begin to overlap, i.e. for 2l�≈˜!c.

3. Center-of-mass excitations within the lowest
Landau level

The total many-particle (MP) hamiltonian contains
the SP and e–e (Coulomb) interaction terms that com-
mute with each other:

H =
∑
m
”m; c+

mcm

+
1
2

∑
m1m2m3m4

〈m1m2|VC|m3m4〉 c+
m1
c+
m2
cm3cm4 : (3)

Operators c+
m (cm) create (annihilate) an electron in

the state |m〉, and 〈m1m2|VC|m3m4〉 are the two-body
interaction matrix elements (for a plane cf. Ref. [7];
for a sphere cf. Ref. [8]).

The MP Hilbert space is spanned by SP con�gura-
tions, |m1; m2; : : : ; mN 〉 = c+

m1
c+
m2

· · · c+
mN

|vac〉, where
|vac〉 stands for vacuum. Each basis con�guration is
classi�ed by the projection of the total angular mo-
mentum, M =

∑N
i=1 mi, and thus also by the SP en-

ergy, ESP =N˜!c=2 −M�. The eigenstates |�〉 of the
total hamiltonian H are these of the interaction VC

alone. They are obtained through the diagonalization,
separately for each M -eigensubspace. The eigenen-
ergies, E�, are the eigenenergies of interaction, E C

� ,
shifted by appropriate SP energies, ESP

� . The total an-
gular momentum will be denoted by L (on a plane it
is trivially L= |M |).

If the con�nement, scaled by �, prevails over the
e–e repulsion, and at the same time the cyclotron gap
prevents scattering to higher LL’s, the GS of the MP
system is a compact droplet (CD) corresponding to

the �lling factor �= 1 [9–11]. The CD is a noninter-
acting con�guration, in which electrons occupy con-
secutive SP orbitals around the minimum of VL, up
to a Fermi level, |CD〉= (

∏
m¿mF

c+
m)|vac〉. Since it

is the only MP state in the Hilbert space with its to-
tal angular momentum projection, MCD, it is is an ex-
act eigenstate of the interacting hamiltonian H . Also,
LCD = |MCD|.

When the con�nement strength (�) falls down
to a critical value, the e–e repulsion induces a GS
transition (reconstruction of the CD). Further de-
crease of � leads to the subsequent changes of
the MP GS through a series of states with in-
creasing area, i.e. increasing M [10,11]. Only cer-
tain (magic) values of M appear in the series,
known in the context of quantum dots on a plane
[3,11–13]. Below, we analyze the excitations which
connect di�erent M -spaces and thus also di�er-
ent magic GS’s, We shall concentrate on the re-
lation of these excitations to the CM and REL
motions.

3.1. General surface

Within an isolated, nth LL (e.g. the lowest LL),
a class of excitations can generally be constructed
which do not change the e–e interaction energy; they
are the CM excitations. In the absence of a lateral con-
�nement VL, the SP energy is a number and can be
eliminated by a gauge transformation. The total nth-
LL hamiltonian, Hn =VC, depends only on the REL
positions, rij ≡ ri − rj, and does not depend on the CM
position, R=

∑N
i=1 ri=N . Thus, the excitations associ-

ated with the CM degree of freedom do not couple to
Hn. Even though R does not explicitly appear in Hn,
the spectrum of CM excitations is not that of a free
particle due to the restriction of SP states to a single
LL, speci�c for a given surface. In general, for a given
eigenstate �(r1; : : : ; rN ), the Hilbert space H� of states
di�erent from � by a CM excitation is the projection
of the space H0

�, which corresponds to the free CM
motion and is spanned e.g. by {eiPR=˜�}P , onto the nth
LL on a given surface, H� =PnH

0
�. By de�nition,

H� includes states �′ that have identical pair corre-
lation function, G�′(r) =G�(r)≡〈�| �(r1;2 − r) |�〉,
and thus can be written as �′ =  (R)�. Since the num-
ber of SP states in each LL is countable, so is the
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number of states in H�. If the LL degeneracy is �nite
(closed surface), so is that of H�.

Any lateral con�nement that contains only terms
linear in components of r; p; r2; p2, or l = r× p, can
be split into the sum of CM and REL parts, and does
not a�ect the CM–REL decoupling [14] (however,
it will lead to a nonzero CM excitation energy). In
the limit of �.˜!c (within a single LL) we have
VL ≈ const − lz�, and the decoupling holds for any
rotationally symmetric surface. (In the special case of
a plane, it also holds in the presence of LL mixing;
the Kohn theorem [15].)

Let us write the explicit form of the CM-excitation
creation operator [12]. The nth LL is spanned by
the SP states |m〉. These states are connected with
a ladder operator, q=

∑
m |m〉〈m + 1 |. In particular,

on a plane: q= b+, and on a sphere: q= l−. The
MP excitation in form of the sum over all particles,
Q =

∑N
i=1 qi =

∑
m c+

mcm+1, decouples from the REL
motion,

[rij ; Q] = 0: (4)

Also, [M;Q] =−Q and [H;Q] =�Q, and hence Q
carries M =−1 and SP energy �. (Note that the axial
symmetry of hamiltonian H is not neccesary for the
construction of Q and the CM excitations; it is su�-
cient if the SP energy spectrum is linear in a single,
discrete quantum number.) Thus, for a given MP
eigenstate |�〉 with M =M� and E =E�, a ladder of
states can be constructed, |�k〉 =Qk | �〉, with M =
M� − k and E =E� + k�. Also, each eigenstate of the
total MP hamiltonian H can be uniquely decomposed,
|�k〉 =Qk | �0〉, where |�0〉 is a pure REL state,
de�ned as Q+| �0〉 = 0. Clearly, as follows from the
commutation (4), Q does not change the pair corre-
lation function, G�k =G�0 , and thus �k =  k(R)�0.

The states connected with Q belong to di�er-
ent Hilbert M -spaces, and each M -space splits into
eigensubspaces of states with a de�ned number of
Q-excitations. None of the Q-excited states falls into
the magic sequence of GS’s.

For example, in the case of three electrons on a
sphere at 2S = 8, the SP angular momentum is l= 4,
the allowed values of total angular momentum are
L= 1, 3, 4, 5, 6, 7, and 9, and the space of L= 3 is
2D (symbolically, the total Hilbert space decomposes
into 1⊕ 32 ⊕ 4⊕ 5⊕ 6⊕ 7⊕ 9). There are 8 nonde-
generate pure REL states, two of which have L= 3

Fig. 1. Schematic picture of CM–REL Hilbert spaces of three
electrons; (a) plane; (b) sphere, 2S = 6.

(the pair of eigenstates in the 2D space with L= 3 de-
pend on the speci�c form of e–e interaction). To each
pure REL state the CM excitations can be indepen-
dently attached. In particular, acting with Q on each
of the two pure REL states in the L= 3 space gener-
ates an independent ladder of states (cf. also Fig. 1 for
2S = 6).

3.2. Special cases: plane vs. sphere

On a plane, q= b+ is linear in x; y; px, and py,
and thus Q is linear in CM variables, Q = [(X −
iY )=l0 − 2(9X − i9Y )l0]=2

√
2. Operator Q decreases

CM angular momentum projection, MCM = [R×P]z.
The di�erence MREL =M −MCM describes mo-
tion relative to the CM and remains untouched
by Q. The pair MCM and MREL are good quan-
tum numbers. A special property of the plane
(trivial constraint, z = 0) and of the parabolic
con�nement VL is that the total hamiltonian H
is simply a sum of CM and REL hamiltonians,
H =HCM + HREL, and hence the total Hilbert
space is a simple product of CM and REL Hilbert
spaces.

On a sphere, q= l− and Q =L− ≡Lx − iLy reduces
the total angular momentum projection Lz without
changing the length L (L and Lz are good quantum
numbers). As follows from the proceeding general
discussion, this is a CM excitation. However, due to
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the nontrivial constraint, x2 + y2 + z2 =R2, the to-
tal Hilbert space is not a simple product of CM and
REL Hilbert spaces. In consequence, e.g., for a pair of
di�erent pure REL states, � 6=�′, the CM-excitation
prefactors  and  ′ (Q�=  � and Q�′ =  ′�′) need
not be equal. Moreover, the numbers of CM excita-
tions that can be attached to � and �′ are, in general,
di�erent. In other words, the CM excitations do not
a�ect the REL motion, but the REL excitations (e.g.
between di�erent pure REL states) couple to the CM
motion.

Let us now compare the planar (P) and spheri-
cal (S) systems: (P) open surface → in�nite LL de-
generacy, 0¿m¿−∞; (S) closed surface → �nite
LL degeneracy, 0¿m− S¿− 2S. In order to unify
notation, a pair of new quantum numbers, L and
Q, are de�ned: (P) L= |MREL| and Q= |MCM|; (S)
L=L and Q=L−M . L labels pure REL states
and Q gives the number of CM excitations attached
to a pure REL state. The dimension of the space of
pure REL states with a given L depends on L, elec-
tron number N and the LL degeneracy. Further, it
is convenient to replace L by the relative angular
momentum, RAM = |L− LCD|, which measures L
relative to that of the CD (modulus is needed, be-
cause L¿LCD on P, and L6LCD on S). The CD
has RAM = 0, and higher RAM means that the elec-
trons occupy a larger area of the surface (as will be
shown later, RAM measures the average squared e–e
distance). The number of RAM-spaces: (P) in�nite,
06RAM6∞; (S) �nite, 06RAM6LCD. The max-
imum number of CM excitations that can be attached
to a pure REL state: (P) in�nite, 06Q6∞; (S) �nite,
depends on RAM, 06Q62L. The Hilbert spaces
(RAM;Q) for a plane and a sphere (2S = 6) have been
schematically drawn in Fig. 1 for the case of three
electrons. Nonempty spaces are shown as squares. In
this picture, the CM excitations are vertical; the top
row are pure REL states, and the REL excitations are
horizontal.

Generally, the SP energy can be expressed through
RAM and Q as follows: ESP =N˜!c=2 + (RAM +
Q−MCD)�. The �rst term is the lowest LL energy.
The second term is a straight line vs. RAM and gives
the SP energy of REL excitations. The third term is
the CM-excitation energy, and since only states with-
out CM excitations can be GS’s (at an appropriate
value of �¿0), we can neglect all other states and

set Q= 0. The fourth term is a constant, the SP en-
ergy of the CD. The interaction energy depends only
on RAM.

As follows from the above comparison that there
are two major qualitative di�erences between the pla-
nar and spherical cases:

(i) A plane is an open surface, with in�nite LL de-
generacy and no constraint on the magnitude of the
magnetic �eld. On the contrary, the LL degeneracy for
closed surfaces is �nite, and the total magnetic ux
through the surface is quantized.

(ii) A plane is a at surface, where the angular
momentum (L) algebra is 1D (L= |M |). The trivial
geometrical constraint does not introduce coupling be-
tween CM and REL motions, and each of them can be
attributed to its own 1D L-algebra. Thus the MP states
can be classi�ed with a pair of independent quantum
numbers, e.g., M and MCM (it is not important here
whether their operators commute with H). On the con-
trary, on any curved surface (e.g., a sphere) the L-
algebra is 3D. However, the additional degree of free-
dom associated with the orientation of L appears at
a cost of CM–REL coupling introduced inherently by
the nontrivial geometrical constraint. Thus, from the
four quantum numbers, L; M; LCM, and MCM, only
two are independent. As it follows from our discussion
above, the pair of good quantum numbers, RAM and
Q, can be always constructed, which have the same
physical meaning as their planar counterparts.

4. Magic states on a plane and on a sphere

As an illustration of the similarity between electron
systems on di�erent surfaces, it is shown in this sec-
tion for the example of six electrons how the excitation
spectra on a sphere converge to that on a plane when
the sphere radius, R, is increased. Since B on the sur-
face is �xed and R2 = Sl2

B, an increase of R is achieved
by increasing S. The lowest interaction eigenenergy in
each RAM-subspace, E C(RAM), has been plotted in
Fig. 2 for a sphere (dots, 2S = 7; 8; : : : ; 20; 25; 30; 35,
and 50) and a plane (squares). The sequence of magic
RAM’s can be identi�ed at the downward peaks; these
will be the GS RAMs at appropriate strengths of con-
�nement. The vertical lines show magic RAMs for
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a plane. 1 The unit of energy in Fig. 2 is chosen as
the interaction energy for two electrons occupying the
same, innermost orbital, i.e. 〈00|VC|00〉 on a plane,
and 〈SS|VC|SS〉 on a sphere.

The de�nition of RAM makes the dependence
E C(RAM) little sensitive to the geometry for RAMs
much lower than the maximum possible RAM on
a sphere at a given S (i.e. away from L= 0). The
general tendency is a decrease of E C with increasing
RAM (∼ area occupied by electrons), and the �ne
structure is associated with the magic states.

On a sphere, the lowest-LL degeneracy is 2S + 1
(depends on S). However, at a �xed RAM, the elec-
trons can only scatter to a �xed set of orbitals without
violating the conservation of M and, hence, they are
restricted to a certain area around the north pole.
When S is increased at a �xed RAM, the diameter
of the occupied area, scaled by the magnetic length,
lB = const:, becomes smaller and smaller compared to
the sphere radius, R, and the curvature of the surface
becomes less and less signi�cant (cf. the approxi-
mate area occupied by electrons in the lowest-energy
state at RAM = 30 for 2S = 50, shaded in the inset in
Fig. 2; see also Fig. 7 in Ref. [11]). Consequently,
in the limit of S →∞, all relevant interaction matrix
elements on a sphere converge to those on a plane.
Also, at a high enough S, so that the conservation of
M prevents scattering to the opposite (south) pole,
the numbers of states in the RAM-space on a sphere
and on a plane are equal. Hence, at each RAM, when
S increases, the energy spectrum and wavefunctions
on a sphere converge to those on a plane. The con-
vergence of E C(RAM) is clearly visible in Fig. 2.

1 The minimum value of the Coulomb interaction energy for
a given value of angular momentum L decreases as L increases,
but not in a monotonic fashion. Downward cusps appear at certain
values of L for which the Coulomb energy is particularly small. The
con�nement energy (in a parabolic quantum dot) increases linearly
with L. The competition between these two energies determines
the GS. Since the con�nement energy can be varied by changing
the parabolic potential, its slope as a function of L can be varied.
Because of this, when two downward cusps are connected by
a straight line, intermediate cusps which fall above this line will
not be absolute minima for any value of the con�ning potential.
This is the condition that determines the potential GSs. Note that
the intermediate cusps falling between cusps marked as GSs in the
�gure all lie above a straight line connecting a pair of neighboring
GSs. This e�ect is well known for ‘magic states’ of quantum dots.
See, for example, Refs. [11–14].

Fig. 2. Coulomb energy of six electrons on a sphere (dots) as
a function of relative angular momentum (RAM). The se-
ries of curves correspond to magnetic monopoles of strength
2S = 7; 8; : : : ; 20; 25; 30; 35, and 50. Energy is measured in units of
〈SS|VC|SS〉. Squares give analogous dependence for a plane (ver-
tical lines mark magic RAMs). Inset: approximate area occupied
by electrons at RAM = 30 for 2S = 50 (shaded).

The feature that is obviously unique for the sphere
(closed surface) and does not occur on the plane (open
surface) is the sensitivity of E C(RAM) close to L= 0
(RAM =LCD) to S and N . There are strong oscilla-
tions of E C vs. RAM in the vicinity of L= 0, and
whether the GS of interaction alone (for �= 0) occurs
at L= 0 or L¿0, depends on S and N (e.g., for N = 6,
the L= 0 state for 2S = 15 is the incompressible state
with �= 1=3). This has been studied in a great detail in
connection with the formation of composite fermions
and the fractional quantum Hall e�ect [2,3,16–18].

A reason for that might appear to be the �nite di-
mension of the SP space. While at RAM≈ 0 only a top
part of the sphere is available for the electron scatter-
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ing and the fact that the surface is closed is irrelevant,
at L≈ 0 the limitation of available SP space becomes
crucial. The SP space on a plane can be reduced to
the same dimension as that of a sphere for a given S
by keeping in hamiltonian H only these terms, which
describe scattering to the SP states corresponding to
those available on a sphere. The dependence of E C

on RAM obtained in this way is very similar to that
for the complete SP space, which shows that the �-
nite dimension of the SP space is of little importance.
(Note, that reduction of the SP space is not equivalent
to an introduction of a SP potential, and breaks the
CM–REL separation.)

The true reason for the unique behavior of
E C(RAM) on a sphere close to L= 0 is the topologi-
cal di�erence between an open and closed sur-
face. The convergence of interaction matrix el-
ements on a sphere to the matrix elements on
a plane is only a pointwise-like one, for each RAM

limS→∞
〈
V sphere

C

〉
=
〈
V plane

C

〉
, where 〈VC〉 are all in-

teraction matrix elements, which describe scattering
allowed within a given RAM-space. The uniform-like
convergence, limS→∞ for each RAM : : :, does not

hold (e.g.
〈
S;−S|V sphere

C |S;−S
〉

does not converge
to any matrix element on a plane). Thus, an uncon-
�ned (�= 0), edge-free, �nite (N¡∞) system on
the sphere is inherently di�erent from a �nite system
on a plane, whose stability always requires a potential
wall or an edge. Indeed, it is rather analogous to an
in�nite planar system with an equal density (which
can be modeled, e.g. using PBC [4]).

5. Dependence of the excitation spectrum on the
form of interaction potential

It is also interesting to compare the energy spectra
obtained for di�erent forms of the interaction poten-
tial [19]. So far we have used the Coulomb potential,
VC ∼ r�ij, where �=−1. In Fig. 3 we compare the
E C(RAM) dependences obtained for six electrons on
a sphere, at 2S = 15 (the GS with L= 0 is the incom-
pressible state with �= 1=3), for di�erent values of
�. To keep interaction repulsive, we ip the sign of
VC for �¡0. Also, since the energy scales for dif-
ferent values of � are independent, and we are only
interested in the magic values of RAM and the �ne

Fig. 3. Interaction energy of six electrons on a sphere for magnetic
monopole strength 2S = 15, as a function of relative angular mo-
mentum (RAM). Di�erent curves correspond to di�erent forms of
the interaction potential, VC ∼ r�. Scale and zero on energy axes
are di�erent for each �. Main frame: �62; inset: �¿2.

structure of EC(RAM) on top of the general, mono-
tonic behaviour, the energy axis for each potential
has been stretched and shifted so that the energies
coincide at RAM = 0 and RAM = 30 (L= 0).

As seen in the main frame in Fig. 3, the �ne struc-
ture in E C(RAM) is virtually identical for di�erent
values of �¡2, and only becomes more pronounced
for lower � (partly due to the arbitrary scaling of the
curves). In particular, neither the sequence of magic
GS’s nor the condensation into an incompressible
L= 0 state depend on �, which means that all these
interaction potentials favor virtually identical REL
(eigen) states.

The harmonic interaction potential (�= 2) gives a
trivial E C(RAM) dependence, since, within the low-
est LL on a sphere,

∑
ij r

2
ij=R

2 =N 2 − N=(S + 1) −
L(L + 1)=(S + 1)2. Consequently, each RAM-space
is degenerate, E C(RAM) is a parabola, and the se-
quence of magic RAM’s includes all values for which
the given RAM-space is not empty. Also, the mean-
ing of RAM as a quantum number characterizing
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the REL motion (in the lowest LL) is now clari�ed:
RAM measures the average squared distance between
the particles. (This is also true for the plane, where∑

ij r
2
ij=l

2
B is linear in RAM [14,20]).

In the inset in Fig. 3, we show the E C(RAM) de-
pendences obtained for a few di�erent values of �¿2.
Like in case of �¡2, all interaction potentials for �¿2
favor the same magic RAMs and thus virtually the
same REL (eigen) states. However, these states are
di�erent from those for �¡2.

The main conclusion from the above analysis is that
repulsive interaction potentials in the form VC ∼ r�ij
fall into three classes, leading to three distinct MP
spectra:

(i) �¡2; short-range potentials (in the limit of
�→∞, VC acts like a delta-peak potential). They
lead to the energy spectra, magic RAM’s, incom-
pressible states, composite-fermion formation, FQHE,
etc., characteristic for the Coulomb interaction. Note
that on a plane at �= 1=m (m is an odd integer),
Laughlin’s states [3] become exact GS’s in the limit
of vanishing interaction range [19]. Also, on a sphere,
the analogous Laughlin-like states become exact GSs
of a ‘hard-core interaction’ de�ned by Haldane [2].

(ii) �= 2; squared-distance (harmonic) potential.
Interaction energy as a function of RAM is a parabola.
This interaction does not lead to the incompressible
states (the excitation gap vanishes in the thermody-
namic limit of S →∞ at a constant �).

(iii) �¿2; these potentials act as if an electron were
attracted by short-range potential to the other elec-
tron’s antipole (antipole of an electron at 
̂ is at −
̂).
In the limit of �→−∞, the potential of this attrac-
tion is a peak at rij = 2R. Also these interactions do
not open the excitation gap at any �. In the minimum-
energy RAM = 0 state, half of electrons pack tightly
around one pole, and the other half around the other
pole. The system is somewhat similar to just two re-
pelling electrons and, e.g., the REL states with even
RAMs are favored.

6. Conclusion

In conclusion, we have demonstrated the correspon-
dence between excitations and associated quantum

numbers of �nite 2D electron systems in the lowest
LL on a plane and on a sphere. Despite a coupling be-
tween CM and REL hamiltonians on a general surface
(e.g. on a sphere), the class of CM excitations that do
not couple to the REL motion have been identi�ed.
When the sphere radius increases while the magnetic
�eld on the surface is �xed, the excitation spectrum
has been shown to converge to that on a plane. In par-
ticular, when a (quantum-dot) lateral con�nement is
applied, the sequence of magic states on a sphere re-
peats that on a plane.

Also, a wide class of short-range interaction poten-
tials have been shown to lead to the occurrence of
incompressible GS’s at special fractional �lling fac-
tors, and thus to the FQHE in case of an extended
system.
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