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Abstract

The ‘‘second generation’’ fractional quantum Hall states containing a partially filled composite fermion (CF) Landau level (LL) are

studied theoretically. The role of the unique form of the CF–CF interaction in the incompressibility of the underlying quantum electron

liquid is explained. In particular, the two- and three-body CF correlation functions for these liquids are determined from exact

diagonalization on a Haldane sphere. They are used to show that the CFs form a paired state (rather than a Laughlin liquid) when filling

n ¼ 1
3
of their second LL. Similarly, at n ¼ 1

2
the CFs do not appear to form a Moore–Read paired state but tend to group into larger

clusters instead. The spin polarization of the interacting CFs is also investigated, and a transition to the partially unpolarized ground

state is predicted in realistic conditions.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Quite recently Pan et al. [1] discovered fractional
quantum Hall (FQH) effect in a spin polarized two-
dimensional (2D) electron gas, at a new series of Landau
level (LL) filling factors ne. These new fractions lied outside
of the Jain sequence [2] of states ne ¼ n=ð2pn� 1Þ defined
by the complete filling of n shells by the composite fermions
(CFs) carrying 2p magnetic flux quanta. The novel FQH
states occur at ne ¼ 4

11
and 3

8
, corresponding to fractional

fillings n ¼ 1
3
and 1

2
of the second CF LL. Evidently,

incompressibility of the electron liquids formed at these
values of ne must depend on the interactions and
correlations among the CFs. Therefore, in contrast to the
Laughlin and Jain states whose understanding within the
CF model invokes only the emergence of a quasicyclotron
gap in the single-CF spectrum, the new liquids have been
called the ‘‘second generation’’ FQH states [3–5].
e front matter r 2007 Elsevier B.V. All rights reserved.
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Familiar values of n ¼ 1
3
and 1

2
immediately suggested

similarity between partially filled electron and CF LLs [6].
For ne ¼ 4

11
, it revived the ‘‘quasiparticle hierarchy’’ [7]. Its

CF formulation consists of the CF! electron mapping
followed by the reapplication of the CF picture in the
second CF LL [8], leading to a ‘‘second generation’’ of CFs
[3–5]. However, this idea ignored the requirement of a
strong short-range repulsion [9–11]. Indeed, we show in the
following that it is precluded by exact-diagonalization
studies [12], in which a different series of finite-size ne ¼ 4

11

liquids with larger gaps is identified. On the other hand,
Moore–Read liquid [13] of paired CFs was tested [14] for
ne ¼ 3

8
, but it was eventually ruled out in favor of the stripe

order [15,16].
In this paper we often review the ideas published in

a series of our earlier papers on the problem of CF–
CF interaction [11,12,17–19]. We begin by recalling the CF
picture of the ne ¼ 4

11
and 3

8
states, explaining how the CF

wave functions and Haldane interaction pseudopotentials
[20] can be extracted from Ne-electron exact-diagonaliza-
tion calculations [11], and justifying the use of such
effective CF pair pseudopotential for the description of
electron dynamics at n ¼ 1

3
or 1

2
. Then we move to the
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description of numerical calculations for N interacting
CFs, in which we identified the finite-size series of
nondegenerate, gapped ground states extrapolating to n ¼
1
3 or

1
2 in the limit of large N [12]. Next, we analyze the wave

functions of these N-CF ground states and, from the form
of two- and three-body correlation functions, demonstrate
that the ne ¼ 4

11
state is a paired state of CFs [17,18]. The

pair–pair correlations are not established, but a Laughlin
form (the maximum avoidance of the relative two-pair
angular momentum) [21] is excluded. Finally, we consider
partially unpolarized ‘‘second generation’’ states, construct
the spin phase diagram at ne ¼ 4

11, and predict a spin
transition under realistic (though yet unexplored) realistic
conditions [19].

2. Interaction of Laughlin quasielectrons (QEs)

In the (admittedly, somewhat trivialized) description of
the CF model, electrons filling a fraction ne of the lowest
LL capture part of the external magnetic field B in form of
quantized flux tubes of strength 2pf0 (here, f0 ¼ hc=e is
the flux quantum and p is an integer). In this way (by
binding magnetic flux tubes) electrons are converted into
CFs which experience reduced magnetic field B�. The (real)
electron and (effective) CF filling factors are related to each
other through n�1CF ¼ n�1e � 2p. For 1

3oneo 2
5 the choice of

2p ¼ 2 yields 1onCFo2 and a fractional filling n � nCF �
1o1 of the second CF LL.

In particular, in the CF picture of the ne ¼ 4
11

FQH state
of electrons (assuming complete spin polarization), the CFs
fill their entire lowest LL (CF-LL0) and a fraction nQE �

n ¼ 1
3

of their second LL (CF-LL1). Similarly, ne ¼ 3
8

corresponds to n ¼ 1
2
in CF-LL1. The CFs in the partially

filled CF-LL1 represent QEs of the underlying incompres-
sible ne ¼ 1

3
Laughlin liquid [22] (represented by the

completely filled CF-LL0). This CF2QE equivalence is
exact at n51, but we will show later (see Fig. 2) that it
appears valid at higher values of n as well. Note also that
we adopt here fermionic description of the QEs (bosonic [7]
or anyonic [23] descriptions being equivalent as long as the
CF-LL degeneracy and the QE–QE interaction are
adjusted appropriately).
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Fig. 1. (a) Radial charge distributions of different CFs (QE, QH, and QER)

lowest LLs. (c) CF interaction pseudopotentials. (d) Example of electron spec
To study CF–CF correlations in CF-LL1 (QE–QE
correlations) in the incompressible electron liquids at ne ¼
4
11

or 3
8
we must first determine the form of QE–QE

interactions. Interaction within the Hilbert space restricted
to an isolated LL (here, CF-LL1) is conveniently defined by
its Haldane pseudopotential V ðRÞ [20], i.e., dependence of
the pair interaction energy V on the relative angular
momentum R (for identical fermions, R ¼ 1; 3; 5; . . .). The
pseudopotential can be extracted from exact diagonaliza-
tion of Ne electrons (with the Coulomb interaction) on a
Haldane sphere [7], with the angular momentum of the LL
shell equal to l ¼ 3ðN � 1Þ=2� 1 (on a sphere, 2l þ 1 is the
LL degeneracy), such as that for Ne ¼ 11 in Fig. 1(d). In
these spectra, the lowest band contains states of two QEs,
and the dependence of Ne-electron energy E on total
angular momentum L is (up to a constant) the QE–QE
pseudopotential. The constant can be determined from the
asymptotic long-range behavior for two particles of known
charge �e=3, and R ¼ 2l � L.
The result is plotted in Fig. 1(c), where the QE–QE

pseudopotential is compared to those for other Laughlin
quasiparticles: quasiholes (QHs) and reversed-spin quasie-
lectrons (QER). The key feature of the QE–QE pseudopo-
tential is the weak repulsion at the smallest allowed
relative angular momentum, R ¼ 1. This is very different
from the CF pseudopotentials in other CF-LLs (i.e.,
from VQH or VQER) or from the electron pseudopotential
in LL0 or LL1 (not shown). The reason is the ring-like
charge distribution profile of the QEs shown in Fig. 1(a),
very different from other CFs or from electrons in
other LLs.
Let us stress two things. (i) The weak short-range

QE–QE repulsion is evident from different numerical
calculations (exact diagonalization [11,18] and Monte
Carlo [15]) done for the quasi-2D electrons interacting
through the Coulomb potential (actually, through any
short-range repulsion). Therefore, it does not depend on
any a priori assumptions on the nature of QEs themselves
and it need be considered a ‘‘numerical–experimental’’ fact.
(ii) This peculiar short-range behavior of VQEðRÞ invali-
dates analogy between electron and QE systems at the same
n. In particular, it is responsible for the lack of Laughlin
1 5 9 11
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obtained from 10-electron diagonalization. (b) Same for electrons in two

trum used to obtain VQE. l is the magnetic length (Ne ¼ 11; 2q ¼ 28).
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correlations among QEs at n ¼ 1
3
or Moore–Read pairing

at n ¼ 1
2
.

Why cannot VQEðRÞ support Laughlin correlations?
This results from the unique effect of ‘‘harmonic’’
interaction pseudopotential VHðRÞ, defined as being
proportional to the average squared distance hr2i. On a
sphere, VHðRÞ ¼ aþ b � LðLþ 1Þ, with constant a and b,
and R ¼ 2l � L. For large 2l (or on a plane) this translates
into VH / R at R52l (at short range). The following
operator identity,

P
ij L̂2

ij ¼ L̂2 þNðN � 2Þl̂2 [10], connects
the total angular momentum L of N single-particle angular
momenta l with the pair angular momenta Lij. It can be
used to show that VH induces no correlations (all many-
body multiplets at the same L have the same energy). In
other words, the relative occupation of different pair states
(labeled by R) in a many-body state has no effect on its
total interaction energy. This changes when V is not
harmonic. Any superharmonic contribution to V causes
avoidance of the corresponding pair state in the low-energy
many-body states. In particular, the dominant anharmonic
repulsion at R ¼ 1 leads to Laughlin correlations (and the
Laughlin ground state at n ¼ 1

3
). Since pseudopotentials in

LL0, LL1, and CF-LL1 are all qualitatively different in
comparison to VH (being strongly superharmonic, roughly
harmonic, and strongly subharmonic at short range,
respectively), also the correlations induced by the respec-
tive V ðRÞ are all different.

The key questions now become: can VQEðRÞ lead to
incompressibility? At what n? And guided by Pan’s
experiment: what are the QE–QE correlations? What is
the many-QE wave function at n ¼ 1

3
and 1

2
?

3. Incompressible QE liquids

Knowing VQEðRÞ one can search for QE incompressi-
bility by exact diagonalization of N-QE interaction
Hamiltonians at the values of 2l (CF-LL1 degeneracy)
given approximately by 2l ¼ N=n (for the finite systems on
a sphere, the exact relation between N and 2l depends on
the form of wave function and is not known a priori; only
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Fig. 2. Energy spectra (energy E vs. angular momentum L) calculated on a sphe

VQE in CF-LL1 with 2l ¼ 9 (b). Energy scale is the same in both frames.
for large N is the ratio N=2l! n restored). However,
several troubling questions need first be answered to justify
this approach: Is two-body pseudopotential sufficient to
describe interaction among many QEs? Can the pseudo-
potential determined at n51 be used for n ¼ 1

3
or 1

2
?

(Or, does the nature of Laughlin quasiparticles represented
by the CFs remain unchanged when CF-LL1 is filled from
n ¼ 0 to 1

2
?) Can the QE–QH excitations be neglected?

(Or, does QE–QE interaction conserve the QE number?)
In the absence of rigorous analysis of these assumptions/

approximations let us present an example of how accurate
actually is the mapping of an Ne electron system with
Coulomb interaction at 1

3
oneo 2

5
onto a corresponding

N-QE system with VQEðRÞ. In Fig. 2 we compare the
12-electron spectrum at 2l ¼ 29 with the corresponding
4-QE spectrum at 2l ¼ 9. Indeed, except for the different
reference vacuum energies, the QE spectrum reproduces
the bottom of the electron spectrum rather well (higher
electron states involve additional QE–QH pairs), justifying
the CF mapping.
Two examples of N-QE energy spectra obtained by exact

diagonalization of VQEðRÞ and showing nondegenerate
ðL ¼ 0Þ ground states with a gap are presented in Fig. 3.
We identified a series of such ground states at 2l ¼ 3N � 7,
different from Laughlin’s relation 2l ¼ 3N � 3 but also
extrapolating to n ¼ 1

3
. We also found a gapped ground

state for ðN ; 2lÞ ¼ ð14; 25Þ, coincident with the 2l ¼ 2N � 3
series of the Moore–Read electron liquid in LL1, but the
assignment of n ¼ 1

2
to this state is less certain. At other

ðN ; 2lÞ we found that either the ground state is degenerate
ðLa0Þ or the excitation gap is marginal.
To build confidence that the 2l ¼ 3N � 7 (and the more

problematic 2l ¼ 2N � 3) series of states represent the
extended n ¼ 1

3
(and n ¼ 1

2
) incompressible QE liquids, in

Fig. 4(a) we plot the energy gap D as a function of N.
Indeed, it seems plausible that D will survive in large
systems. Moreover, in Fig. 4(b) we show that the pair
correlation functions gðrÞ for the N ¼ 11 and 12 states of
the 2l ¼ 3N � 7 series are essentially identical, at the same
being very different from both the curve for 14 QEs at
0 10 15

L

0.0

0.1

5

re for 12 electrons in LL0 with 2l ¼ 29 (a) and for QEs interacting through
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A. Wójs, J.J. Quinn / Physica E 40 (2008) 967–972970
2l ¼ 25, and several curves for known FQH states of
electrons [17].

4. Pairs and clusters of QEs

In order to capture the nature of gapped N-QE ground
states identified in exact diagonalization, we calculated
their pair and triplet Haldane amplitudes (i.e., the discrete
two- and three-body correlation functions) [18]. These
amplitudes, G2ðRÞ and G3ðTÞ, count the fraction of pairs
or triplets as a function of two- and three-body relative
angular momentum, respectively. They are calculated as
the expectation values of the short-range two- and three-
body interaction pseudopotentials, VRðR

0Þ ¼ dðR;R0Þ
and WTðT

0Þ ¼ dðT;T0Þ. Two-body matrix elements
hi; jjVRjk; li ¼ hi; jjLihLjk; lidðL; 2l �RÞ are products of
the appropriate Clebsh–Gordan coefficients. Analog-
ously, hi; j; kjWTjl;m; ni ¼ hi; j; kjLihLjl;m; nidðL; 3l �TÞ
involves three-body expansion parameters related to Racah
coefficients (for simplicity we ignore here the angular-
momentum degeneracy at TX9).
From the amplitudes corresponding to the minimum
allowed values of Rmin ¼ 1 and Tmin ¼ 3 we were able to
calculate the average number of ‘‘compact’’ pairs or
triplets, N2 ¼

N
2

� �
G2ðRminÞ and N3 ¼

N
3

� �
G3ðTminÞ. In

Fig. 5(a) we plot N2=N as a function of N=2l for the
ground states of N particles at different values of 2l. The
data for N ¼ 10 and 12 nearly overlap, while the difference
between QEs in CF-LL1 and electrons in LL0 or LL1 is
noticed immediately. While N=2l � n, the exact values of n
assigned to the particular 12-particle incompressible
ground states are indicated next to the filled symbols.
The well-known property of the Laughlin state—the
complete avoidance of the R ¼ 1 pair state—is clearly
visible in Fig. 5(a) as the vanishing ofN2 at the n ¼ 1

3
filling

of LL0. Evidently, the n ¼ 1
3
state of QEs does not have this

property.
In Fig. 5(b) we show a matching plot of N3=N. The

most striking result is the vanishing of N3 of the QEs at
the n ¼ 1

3
filling of CF-LL1. Combined with the value of

N2 � N=2, this proves the paired character of the n ¼ 1
3

QE liquid. On the other hand, N3=N�0:4 for the QE
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filling n ¼ 1
2
suggests formation of some triplets (or even

larger clusters) in this state. This is in contrast to the
known vanishing of N3 in the Moore–Read state
describing the half-filled electron LL1.

5. Corresponding QE and QH states

Pan’s experiment revealed more new FQH states besides
ne ¼ 4

11,
3
8, and 5

13 (the latter corresponding to n ¼ 2
3 and

related to ne ¼ 4
11

through the approximate particle–hole
symmetry in CF-LL1). The other family contains ne ¼ 4

13
,

3
10
, and 5

17
, corresponding to nCF ¼ 4

5
, 3
4
, and 5

7
, or to the QH

filling factors nQH � 1� nCF ¼ 1
5
, 1
4
, and 2

7
.

These three QH states turn out related to the three QE
states in the following way. The QH–QH pseudopotential
in Fig. 1(c) has strong short-range repulsion at R ¼ 1,
causing Laughlin QH–QH correlations that can be
modeled by attachment of two flux quanta to each QH
(i.e., reapplication of the CF transformation to the
vacancies in CF-LL0). The resulting CF-QHs have an
effective filling factor given by n�1CF QH ¼ n�1QH � 2p and the
pseudopotential VCF QHðRÞ similar to VQEðRÞ. This
similarity leads to the correspondence between QE and
QH liquids at filling factors ne and me simply connected by
n�1e þ m�1e ¼ 6. This links ne ¼ 4

11
with 4

13
, 3
8
with 3

10
, and 5

13

with 5
17
, and offers equivalent explanation for the incom-

pressibility of the QH family of the second generation
liquids.

6. Spin transition of QE liquid

So far we have only considered spin-polarized states.
However, it is known [24] that QER (the reversed-spin QE;
represented by a spin-flip CF in CF-LL0) has lower
Coulomb energy � than QE, and the latter remains the
lowest negatively charged excitation of the Laughlin liquid
only when it is additionally favored by a sufficient Zeeman
energy, EZ. This is illustrated in Fig. 6(b), showing the
comparison of �QE and �QER as a function of width w of the
quasi-2D electron layer.
In order to establish whether QEs or QER will occur at

their filling n ¼ 1
3
, their correlation energies per particle u

must also be compared [25]. They are defined as ðE þ
UbckgÞ=N where Ubckg ¼ ðNe=3Þ2=2R accounts for the
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charge-compensating background (R is the radius of the
Haldane sphere). For the QERs, many-body interaction
energy E is calculated by exact diagonalization using
pseudopotential VQER shown in Fig. 1(c) at 2l ¼ 3N � 3
(the superharmonic short-range repulsion of VQER sup-
ports Laughlin QER–QER correlations at n ¼ 1

3
). The finite-

size estimates of uQE and uQER are compared in Fig. 6(a).
The condition for a transition between QE and QER

liquids at n ¼ 1
3
is �QE þ uQE ¼ �QER þ uQER þ EZ. Combin-

ing the calculated values of � and u (extrapolated to large
N) and the width dependence of electron Landé g-factor
[26] we have obtained [19] the spin phase diagram shown in
Fig. 6(c). The role of CF–CF interactions in stabilizing the
QER liquid is evident from comparison with the phase
boundary calculated neglecting uQE � uQER (i.e., for a CF
gas). It is noteworthy that all FQH experiments so far [1]
were done either deep inside the QE phase or close to the
predicted phase boundary. Hence, different systems (nar-
rower wells with smaller electron concentrations) should
probably be used to observe this spin transition.

7. Conclusion

Combining CF theory with exact numerical diagonaliza-
tion we have studied ‘‘second-generation’’ incompressible
quantum liquids, corresponding to the fractional filling of
CF-LL1. We have shown that the low-energy electron
dynamics in these states can be understood in terms of
Laughlin QEs interacting through an effective pair
pseudopotential whose short-range behavior is strikingly
different from that of electrons in LL0 or LL1. In
consequence, QE–QE correlations in a partially filled
CF-LL1 are also different from electron correlations in a
partially filled LL0 or LL1. In particular, the ne ¼ 4

11
state is

not a Laughlin state of QEs despite having nQE ¼
1
3
.

Instead, we show that it involves QE pairing (similar to
the Moore–Read state describing electrons at the half-
filling of LL1). On the other hand, the ne ¼ 3

8
state is not a

paired Moore–Read state of QEs despite having nQE ¼
1
2
.

Instead, it seems to involve formation of larger QE clusters.
We have also looked at the possible spin transition at
ne ¼ 4

11
, corresponding to the crossover between a paired

QE state and a Laughlin state of QERs. Predicted phase
diagram suggests that this transition could be observable in
somewhat narrower quantum wells than used in previous
experiments.
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