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Abstract

The success of the mean field composite Fermion (MFCF) picture in predicting the lowest energy band of angular momentum
multiplets in fractional quantum Hall systems cannot be found in a cancellation between the Coulomb and Chern–Simons
interactions beyond the mean field, due to their totally different energy scales. We show that the MFCF approximation can be
regarded as a kind of semi-empirical Hund’s rule for monopole harmonics. The plausibility of the rule is easily established, but
rigorous proof relies on comparison with detailed numerical calculations.q 1999 Elsevier Science Ltd. All rights reserved.
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It is well known that the mean field composite
Fermion (MFCF) picture [1] correctly predicts the
low lying band of angular momentum multiplets of
a fractional quantum Hall (FQH) system by simply
noting that whenN electrons are converted toN
composite Fermions (CF’s), the angular momentum
of the lowest shell goes from l0 to
lp0 � l0 2 p0�N 2 1�, wherep0 is an integer. A very
fundamental question, which is not understood, is
‘‘Why does the MFCF picture work so well in
describing not just the Jain sequence of incompressi-
ble ground states, but also of the low lying band of
multiplets for any value of the filling factorn?’’ The
answer cannot lie in the cancellation between the
Coulomb and Chern–Simons interactions among the
fluctuations because these interactions are associated
with different energy scales. In this note we demon-
strate that the predictions of the MFCF picture can be

thought of as a Hund’s rule governing monopole
harmonics, which selects a low lying angular momen-
tum subset of the allowedL multiplets associated with
low values of the Coulomb repulsion. The plausibility
of the rule is established by proving that: (i) the pseu-
dopotential describing the Coulomb repulsion for
monopole harmonics decreases rapidly as the pair
angular momentumL12 decreases from its maximum
value LMAX

12 � 2l0 2 1; (ii) multiplets with lower
values of the total angular momentumL have, on
the average, lower values ofhL̂2

ij i, the expectation
value of the pair angular momentum̂Lij � l̂ i 1 l̂ j ;
(iii) low angular momentum valuesL for which
many independent multiplets occur are more likely
to have some low lying multiplets than neighboring
L values with few multiplets; and (iv) relatively higher
multiplicities tend to reoccur at the sameL values for
different values ofl0 separated by an integral multiple
of N 2 1.

For N electrons on a Haldane sphere [2–5]
(containing at the center a magnetic monopole of
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charge 2S hc=e), the single particle states fall into
angular momentum shells withln � S1 n, n�
0; 1;… The CF transformation attaches to each elec-
tron a flux tube of strength 2p0 flux quanta oriented
opposite to the original magnetic field. If the added
flux is treated in a mean field approximation, the
resulting effective magnetic field isBp � B 2
2p0 �hc=e� ns (ns is the number of electrons per unit
area). An effective CF filling factor,
np21

0 � n21
0 2 2p0, and an effective monopole

strength seen by one CF, 2Sp � 2S2 2p0�N 2 1�,
can also be defined.jSpj plays the role of the angular
momentum of the lowest CF shell [6]. States belong-
ing to the Jain sequence occur whennp

0 is an integer.
For such integral CF fillings, the ground state is a
Laughlin [7] incompressible liquid state with angular
momentumL � 0. If np

0 is not an integer, a partially
occupied CF shell will containnQP quasiparticles
(QP’s). In the MFCF picture these states form a
degenerate band of angular momentum multiplets
with energynQP1QP, where 1QP is the energy of a
single QP. The degeneracy results from the neglect
of QP–QP interactions in the MFCF approximation
[8].

The single particle states for an electron on a
Haldane sphere are called monopole harmonics
[9,10] and denoted byjln;mi, where2ln # m # ln.
The single particle energies depend only onS andn,
and for the FQH effect, only the lowest shell with
n� 0, which is completely spin polarized, need be
considered. The object of numerical studies is to diag-
onalize the electron–electron interaction within the

subspace of the�2S1 1
N

� many particle states of the

lowest shell. The numerical calculations become diffi-
cult when the number of electronsN exceeds 10 and
2S$ 30. The calculations give the eigenvaluesE as a
function of the total angular momentumL, and the
numerical results always show one or moreL multi-
plets forming a low energy sector (or low energy
band).

The problem ofN fermions in a shell of angular
momentuml is very familiar from atomic physics
[11]. In this note we investigate the analogy between
the problems ofN electrons in the lowest angular
momentum shell of a Haldane sphere andN electrons
in an atomic shell of the same angular momentum.
First, because 2S is an integer, the monopole

harmonics can have integral or half-integral orbital
angular momentum. The spherical harmonics have
S� 0, so l must be an integer. For FQH systems
(i.e. n , 1) we are interested in the lowest angular
momentum shell with l0 � S. Second, for FQH
systems, calculations withN values greater than 10
and l values greater than 15 have been performed
[12], while in atomic systeml values up to 3 (f-states)
andN values up to 7 are usually the maximum values
studied.Third, the Zeeman splitting is large compared
to the Coulomb interaction, so only totally spin polar-
ized states of FQH systems need be considered. The
total spin is always equal to12 N, and the total (spin
plusorbital) angular momentum is simply the sum of
L and 1

2 N. Thus, only the second Hund’s rule is of
interest; it states that the largest allowable value ofL
(consistent with maximum possible spin) will be the
ground state. This is certainly not the case for FQH
systems. Many Laughlin incompressible states atL �
0 are ground states, and states containing 1, 2, 3,
…QP’s always have allowedL values that are much
smaller thanLMAX � 1

2 N�2l 2 N 1 1�. What causes
this difference?

In Fig. 1 we display the Coulomb pseudopotential
for a pair of electrons in single particle angular
momentum states withl � 1 through 5, as a function
of the pair angular momentumL12 � l1 1 l2. For
monopole harmonics [2–5] (l � S, n� 0), V�L12�
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Fig. 1. The pseudopotential for the pair of electrons of total angular
momentumL12 as a function ofl � S1 n. Energy is measured in
units of e2

=R, whereR is the radius of the sphere. (a) monopole
harmonics,n� 0; (b) spherical harmonics,S� 0, calculated for a
radial wave function which localizes the electrons at radiusR. A
plot similar to (a) [V�L12� vs.LMAX

12 2 L12] for values of 2Sup to 25
is given in [13].



increases with increasingL12. For atomic shells
(spherical harmonics) just the opposite occurs – the
repulsion decreases with increasingL12 (for the h-
shell and higher,V�L12� begins to increase beyond
some relatively large value ofL12, but this is never
of concern in atomic physics). The functionV�L12� is
obtained by diagonalizing the Coulomb interaction
within the space of antisymmetric pair wave func-
tions. The different behavior of monopole harmonics
is due to the Lorentz force caused by the electron–
electron repulsion in the presence of the uniform
magnetic field. A pair of electrons which are close
together have large total angular momentum and
large repulsion.

It is useful to write an antisymmetric wave function
jlN; Lai for N electrons each with angular momentuml
that are combined to give a total angular momentumL
as [11]

lN;La
��� E

�
X
L12

X
L 0a 0

GLa;L 0a 0 L12

ÿ �
l2;L12; l

N22
; L 0a 0; L

��� E
:

�1�
HereGLa;L 0a 0 L12

ÿ �
is called the coefficient of fractional

grandparentage. In Eq. (1),l2;L12; l
N22

; L 0a 0; L
��� E

is a
state of angular momentumL. It is antisymmetric
under permutation of particles 1 and 2, which have
pair angular momentumL12, and under permutation of
particles 3, 4, …,N, which have angular momentum
L 0. The label a (or a 0) distinguishes independent
orthogonal states with the same angular momentum
L (or L 0).

A very useful operator identity

L̂2 1 N N 2 2� � l̂2 �
X
pairs

L̂2
ij �2�

is straightforward to prove. HerêL � P
i l̂ i and

L̂ij � l̂ i 1 l̂ j . Taking the expectation value of Eq. (2)
in the statelN;La

��� E
gives

lN;La
D ��� X

pairs

L̂2
ij lN; La
��� E

� L L 1 1� �1 N N 2 2� � l l 1 1� �

� 1
2

N N 2 1� �
X
L12

GLa L12

ÿ �
L12 L12 1 1

ÿ �
: �3�

In this equationGLa L12

ÿ � � P
L 0a 0 GLa;L 0a 0 L12

ÿ ��� ��2.

From the orthonormality of the functionslN; La
��� E

it

is apparent that
P

L12
GLa L12

ÿ � � 1, andX
L12

X
L 0a 0

Gp
La;L 0a 0 L12

ÿ �
GLb;L 0a 0 L12

ÿ � � dab: �4�

The energy of the statelN; La
��� E

is given by

Ea�L� � 1
2

N�N 2 1�
X
L12

GLa L12

ÿ �
V L12

ÿ �
: �5�

It is noteworthy that the expectation value of
P

pairsL̂2
ij

is independent of which multipleta is being consid-
ered. In view of Eqs. (3), (5), it is not surprising that in
atomic physics, whereV L12

ÿ �
decreases rapidly with

L12, Hund’s second rule holds. For states withL �
LMAX only a single multiplet ever appears, and it
has the highest value of the average pair angular
momentum. Despite this strong indication that, in
atomic systems, the state with the largest allowed
value of L has the lowest energy, Hund’s rule is
considered an empirical rule, that can be rigorously
justified only by numerical calculations.

For the case of monopole harmonics,V L12

ÿ �
decreases very rapidly asL12 decreases from its maxi-
mum valueLMAX

12 � 2l0 2 1. Therefore, low energy
multiplets must somehow be able to avoid having
large grandparentage in states with large values of
L12. In a previous paper we have demonstrated analy-
tically that this is true for three electron systems [13].
For the monopole harmonics the general trend is to
have N21

L
P

a Ea�L�, the averageE�L� for all multi-
plets with angular momentumL, increase with
increasingL. However, when the single particle angu-
lar momentum,l, increases beyond some value for an
N particle system, several multiplets of the sameL
begin to appear. In Table 1 we present as an example,
the number of independent multiplets of angular
momentumL as a function of 2S for a system of
eight electrons. The values of 2S go from zero to
twenty two; the values ofL are shown up to eight. If
the pseudopotential were given by
~V L12

ÿ � � A 1 B L12 L12 1 1
ÿ �

, all of the different
multiplets with the same value ofL would be degen-
erate because of Eqs. (3), (4), (5), andLMIN , the smal-
lest allowedL multiplet, would be the ground state.
The difference between~V L12

ÿ �
and the actual pseudo-

potentialV�L12� leads to a lifting of this degeneracy
(different multiplets repel one another). The splittings
caused byV L12

ÿ �
2 ~V L12

ÿ �
can become large when
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NL, the number of times the multipletL occurs, is
large. In this case, a state withL larger thanLMIN

can become the ground state since the actual values
of Ea�L� depend on how the values ofGLa L12

ÿ �
are

distributed, not just on the average value ofL̂2
12 for

that value ofL. For example, the lowest energy multi-
plet withL � 4 at 2S� 20 is lower in energy than the
multiplets atL � 0, 1, 2, and 3. The same is true of the
lowest energy multiplet withL � 4 at 2S� 22.
Knowing which multiplet is the ground state or
which multiplets form the ‘‘low energy sector’’ with-
out performing detailed numerical calculations is a
considerably more difficult task than it was for
spherical harmonics. It is very likely however, that
the highestL value corresponds to the highest energy.

As might be expected, when the angular momen-
tum l0 of the lowest electron shell is replaced by
lp0 � l 2 p0�N 2 1�, the possible values of the result-
ing total angular momentumLp are less than or equal
to a valueLp

MAX , that is always small compared to

LMAX . For example, if 2S$ 3N 2 3, Lp
MAX �

1
2 N�2S2 3N 2 3�; if 3N 2 3 $ 2S$ 5

2 N 2 4,
Lp

MAX � �2S2 5
2 N 1 4��3N 2 3 2 2S�; etc. At filling

factors corresponding to states in the Jain sequence
Lp

MAX � 0. For states containing one or more QP’s, a
number of differentLp values less than or equal to
Lp

MAX can occur. From the numerical calculations it
has been observed [1–5] that the subset of allowedLp

multiplets obtained by placingN CF’s into the lowest
angular momentum shells forms the low energy sector
of the spectrum of the original electron system. This is
plausible because: (i) the allowed values ofLp are
always small compared to the originalLMAX and
therefore have a small expectation value of the pair
angular momentum̂Lij , and (ii) the low values ofL
which occur a relatively large number of times tend to
form the low energy band of valuesLp. For the eight
electron system with a given value of 2S, the allowed
Lp values are those appearing in the row with
2Sp � 2S2 14. The table of multiplicities depends
only on u2Su, so if 2S2 14 is negative, it is simply
replaced by its magnitude. Because of this, then �
2=3 state occurs at 2S� 12, and then � 2=5 state
occurs at 2S� 16.

We have evaluatedGLa�L12� for values ofN # 8
and for many different values of 2S. In Fig. 2 we
compare the energy spectrum (a) for a six electron
system at 2S� 15 (the Laughlinn � 1=3 state) with
the coefficient (b)GLa LMAX

12

� �
(where LMAX

12 � 14),
the coefficient associated with the maximum Coulomb
repulsion. The similarity of the two figures makes it
clear that a model pseudopotential with onlyV LMAX

12

� �
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Fig. 2. Energy spectrum (a) andGLa�L12� (b) as a function ofL for a
system of six electrons at 2S� 15 (Laughlinn � 1=3 state).

Table 1
The number of independent multiplets at angular momentumL for
eight electrons as a function of 2Sfor 0 # 2S# 22. OnlyL values
up to 8 are included in the table

L
2S 0 1 2 3 4 5 6 7 8

0 1
1 1 1 1
2 1
3 1 1 1
4 1 1 1 1 1
5 1 1 1 1
6 1
7 1
8 1
9 1 1 1 1 1

10 1 1 1 2 1 2 1 1
11 2 3 1 4 2 4 2 4
12 2 1 4 3 6 5 7 5 7
13 4 1 7 5 11 7 13 9 13
14 4 3 10 9 16 14 19 17 21
15 7 4 16 13 25 21 31 26 35
16 8 8 21 22 35 33 45 42 51
17 12 10 32 30 51 48 66 61 77
18 13 17 42 45 69 70 91 90 108
19 20 22 58 61 96 95 128 124 152
20 22 33 75 85 126 133 169 173 205
21 31 42 101 111 168 175 227 230 277
22 36 59 126 150 215 233 294 307 360



non-vanishing reproduces the main features of the low
energy spectrum.

In Fig. 3 we plotGLa L12

ÿ �
vs.L12 for a six electron

system with 2S� 11 for the lowest multiplets having
L � 0, 2, 3, 4, and 6. TheL � 0 state is the Jain
incompressible ground state atn � 2=5. The other
states contain a single QP pair. Notice that
GLa LMAX

12

� �
is smaller for theL � 0 ground state

than it is for the neighboring states. Because
V LMAX

12

� �
is so large, this coefficient dominates in

the determination of the energy.
Two additional points are worth emphasizing [13].

First, the CF hierarchy containing all odd denomina-
tor fractions [14] is obtained by reapplying the MFCF
transformation to residual QP’s in a partially filled CF
shell. However, in order for the MFCF approach to be
valid, the QP–QP interaction has to be similar to the
Coulomb pseudopotential, falling rapidly from its
maximum valueV LMAX

12

� �
with decreasingL12. This

is not true [14] for all QP–QP interactions, suggesting
why the states of the Jain sequence are the most stable
incompressible liquid ground states.Second, states
containing a single quasihole (e.g. the lowest energy
state for 2S� 3�N 2 1�1 1) haveGLa LMAX

12

� �
� 0

just as the neighboring Laughlin state (at
2S� 3�N 2 1�) does. However, the single quasi-
electron state (at 2S� 3�N 2 1�2 1) cannot have

GLa LMAX
12

� �
� 0. BecauseV LMAX

12

� �
is so large,1QE

is much larger than1QH.
We have demonstrated that the MFCF picture

selects a low angular momentum subset of the allowed
set of L multiplets for N electrons on a Haldane
sphere. We make the hypothesis that this set of low
angular momentum multiplets forms the low energy
sector of the spectrum, and offer arguments that
support this hypothesis. These arguments make our
hypothesis plausible, but (as with Hund’s rule for
atomic spectra) the proof lies in comparison with
detailed calculations. For every case we have studied
(N # 8 and many different values of 2S), the prob-
ability GLa L12

ÿ �
for the large repulsive part of the

Coulomb interaction is found to be smaller for theL
values predicted by the MFCF picture than for neigh-
boring states, verifying that the MFCF picture acts as
a Hund’s rule for monopole harmonics.
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