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Arkadiusz Wójs,1,2 Csaba Tőke,3 and Jainendra K. Jain4

1TCM Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
2Institute of Physics, Wroclaw University of Technology, 50-370 Wroclaw, Poland

3Institute of Physics, University of Pécs, 7624 Pécs, Hungary
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The model of fermions in a magnetic field interacting via a purely three-body repulsive interaction has

attracted interest because it produces, in the limit of short range interaction, the Pfaffian state with non-

Abelian excitations. We show that this is part of a rich phase diagram containing a host of fractional

quantum Hall states, a composite fermion Fermi sea, and a pairing transition. This is entirely unexpected,

because the appearance of composite fermions and fractional quantum Hall effect is ordinarily thought to

be a result of strong two-body repulsion. Recent breakthroughs in ultracold atoms have facilitated the

realization of such a system, where this physics can be tested.
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The fractional quantum Hall effect [1] (FQHE) occurs as
a result of the repulsive Coulomb interaction when two-
dimensional electrons are subjected to a strong magnetic
field. The nature of the emergent state is dependent on the
form of the interaction and it is natural to wonder what
physics would be produced by other types of interactions.
We consider in this Letter the system of fermions in the
lowest Landau level (LL) interacting via a purely three-
body interaction. The original motivation came from the
observation [2] that the Pfaffian wave function [3], which
describes a paired state of composite fermions (CFs), is
obtained as the exact solution at LL filling factor � ¼ 1=2
when only the first nontrivial pseudopotential of the three-
body interaction is retained. This model also admits exact
solutions for quasiholes, which provide a realization of
particles obeying non-Abelian braid statistics [3–6].

Model interactions that are truncated beyond a finite
number of interaction pseudopotentials have zero energy
solutions that can be explicitly enumerated. (The pseudo-

potential VðnÞ
m is defined [7] as the energy of the collection

of n particles in a state with relative angular momentumm.)
However, they have much physics not captured by the zero
energy solutions. Take, for example, the two-body interac-

tion wherein all pseudopotentials except Vð2Þ
1 are set to zero.

The zero energy solutions occur for � � 1=3, but this
interaction also produces extensive phenomenology for
� � 1=3. The more complete physics of this model inter-
action (and also of the Coulomb interaction) is captured by
the CF theory [8], which gives an account also of incom-
pressibility at fractions of the form � ¼ n=ð2n� 1Þ.

Our aim in this Letter is to explore the general physics of
the three-body repulsive interaction. We find that for a
wide range of parameters the physics of the three-body
interaction is well described by CFs, resulting in an almost
as extensive FQHE as that seen for electrons in GaAs

(albeit with crucial differences). This is surprising because
CFs and the FQHE are widely believed to be caused by a
strong repulsion in the two-body channel.
The three-body interaction arises in FQHE systems due to

LL mixing, which breaks the particle-hole symmetry; it
plays a role at � ¼ 5=2 in lifting the degeneracy between
the Pfaffian and its hole conjugate [9]. In typical FQHE
systems, however, it is only a small perturbation to the two-
bodyCoulomb interaction. Amodel that has only three-body
interaction might therefore appear physically irrelevant at
first sight. However, significant strides have been made
toward the realization of such interaction in ultracold atomic
or molecular systems, in which synthetic magnetic fields
have been demonstrated by rapid rotation [10] and by in-
ducing a Berry phase through a nonuniform coupling be-
tween the internal states [11]. Ingenious proposals have been
advanced for eliminating the pairwise interaction by tuning
external parameters [12], leaving the three-body interaction
as the dominant term. The first encouraging experiments in
this direction have already been reported [13]. Reaching the
FQHE regime of cold atoms has also been recently demon-
strated [14]. Given the recent progress in this direction, we
believe that the phase diagram predicted in this work, while
surely challenging, should be experimentally accessible and
will motivate further innovations.
Of relevance to what follows are the CFs [8], topological

bound states of electrons and an even number (2p) of
quantized vortices. As a result of the bound vortices, CFs
experience a reduced effective magnetic field B� ¼ B�
2p�hc=e, where B is the external magnetic field and � is
the particle density; in particular, CFs form� levels analo-
gous to the LLs at B�. Much physics can be understood
by neglecting the interaction between CFs. CFs’ integral
quantum Hall effect (IQHE) manifests as the FQHE at
� ¼ n�=ð2pn� � 1Þ (n� is an integer); their excitons are
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the lowest energy neutral excitations [15,16]; and their
Fermi sea describes the compressible state at the half filled
LL [17,18]. In certain cases, the residual interaction be-
tween the CFs plays an important role. Certain fractions
such as � ¼ 4=11 represent a FQHE of CFs [19,20]. At
� ¼ 5=2, a residual attraction between CFs [21] is believed
to cause their px � ipy pairing, described by the above

mentioned Pfaffian wave function [2–5].
We consider fully spin polarized fermions in the lowest

LL, subject to a model three-body interaction in which all

but the first two relevant pseudopotentials, Vð3Þ
3 � A and

Vð3Þ
5 � B, are set to zero. (For three-body interaction,m ¼ 1

and 2 are excluded by the Pauli principle and m ¼ 4 by
symmetry.) The most reliable method available for deter-
mining the states produced by a general interaction is that of
exact diagonalization, for which we employ a geometry [7]
that has N fermions moving on the surface of a sphere,
subjected to a total radial magnetic flux of 2Q (in units of
hc=e). The projected Hamiltonian assumes the form [22]

Ĥ three-body ¼ A
X

i<j<k

Pð3Þ
ijkð3Q� 3Þ þ B

X

i<j<k

Pð3Þ
ijkð3Q� 5Þ;

(1)

where Pð3Þ
ijkðLÞ projects the state of the three particles (i, j, k)

into the subspace of total orbital angular momentum L. This
Hamiltonian admits an exact solution for the ground state at
� ¼ 1=2 (the Pfaffian) whenB ¼ 0, and for the ground state
at � ¼ 2=5 when both A and B are nonzero [23]. We
consider below the region � > 2=5; there is no FQHE for
this model for � < 2=5. Increasing B=A amounts to extend-
ing the range of the interaction.

We begin by testing the evolution of the Pfaffian solution
as a function of the range of the interaction. The overlap of

the exact ground state of Ĥthree-body with the Pfaffian wave

function is seen in Fig. 1(a) to decay rapidly with increas-
ing B=A, indicating a transition into some other state. To
gain insight into the nature of the new state we monitor the
low-energy spectrum, which reveals a fundamental restruc-
turing as a function of B=A: As seen in the middle column
of Fig. 2, a distinct low-energy band forms by the time the
interaction reaches B=A� 0:2, and persists all the way up
to B=A ¼ 1 and even beyond. The crucial clue comes from
the observation that this band has a striking resemblance to
the low-energy band of almost free CFs at the effective flux
2Q� ¼ 2Q� 2ðN � 1Þ ¼ �1 (Fig. 2). The presence of
such a band is a clear signature of the formation of weakly
interacting CFs. Further corroboration comes from a direct
comparison of the exact eigenstates with the wave func-
tions of weakly interacting CFs. The latter can be obtained
in the standard manner [8,24] by ‘‘composite fermioniz-
ing’’ the known wave functions of noninteracting fermions
at 2Q�. For the present work, we define the Coulomb
eigenfunctions as the wave functions of weakly interacting
CFs; the two are known to be practically identical [16,24],

as also evident by an almost exact agreement between their
Coulomb energies (Fig. 2, lowest panels). Figures 1(a) and
1(b) demonstrate that as the overlap with the Pfaffian
wave function drops, the overlap with the weakly interact-
ing CF wave functions rapidly grows, approaching a
high maximum at approximately B=A � 0:5. These results
establish a phase transition from the paired CF state
into the CF Fermi sea as a function of the range of
the three-body interaction, which appears continuous to
the extent we can surmise from our finite size study. We
note that we have shown here (and below) results only for
the largest system that we have studied for each filling
factor, but the smaller systems are fully consistent with our
conclusions.
The formation of CFs at � ¼ 1=2 suggests the possibility

of another phenomenology associated with CFs. We first
study the states ofHthree-body at several fractions of the form

� ¼ n�=ð2n� � 1Þ and � ¼ 1� n�=ð2n� � 1Þ. Figure 1(c)
depicts the ground state overlap as a function of B=A,
approaching a very high maximum at what we term the
‘‘optimal’’ value of B=A. Figure 2 again illustrates a drastic
reorganization of the low-energy spectrum of Hthree-body as

B=A is turned on. It is evident that near the optimal B=A, all
states studied here (except � ¼ 1=2) are incompressible, in
that they have a uniform (L ¼ 0) ground state separated
from excitations by a robust gap. Furthermore, the spec-
trum bears a striking resemblance to the weakly interacting
CF spectrum, shown in the bottom panel, not only for the
L ¼ 0 ground state but also for the low-energy branch of
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FIG. 1 (color online). Evolution of various states as a function
of B=A, i.e., the range of the three-body interaction. Panel (a)
shows the squared overlap of the lowest energy L ¼ 0
eigenfunction of Hthree-body (which is also the ground state for

B=A < 0:3) with the Pfaffian wave function as well as with
the L ¼ 0 state of weakly interacting composite fermions at
� ¼ 1=2 (N ¼ 18, 2Q ¼ 33). The spherical geometry is used for
these calculations, and L is the total orbital angular momentum.
Panel (b) shows the squared overlaps of all CF states in the
lowest energy band with the corresponding lowest energy eigen-
states of Hthree-body for 14 fermions at 2Q ¼ 25. Panels (c) and

(d) display comparison of the exact ground states of Hthree-body at

� ¼ 2=3, 3=5, 4=9, 3=7, 4=5, 7=9, and 5=7 with the correspond-
ing wave functions of IQHE states of composite fermions (for
N ¼ 22, 18, 16, 15, 32, 30 and 24, respectively).
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neutral excitations. The overlaps confirm the ground state
as the CF-IQHE state and the low-energy excitations as the
CF excitons.

Figures 1(d) and 3 demonstrate that the three-body
interaction not only creates CFs carrying two vortices
(2CFs) in the region 2=3 � � > 2=5 but also CFs carrying
four vortices (4CFs) for � > 2=3 at fillings of the form
� ¼ 1� n�=ð4n� � 1Þ. In fact, 4CFs are more robust; for
� < 2=3 it requires a nonzero B=A to create weakly inter-
acting CFs, whereas for � � 2=3 the CF physics is estab-
lished already at B=A ¼ 0.

We have also studied numerous systems in between the
special filling factors shown above, and in all cases we find
that for a range of B=A values the physics is consistent with
weakly interacting CFs. Specifically, the low-energy band
of states is well described, qualitatively and quantitatively,
in terms of CF quasiparticles or CF quasiholes on top of a
CF-IQHE state.

The three-body interaction does not respect particle-hole
symmetry in the lowest LL, which is responsible for
the qualitatively distinct physics for � < 2=5 and 3=5<
�< 1, and also for the Pfaffian state, which is not particle-
hole symmetric. A surprising outcome of this work is that
for a range of B=A values, the three-body interaction
behaves similarly as the two-body Coulomb interaction
insofar as the low-energy physics of the correlated states
is concerned, implying a partial restoration of the particle-
hole symmetry in the region 3=5> �> 2=5 when the
longer range part of the three-body interaction is turned on.

Our principal conclusion is summarized in the phase
diagram in Fig. 4. The emergence of CFs and the FQHE
for three-body interactions is unexpected. The canonical
model for the FQHE is that of pairwise interaction with
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FIG. 2 (color online). Seeing composite fermions in the energy spectra for three-body interaction at several filling factors shown at
the top. The top row (a) shows the spectra of Hthree-body for B=A ¼ 0, and the middle row (b) at the ‘‘optimal value’’ of B=A (see text

for definition). The spectra in the bottom row (c) are for the Coulomb interaction, as obtained by exact diagonalization (dots) and from
the CF theory (pluses) without any adjustable parameters. The results at � ¼ 3=7, 4=9, 1=2, 3=5 and 2=3 are for 12, 16, 14, 15 and
18 particles, respectively. The Pfaffian ground state, quasiholes and quasiparticles are shown in green (medium gray), with the integers
near each Pfaffian quasihole dot indicating its degeneracy; the CF ground states are marked in red (light gray), and the CF excitons in
blue (dark gray). The squared overlaps with the corresponding CF states are indicated in the top two rows whenever the qualitative
similarity with the CF spectrum warrants a comparison; to avoid clutter, only the average squared overlap is given for the exciton
branch and also for the low-energy band at � ¼ 1=2. The energy E is quoted in units of A in the top two rows and e2=� in the bottom

row, where � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@c=eB

p
is the magnetic length; for the Coulomb interaction the quoted energy is per particle, and includes the

electron-electron, electron-background, and background-background contributions. The x-axis label L is the total orbital angular
momentum, a good quantum number for the spherical geometry used in our calculations.
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FIG. 3 (color online). Emergence of composite fermions
dressed with four vortices. Same as in Fig. 2, but for filling factors
� ¼ 5=7, 7=9 and 4=5 for N ¼ 19, 23 and 28, respectively. For
� ¼ 4=5 the CF exciton state atL ¼ 2 is not identified in the exact
spectrum, and also not used for the overlap calculation, because it
merges into the continuum of two-exciton states at small L.
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a strong short range repulsion, and CFs are thought to
materialize to minimize the short range part of the two-
body interaction. This is most evident from the fact that the
‘‘unprojected’’ wave functions of CFs [8] vanish much
faster than what is required by the Pauli principle when
two particles come close. Nevertheless, the appearance of
almost free CFs enables an understanding of the physics of
lowest LL fermions with three-body interaction at a level
that is almost as detailed and accurate as that available for
the Coulomb interaction.

Finally, although our study deals with fermions, experi-
ence from earlier work [25,26] suggests that for appropri-
ate three-body interactions bosons will also composite
fermionize by capturing a single quantized vortex (not to
be confused with the vortex in the order parameter field of
the Bose-Einstein condensate), to produce the FQHE at
� ¼ n�=ðn� � 1Þ and a CF Fermi sea or a paired state at
� ¼ 1. We have not yet investigated this possibility.
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