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Fractional quantum Hall states of clustered composite fermions
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The energy spectra and wave functions of up to 14 interacting quasielectrons~QE’s! in the Laughlinn
5

1
3 fractional quantum Hall~FQH! state are investigated using exact numerical diagonalization. It is shown

that at sufficiently high density the QE’s form pairs or larger clusters. This behavior, opposite to Laughlin
correlations, invalidates the~sometimes invoked! reapplication of the composite fermion picture to the indi-
vidual QE’s. The series of finite-size incompressible ground states are identified at the QE filling factorsnQE

5
1
2 , 1

3 , 2
3 , corresponding to the electron fillingsn5

3
8 , 4

11 , 5
13 . The equivalent quasihole~QH! states occur at

nQH5
1
4 , 1

5 , 2
7 , corresponding ton5

3
10, 4

13 , 5
17 . All these six novel FQH states were recently discovered

experimentally. Detailed analysis indicates that QE or QH correlations in these states are different from those
of well-known FQH electron states~e.g., Laughlin or Moore–Read states!, leaving the origin of their incom-
pressibility uncertain. Halperin’s idea of Laughlin states of QP pairs is also explored, but is does not seem
adequate.

DOI: 10.1103/PhysRevB.69.205322 PACS number~s!: 71.10.Pm, 73.43.2f
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I. INTRODUCTION

Panet al.1 recently~and Goldman and Shayegan2 a little
earlier! observed fractional quantum Hall~FQH! effect3,4 in a
two-dimensional electron gas at novel filling fractionsn of
the lowest Landau level (LL0). The new FQH states ar
found to be spin-polarized and occur between the neigh
ing n5 1

3 and 2
5 states of the Jain sequence,5 corresponding to

one and two completely filled composite fermion~CF! LL’s,
respectively. Some of them, such asn5 4

11 or 4
13 ,2 appear in

the standard hierarchy of quasiparticle~QP! condensates for
mulated by Haldane6 and Halperin,7 but their ‘‘hierarchical’’
interpretation was earlier ruled out8 because of the specifi
~subharmonic! form of the QP–QP interaction. Others, su
as then5 3

8 or 3
10 states, do not belong to the Haldane hi

archy, and the origin of their incompressibility is puzzling
an even more obvious way.

Recently there have been attempts9 to explain these state
in terms of ‘‘multiflavor’’ CF pictures, with coexisting CF’s
carrying different numbers of fluxes~vortices!. Being
equivalent to the CF hierarchy10 of Laughlin-correlated spin-
polarized QP states, not only are these models not conce
ally new, but they are also unjustified at the QP fillings
question.8 In fact, some of the numerical results obtain
earlier in a slightly different context11,12 and more detailed
results presented here show that theydo notdescribe the new
FQH states.

The appeal of the CF models lies in the fact that th
allow one to think of a more complicated FQH state at filli
factor n as a CF analog of a simpler and better underst
state at an effective CF filling factorn* . The best known
examples aren5 1

3 and 2
5 states corresponding ton* 51 and

2, respectively. In the present casen5 4
11 and 3

8 correspond
to n* 5 4

3 and 3
2 , that is, to one-third and one-half filled firs

excited CF LL (CF-LL1), respectively. However, it canno
come as a surprise that the CF model does not always w
It is valid only for systems which support Laughlin correl
0163-1829/2004/69~20!/205322~13!/$22.50 69 2053
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tions, and those only occur if the interactions are sufficien
strong at short range.13 Moreover, it is known precisely tha
‘‘sufficiently strong’’ means that the interaction pseudopote
tial is superharmonic.11,12 It should also be noted that the C
analogy is not sufficient to explain all new observed sta
regardless of the fact that the~reapplied! CF modeldoes not8

generally describe correlations between the CF’s themsel
Specifically, then5 3

10 state corresponds ton* 5 3
4 , while the

electronic state at this filling isnot incompressible.
The aim of this paper is to present the results of our ‘‘n

merical experiments’’ for the new FQH states and show t
they are described by grouping of QP’s into pairs14,15 ~al-
though probably without pair-pair Laughlin correlations16! or
into larger clusters,17 rather than by a multiflavor CF picture
To do so, we:~i! present results of extensive numerical d
agonalization studies of up to 14 interacting Laugh
quasielectrons~QE’s!; ~ii ! demonstrate directly the QE clus
tering by the calculation of pair amplitudes;~iii ! identify the
series of finite-size nondegenerate ground states atnQE5 1

2 ,
1
3 , 2

3 , corresponding ton5 3
8 , 4

11 , 5
13 ; ~iv! investigate the

dependence of the stability of these states on the detail
the QE-QE interaction pseudopotential;~v! calculate their
pair-correlation functions;~vi! show that they have differen
QE-QE correlations than those of electrons in the Laugh4

or Moore-Read18–20 states; ~vii ! construct the equivalen
quasihole~QH! states atnQH5 1

4 , 1
5 , 2

7 , corresponding ton
5 3

10 , 4
13 , 5

17 ; ~viii ! discuss a recent model14 assuming pairing
of QP’s and Laughlin correlations between the pairs~origi-
nally proposed by Halperin16 for electrons in LL0); and~ix!
propose an explanation for the FQH state observed an
5 6

17 .
Standard numerical calculations forNe electrons are not

useful for studying the new states, because convincing
sults require too large values ofNe . Therefore, we take ad
vantage of the knowledge8,21–23of the dominant features o
the pseudopotentialVQE(R) of the QE-QE interaction~i.e.,
the QE-QE interaction energyVQE as a function of relative
©2004 The American Physical Society22-1
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pair angular momentumR), and diagonalize the~much
smaller! interaction Hamiltonian of theN-QE systems. This
procedure was earlier shown21 to accurately reproduce th
low-energyNe-electron spectra at filling factorsn between1

3

and 2
5 . It was also used in a similar, many-QE calculation

Lee et al.23 ~who, however, have not found support for Q
clustering!.

Our results confirm series of nondegenerate ground st
with finite excitation gaps at 2l , twice the QE angular mo
mentum, equal to 2N23, 3N27, and 3

2 N12 ~the last two
states are particle–hole symmetric!. These series extrapolat
to nQE[N/(2l 11)5 1

2 , 1
3 , and 2

3 , and to the electron filling
factors n5 3

8 , 4
11 , and 5

13 , respectively. The fact that th
nQE5 1

3 sequence occurs at 2l 53N27 rather than 3N23
implies that this state isnot a Laughlin state of QE’s~or
CF’s!. Indeed, the assumption that thenQE5 1

3 sequence mus
be described by the relation 2l 53N23 led to its being over-
looked in earlier finite-size calculations.24 The identified se-
quence is also different from 2l 53N25 characteristic of
Halperin’s paired state16 corresponding tonQE5 1

3 . On the
other hand, the value of 2l 52N23 for thenQE5 1

2 sequence
suggests that this state could be a Halperin paired QE s
~Laughlin state of QE pairs!12,14,16 similar to the
Moore-Read18–20state of electrons at the half filling of LL1.
However, the squared overlaps with the Moore–Read s
are very small (;0.03 for N<14), and the nondegenera
ground states occur in this series only for odd numbers of

pairs (1
2 N53, 5, and 7!, which implies that the nature of thi

state is different.
The comparison of the QH-QH and QE-QE pseudopot

tials ~which differ mainly by a hard-core atR51 for the
QH’s! result in the following correspondence relation for t
incompressible QH and QE states

nQH
21521nQE

21. ~1!

For nQE5 1
2 , 1

3 , and 2
3 , this relation givesnQH5 1

4 , 1
5 , and 2

7 ,
corresponding ton5 3

10 , 4
13 , and 5

17 , respectively, all of
which have also been observed experimentally.

To understand the origin of incompressibility in the ne
states we explore an idea12,14 of Laughlin states of QP pair
~originally proposed by Halperin16 to describe electron pair
ing in LL0). Grouping of QE’s or QH’s into pairs or eve
larger clusters at sufficiently large filling factors can be p
dicted from the form of QE-QE and QH-QH pseudopote
tials, characterized by strong minima atRQE51 state and
RQH53. It is clearly demonstrated by the calculation of t
appropriate pair amplitude coefficients25 ~related to the frac-
tional grandparentage26! in the many-QE ground states. I
Halperin’s paired state, Laughlin correlations between
QP pairs would depend on the superharmonic behavior of
pair-pair interaction pseudopotentialVQP2

(R2) at the rel-

evant values ofR2, the relative angular momentum of tw
pairs. The analysis of the calculatedVQE2

(R2) suggests tha
of the whole sequence of incompressible Laughlin state
QE pairs, onlynQE5 1

2 might satisfy the condition for Laugh
lin correlations. This appears to be in agreement with
‘‘numerical experiments,’’ which reveal thenQE5 1

2 series at
20532
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2l 52N23 ~as predicted for Halperin’s paired state! and the
nQE5 1

3 series at 2l 53N27 ~different from 3N25 of a Hal-
perin’s paired state!. However, as mentioned above, we fin
several strong indications that Halperin’s paired state d
not occur for QE’s at neithernQE5 1

2 nor 1
3 .

II. PSEUDOPOTENTIALS, LAUGHLIN CORRELATIONS,
AND THE COMPOSITE FERMION PICTURE

The essential information about the interaction of p
ticles confined to some Hilbert space can be obtained
defining the value of interaction energy for all allowed pa
states. For charged particles confined to a LL in the prese
of a magnetic field, the relative motion is strongly quantize
The orbital pair eigenstates can be labeled with a single
crete quantum number, relative angular momentumR. This
number is a non-negative integer; it must be odd~even! for a
pair of identical fermions~bosons!, and it increases with in-

creasing average distanceA^r 2& between the two particles.
In Haldane’s spherical geometry,6 most convenient for

finite-size calculations, the LL0 is represented by a degene
ate shell of single-particle angular momentuml 5Q. Here
2Qf0 is the strength of Dirac monopole in the center, d
fined as 4pR2B, the total flux of the magnetic fieldB
through the surface of radiusR ~using the definition of the
magnetic lengthl5A\c/eB, this can be written asQl2

5R2). The total pair angular momentumL8 ~here,L means
total angular momentum ofN particles, andL8 is reserved
for N52) results from an addition of two angular momen
l of individual particles, and it is connected to the relati
pair angular momentum via relationL852l 2R. Thus, the
maximum value ofL852l ~for bosons! or 2l 21 ~for fermi-
ons! corresponds to the smallest pair state withR50 or 1.

The pair interaction energyV expressed as a function o
R is called the pseudopotential, and the series of its par
etersV(R) entirely determines many-body correlations. O
a sphere,R<2l and thus the number of pseudopotential p
rameters is finite. However, even in an infinite~planar! sys-
tem, only those few leading parameters at the values oR
corresponding to the average distanceA^r 2& not exceeding
the correlation lengthj are of significance~provided that the
correlations are indeed characterized by finitej;l).

Remarkably, even for the completely repulsive intera
tions, different correlations can result in a partially fille
shell depending on the form ofV(R). For example, ifV
increasesas a function ofR ~as in atomic shells in the ab
sence of magnetic field!, the low-energy many-body state
obey Hund’s rule and tend to have the maximum poss
degeneracy~i.e., the maximum 2L11). In the opposite ex-
treme situation, whenV decreasessufficiently quickly13 as a
function of R, Laughlin correlations occur. These correl
tions are defined as the tendency to avoid pair states with
or more smallest values ofR, i.e., with the largest repulsion
~the relative occupation of different pair states in a man
body state is a well-defined quantity, given by the pair a
plitude coefficient25!.

As a result of Laughlin correlations, the low-energ
many-body states usually have small degeneracy and ef
2-2
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commonly associated with the FQH physics occur, includ
the formation of incompressible ground states at certain
ues ofn. What is often not realized or overlooked is that it
precisely the Laughlin correlations that justify the CF p
ture. In other words, the mean-field CF picture that attac
2p magnetic-flux quanta~or vortices! to each fermion and
predicts the family of Jain wave functions for the lowe
energy states is correctif and only if those fermions have
Laughlin correlations, i.e., the lowest-energy states ind
maximally avoid having pair states withR<(2p11). For
example, in order to bind 2p vortices and transform into
CF’s, electrons must have Laughlin correlations~and indeed
they do in LL0). These CF’s~or, more precisely, the QP’s in
partially filled CF-LL’s! would bind additional vortices and
turn into ‘‘higher-order’’ CF’s if they themselves had Laug
lin correlations~and in this paper we show that, at the re
evant filling factors, theydo not!.

Another important class of pseudopotentials are the ‘‘h
monic’’ ones, i.e., those for which parametersVH(R) fall on
a straight line when plotted as a function of the avera
squared distancê r 2&. Clearly, all harmonic potentials
VH(r )5a01a2r 2 have this property regardless of the L
confinement. It has been shown11 that for particles confined
in an angular momentum shell on a sphere,VH is a linear
~increasing in case of repulsion! function of squared pair
angular momentum,L8(L811). It follows from considering
the large-radius limit (R→` andl5const) that on a plane
~or on a ‘‘large’’ sphere, i.e., forR!2l ), VH is a linear
function of R. The importance of the harmonic pseudop
tential lies in the fact that it causesno correlations, i.e., all
many-body states with the same total angular momentuL
are degenerate~and their energy is just a linear function o
L(L11) or R, depending on geometry!.11 It is thus only the
anharmonic part ofV(R) that causes correlations, while th
harmonic part only shifts the entire energy spectrum b
constant timesL(L11) or R.

From the analysis of the sum rules27 obeyed by the pair
amplitudesGC(R) measuring the fraction of pairs with rela
tive pair angular momentumR out of the total number of
1
2 N(N21) pairs in an N-particle stateC, it has been
shown11,12 that Laughlin correlations occur near filling facto
n if the dominant anharmonic contribution toV is positive at
the avoided values ofR. For example, for fermions atn
'(2p11)215 1

3 , the pseudopotentialV(R) must decrease
‘‘superlinearly’’ through any three valuesa,b,c beginning
with a51. By the superlinear~i.e., superharmonic! behavior
we mean that

V~a!2V~b!

b2a
.

V~b!2V~c!

c2b
. ~2!

Only then do Laughlin correlations occur and justify the u
of the mean field CF transformation that attaches 2p52
fluxes ~vortices! to each electron. Moreover, any pseudop
tential that is strongly superharmonic at short range cau
the same~Laughlin! correlations which explains the robu
character of the FQH states in realistic systems or in mo
calculations.
20532
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It has been shown11 that it is the superharmonic behavio
of the Coulomb repulsionV(r );r 21 in LL0 in the entire
range of R that explains the success of the CF pictu
through the entire Jain sequence of fractions.5 It was also
shown12 ~by direct calculation of pair amplitudes! that be-
cause the Coulomb pseudopotential in LL1 is roughly linear
betweenR51 and 5, the electrons tend to form pairs wi
R51 when filling a fraction1

4 <n1< 1
2 of LL1. This is ex-

actly the opposite behavior to the avoidance of this pair s
that would characterize a state with Laughlin correlatio
and that could justify the CF picture~sometimes erroneousl
used in literature to describe the FQH states atn[21n1
5 5

2 , 7
3 , or 8

3 ).
Let us stress here that the mean-field CF picture sim

mimics the fact that~in a Laughlin-correlated system! each
electron drags aR51 correlation hole with it - by replacing
the ‘‘bare’’ electron LL degeneracy with an appropriate
smaller, ‘‘effective’’ one~and an effective CF magnetic fiel
B* is just an intuitive physical picture that cannot be trea
literally!. In fact, it has recently been demonstrated28 that the
adiabatic addition of flux~instead of addition via gauge
transformation! automatically gives rise to Laughlin correla
tions without the need of any mean field approximatio
Having said this, there simply areno CF’s in then5 5

2 , 7
3 , or

8
3 states, let alone the CF pairs. Instead, at least the Mo
Read state atn5 5

2 is clearly a paired state ofelectrons12,20

~although models involving pairing of CF’s in this state c
also be found in literature29!. It is surprisingly often over-
looked that the FQH effect does not prove the existence
CF’s or Laughlin correlations, but only the existence of
nondegenerate ground state separated from the continuu
QP excitations by a finite gap—the property which can a
result from correlations of a different nature.

It is indeed quite remarkable that the knowledge of t
interaction pseudopotentialV(R) at short range is sufficien
to predict or rule out Laughlin correlations in different FQ
systems.8,11,30,31However, it must be carefully noticed tha
the predicted absence of Laughlin correlations does not
clude the FQH effect itself, only a microscopic origin of th
effect attributable to Laughlin correlations. It should also
realized that immediate application of the CF model witho
studying the interactions between the relevant particles~elec-
trons, QP’s, etc.! whenever real or numerical experimen
reveal incompressibility is not justified. Precisely such a si
ation was recently encountered with the discovery of n
FQH states atn5 3

8 , 4
11 , etc., which turn out not to be Laugh

lin or Jain states~of QP’s! despite being incompressible.

III. QP INTERACTIONS

It follows from the preceding discussion that in order
explain the origin of incompressibility in the new FQ
states, one has to begin with the identification of the relev
~quasi! particles~electrons, holes, Laughlin QP’s, CF’s, e
citons, skyrmions, . . . ), analyze their interaction pseudopo
tentials, understand their correlations, and finally derive
filling factors n at which those correlations cause incom
pressibility. In contrast to the CF model~which, nevertheless
is still very elegant and usefulafter it is proven valid for a
2-3
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particular system!, this line of thought is free of unprove
assumptions, such as that of a cancellation between the
lomb and gauge interactions beyond the mean field.

It is well established that a~Laughlin-correlated! system
of electrons at13 <n< 2

5 can be viewed as one of~fraction-
ally charged and thus less strongly interacting! QE’s moving
in the underlying Laughlinn5 1

3 ground state. This is el
egantly pictured in the CF model, in which the Laughlin sta
corresponds to the completely filled CF-LL0, and the QE’s
correspond to the~weakly interacting! particles moving in
the ~partially filled! CF-LL1. Similarly, the electron system
at 1

4 <n< 1
3 can be viewed as the QH’s moving over then

5 1
3 background~with the QH’s pictured as vacancies in CF

LL0).
Therefore, we begin the study of the new FQH states

the 1
4 <n< 2

5 range with the analysis of the QE-QE an
QH-QH pseudopotentials. In the following we will use th
fermionic statistics to describe QP’s which is consistent w
the CF picture~and conversion to bosons or anyons can
done in a standard way32!. The qualitative behavior o
VQP(R) at short range is well known from the numeric
studies of small systems.8,21–23 In Fig. 1~b! we compare
VQE(R) calculated for the systems ofN58 –12 electrons. As
the calculation involves subtraction of theN-electron ener-
gies corresponding to zero, one, and two QE’s that~in finite
systems! occur at different values ofQ5AR/l ~i.e., different
surface curvatures!, the zero of energy is determined muc
less accurately than the relative values of different pseu
potential parameters. However, when the data for eachR are
extrapolated to largeN, the positive sign ofVQE(R) is re-
stored, as shown in Fig. 1~c!. Still, only the relative values
are of importance, since adding a constant toV(R) does not

FIG. 1. Interaction pseudopotentialsV(R) for the QH’s~a! and
QE’s ~b! of the Laughlinn5

1
3 state calculated in the systems of u

to N512 electrons on a sphere. Insets:~c! Dependence of the lead
ing QE-QE pseudopotential coefficients corresponding to the sm
est values ofR on N21. Extrapolation toN21→0 corresponds to
an infinite planar system.~d! QE-QE pseudopotential calculated b
Lee et al.22
20532
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affect correlations and only shifts the whole many-bo
spectrum by a~different! constant. On the other hand, th
repulsive character of the QP-QP interaction and the lo
range behavior ofVQP(R);R 21/2 follow from the fact that
QP’s are charged particles~the form of QP charge densit
affectsVQP only at short range, comparable to the QP siz!.
In Fig. 1~d! we plot VQE(R) obtained more recently by Le
et al.22 using a somewhat different approach. Since it co
firms the oscillatory behavior at short range in Fig. 1~b! and
behaves as expected at long range, we will use it late
diagonalize interaction in the systems of more than t
QE’s.

Clearly, the dominant features ofVQE are the small value
at R51 and a strong maximum atR53. Similar analysis
for VQH(R) shown in Fig. 1~a! for 8<N<11 reveals the
maxima atR51 and 5, and the nearly vanishingVQH(3).
Actually, it follows from the comparison of Figs. 1~a! and
1~b! that the slightly reduced energy scale forVQH(R) and
the additional strongly repulsive state atRQH51 are the only
significant differences between the two pseudopotenti
The VQE(R);VQH(R12) correspondence and the fact th
VQH(1) is the largest of all QE or QH parameters will b
used to construct the QH states corresponding to the inc
pressible QE states studied numerically in detail.

The above conclusions about the properties of QP-
pseudopotentials weakly depend on such assumptions as
layer thicknessw or infinite magnetic fieldB, and their os-
cillations at smallR persist in realistic FQH systems. It i
noteworthy that this result cannot be obtained from theliter-
ally understoodoriginal formulation of the CF model in
which the weak ‘‘residual’’ CF-CF interactions are said
result from partial cancellation of strong Coulomb and gau
interactions between the electrons. This is because these
interactions have different character and, for example,
pend differently onw or B.11

IV. CORRESPONDING QE AND QH STATES

It can be seen in Fig. 1 thatVQH(1) is the strongest an
harmonic contribution toVQH(R). This causes the maximum
avoidance of the two-QH state withR51 ~Laughlin QH-QH
correlations! and justifies the CF transformation with 2p
52 fluxes attached to each QH~i.e., such reapplication o
the CF transformation to the vacancies in the partially fill
CF-LL0). The states of CF-QH’s obtained in this way for
the lowest band of QH states at their filling factorsnQH
< 1

3 . At nQH5 1
3 , the QH Laughlin state occurs that corr

sponds to then5 2
7 hierarchy/Jain state. AtnQH5 1

5 , the CF-
QH’s ~unlike electrons! do not bind any more vortices be
cause of the subharmonic character ofVQH(R) aroundR
53.

If follows from the VQE(R);VQH(R12) correspon-
dence seen in Fig. 1 that the pseudopotential for the inter
ing CF-QH’s is similar to that of QE’s. To confirm this, w
have calculated this pseudopotential in a standard way,8 by
numerical diagonalization ofN QH’s interacting through
VQH in a shell of angular momentuml QH5 3

2 (N21)12. The
similarity betweenVQE(R) and VCF-QH(R) not only con-
firms that no additional fluxes can be attached to the C

ll-
2-4
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FRACTIONAL QUANTUM HALL STATES OF CLUSTERED . . . PHYSICAL REVIEW B69, 205322 ~2004!
QH’s ~i.e., not more than two fluxes to the original QH’s!,
but it also implies that the same correlations will occur in Q
and CF-QH systems, and that any incompressible QE s
must have its CF-QH counterpart at the same filling fact

The conversion of the CF-QH filling factors tonQH gives

Eq. ~1!, connecting the observed states into pairs:n5 ( 3
8 and

3
10 ), ( 4

11 and 4
13 ), and (5

13 and 5
17 ). Using the hierarchy equa

tion, n21521(n* )21 wheren* 511nQE or 12nQH, it can
also easily be shown that the two fractions in each p
(n,m) are connected by

n211m2156. ~3!

V. FINITE-WIDTH EFFECT AT nÄ 6
17

While the hierarchy interpretation is certainly invalid fo
the three pairs of states discussed in the preceding sec
and an alternative explanation must exist for their inco
pressibility, the situation with another observed state,n
5 6

17 , corresponding tonQE5 1
5 , is less obvious. Its QH coun

terpart atn5 6
19 has not been observed, and it is not clea

the finite widthw of the actual experimental system~which
tends to weaken oscillations inVQP) does not lift VQE(1)
enough compared toVQE(R>5) that avoiding bothR51
and 3 at the same time~i.e., formation of the Laughlin state
of the QE’s with nQE5 1

5 as assumed in the CF hierarch
picture! becomes energetically favorable. If true, this wou
be a similar scenario to that in LL1, where then5 1

3 stateis
not a Laughlin state, but then5 1

5 stateis. If the n5 6
17 state

could indeed only be observed in sufficiently wide electr
systems, then it is possible that the unobservedn5 6

19 state
~corresponding tonQE5 1

7 ) would simply require slightly
larger width to become incompressible.

The difference between critical widths could probably
explained by the fact that QH-QH pseudopotential param
that must be lifted is at a largerR ~at 3 instead of 1! which
thus corresponds to a larger average in-plane QH-QH s
ration A^r 2&. Unfortunately, our estimates of theVQP(R)
pseudopotentials are not sufficiently accurate to make d
nite predictions about the critical widths. However, theN
510 electron calculation for the QE’s shows thatVQE(1)
indeed moves up relative toVQE(5) andVQE(7) when the
width is increased fromw50 to 20 nm. Similar behavior
was found forVQH calculated forN58: theVQH(3) moved
up relative toVQH(7) and VQH(9) with increasing width,
only at a smaller ratedV/dw than it did for QE’s.

VI. QP CLUSTERING

Although in the following discussion of QP states we w
concentrate on the QE’s, the extension to QH’s remains v
as discussed above. Even without further numerical proo
is evident from Fig. 1 alone that the QE’s interacting throu
VQE(R) will not have Laughlin correlations. This implie
that the mean-field CF transformationcannotbe reapplied to
the particles or vacancies in CF-LL1. This rules out the
simple hierarchy picture of then5 4

11 state, as well as the
~equivalent though even less justified! interpretation involv-
20532
te
.

ir

on,
-

f

er

a-

fi-

id
it

h

ing the coexistence of CF’s carrying two and four flux quan
~or vortices!.9 In the latter, ‘‘multiflavor’’ CF model, the CF’s
carrying two additional flux quanta are constructed by a
application of the CF transformation to those QP’s in t
1
3 -filled CF-LL1. This procedure was actually first propose
by Sitko et al.,10 so it is not new, and it is equivalent to th
Haldane hierarchy~except that it is expressed in terms
fermionic rather than bosonic QE’s compared to Haldan
original paper6!. Furthermore, it has been clear
demonstrated11 in small systems with superharmonic pseud
potentialsV that adding 2p52,4, . . . flux quanta to each
particle in a mean-field CF transformation partitions the e
tire many-body Hilbert space into subspaces separated
energy gaps associated with the avoidedV(R).

What are these non-Laughlin QE-QE correlation
Clearly, the avoided pair state must now beR53 while hav-
ing pairs in the weakly repulsiveR51 state does not in-
crease the total interaction energyE given by

E5
1

2
N~N21!(R G~R!V~R!, ~4!

whereG(R) denotes the pair amplitude~i.e., the fraction of
pairs with relative pair angular momentumR). Therefore at
least some of the QE’s will form such pairs (QE2’s! or even
larger clusters (QEK’s! at filling factors nQE. 1

5 ~when the
avoidance of bothR51 and 3 at the same time is not po
sible!. Let us stress that the proposed clustering is no
result of some attractive QE-QE interaction,14 but due to an
obvious tendency to avoid the strongly repulsiveR53 pair
state in a system of sufficiently large density.

As an illustration for such clustering, consider a system
one-dimensional classical point charges moving along thz
axis, at a fixed linear densitydN/dz51, and interacting
through a repulsive potentialV(z). Let us compare the fol-
lowing two configurations:~a! equally spread particles a
zk5k, and ~b! pairs at z2k5z2k115k, where k50,61,
62, . . . . The difference between the total energies coun
per one particle is «b2«a5 1

2 V(0)2(k51
` @V(2k21)

2V(2k)#, and it can have either sign depending on the fo
of V(z). For example, ifV(z)5uzu21 at uzu>1, then the
paired configuration~b! has lower energy ifV(z),2ln 2 at
short range. For such form ofV(z), the transition between
configurations~a! and~b! will occur at sufficiently high den-
sity dN/dz.

A clustered state proposed here for the QE’s would
characterized by a greatly reduced pair amplitudeG(3) com-
pared to the Laughlinn5 1

3 state in order to minimize the
total energy. At the same time, the value ofG(1) would be
increased from nearly zero to a value of the order ofN
21)21 describing allN QE’s forming 1

2 N ~relatively widely
separated! pairs. This behavior is demonstrated in Fig. 2~a!,
in which we compareG plotted as a function ofR, calcu-
lated for the lowest states with total angular momentumL
50 in systems ofN512 particles in the shell with 2l 533,
interacting through different pseudopotentials. TheG(R) is a
form of pair-correlation function, more suitable to analy
correlations in a Hilbert space restricted to LL0 than the
‘‘real-space’’ pair-correlation functionG(r ). It is defined25 in
2-5
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terms of the projection operatorPi j (R) onto the subspace in
which pair^ i j & is in the eigenstateuR&, and it can readily be
calculated11 ~using eigenfunctions of the actual pseudopot
tial! as an expectation value of a ‘‘selective’’ interactio
pseudopotentialVa(R)5daR ,

G~R!5^VR&. ~5!

The squares in Fig. 2~a! correspond to the ground state
electrons interacting through the Coulomb potential in LL0.
The full dots describe the QE’s interacting through t
pseudopotential shown to in Fig. 1~d!. In the inset~c!, the
squares and circles describe the ground states of sele
interactionsVa(R). The ground state ofV1 is the exact
Laughlin n5 1

3 wave function, andV3 remarkably well re-
produces correlations of the QE system, which proves th
is the ability to avoidR53 that selects the low-energ
many-QE states. The significant reduction ofG(3) and an
increase ofG(1) when going from electrons to QE’s are al
clearly visible.

Since the reason for the QE clustering is the avoidanc
R53 rather than QE-QE attraction, it seems reasonabl
assume that some of the clusters should break up at lo
filling factors. Mixed states of pairs and unpaired electro
have been proposed earlier in attempt to explain then5 7

3

state in LL1,12 but here we have not found evidence for su
behavior down tonQE5 1

3 . In Fig. 2~b! we plot G(1) and
G(3), calculated in the lowestL50 states ofN512 particles
~electrons and QE’s!, as a function of 2l . For the QE’s, as 2l
increases from 20 to 33~i.e., n decreases from; 1

2 to ; 1
3 ),

the G(3) decreases to zero whileG(1) remains larger than
(N21)21, the value corresponding to the widely separa
1
2 N pairs.

VII. INTERACTION OF QP PAIRS

If the QP fluid consisted of QP2 molecules, the QP2-QP2
interactions would need to be studied to understand corr

FIG. 2. ~a! Pair-correlation functions~pair amplitudeG as a
function of relative pair angular momentumR) for the lowestL
50 eigenstates ofN512 particles on Haldane sphere with 2l
533. Gray squares are for the electrons in LL0 ~approximate
Laughlin n5

1
3 state! and black dots are for the QE’s interactin

through the pseudopotential of Fig. 1~d!. Inset~c! shows the same
for model pseudopotentialsV1 andV3. ~b! Dependence of the two
leading pair amplitudes,G(1) andG(3), on 2l for N512 electrons
~squares! and QE’s~dots!. The horizontal dotted line indicates th
valueG5(N21)21 corresponding to1

2 N widely separated pairs.
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tions. Being pairs of fermions, the QP2’s will be treated as
bosons carrying angular momentuml QP2

boson[ l QP2
52l 2RQP

52l 21 for the QE2’s and 2l 23 for the QH2’s. However, in
two dimensions they can be easily converted to fermions
a transformation consisting of attachment of one fl
quantum,32 i.e., by an adjustment of angular momentu
l QP2

fermion5 l QP2

boson1 1
2 (N221), whereN25 1

2 N is the number of

pairs. The QP2-QP2 interaction is described by an effectiv
pseudopotentialVQP2

(R2) that includes correlation effect
caused by the fact that the two-pair wave function must
symmetric under exchange of QP2 bosons and at the sam
time antisymmetric under exchange of any two QP fermio

In order to calculate this pseudopotential one must so
the problem of the stability of two QP2’s in the absence of
the surrounding QP’s. We have done it by constructing t
paired wave functionsuR2&pair in the following way. The four
QP’s are divided into two pairs distinguished by two proje
tions of pseudospin,s5↑ and ↓. A s-asymmetric pairing
interaction is defined asVss8(R)52dss8dRRQP

with RQE

51 andRQH53. It is diagonalized in the basis of totall
antisymmetric four-QP states, i.e., in the subspace of m
mum total pseudospin. The resulting lowest-energy eig
states at each angular momentumL are the ‘‘maximally
paired’’ statesuR2&pair corresponding to the relative angula
momentum R252l QP2

2L. By ‘‘maximally paired’’ we
mean here that these states have the largest possible
amplitude G↑↑(RQP)1G↓↓(RQP) which is simply equal to
the negative of the eigenvalue of the pairing interaction
ergy. The ‘‘complete pairing’’ corresponding to the eigene
ergy equal to22 is not allowed for identical QP’s, i.e., in th
subspace of maximum total pseudospin, because the t
angular momenta,RQP for each pair andR2 describing rela-
tive motion of the two pairs, cannot be simultaneously co
served.

The relaxation of the angular momentum~and thus also of
energy! of each of the two pairs that come in contact is d
to the appropriate required symmetry of the total two-p
state with respect to an interchange of the individual QP
This is a statistics-induced correlation effect, independen
the electric interaction between the pairs~it also occurs for
the model pairing interaction that vanishes for a pair of Q
that belong to different pairs!. The pair-pair pseudopotentia
VQP2

(R2), calculated as the expectation energy ofVQP in the

state uR2&pair, minus twice the energy of one pai
2VQP(RQP), automatically includes this effect. However,
must be realized that the pair-pair interaction is more co
plicated due to the internal structure of each pair that com
into play via statistics, and that at short range its descript
in terms of an effective pseudopotential is only an appro
mation.

Figure 3~a! shows the result obtained for the QE’s in
shell with 2l 530, interacting through the pseudopotential
Fig. 1~d!. The minimum value ofR254 corresponds to the
maximum-density four-particle droplet withL54l 26, and
we only show the data up toR2524. TheVQE2

(R2) appears

weakly subharmonic atR254 @i.e., betweenR254 and 8 in
the sense of definition~2!#, but it is clearly superharmonic a
2-6
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FRACTIONAL QUANTUM HALL STATES OF CLUSTERED . . . PHYSICAL REVIEW B69, 205322 ~2004!
R256 ~i.e., betweenR256 and 10!. For comparison, in Fig.
3~b! we show the superharmonic and rather featureless p
pair pseudopotential for the electrons in LL0.

VIII. HALPERIN’S PAIRED QP STATES

If QP’s formed pairs (QP2’s! in a many-QP state, and i
the pseudopotentialVQP2

(R2) were superharmonic in the en

tire range, then the QP2’s would have Laughlin correlations
Being bosons, they would then form a sequence of inco
pressible Laughlin states atn5(2q)21, characterized by
having R2>2q for all QP2-QP2 pairs. These states hav
been originally proposed by Halperin16 to describe such elec
tron states in LL0 asn5 2

5 . Later they were often invoked19

in the context of FQH effect atn5 5
2 to describe pairing of

electrons in half filled LL1. They can be conveniently de
scribed using the following ‘‘composite boson’’~CB!
model.12

In spherical geometry, let us consider the system ofN1
fermions~QP’s! each with~integral or half-integral! angular
momentuml 1 ~i.e., in a LL of degeneracyg152l 111). Ne-
glecting the finite-size corrections, this corresponds to
filling factor n15N1 /g1. Let the fermions formN25 1

2 N1
bosonic pairs each with angular momentuml 252l 12R1,
whereR1 is an odd integer. The filling factor for the syste
of pairs, defined asn25N2 /g2 whereg252l 211, is given
by n25 1

4 n1. The allowed states of two bosonic pairs a
labeled by total angular momentumL52l 22R2, whereR2
is an even integer.

Of all even values ofR2, the lowest few are not allowed
because of the Pauli exclusion principle applied to the in
vidual fermions. The condition that the two-fermion stat
with relative angular momentum smaller thanR1 are forbid-
den is equivalent to the elimination of the states withR2
<4R1 from the two-boson Hilbert space. Such a ‘‘ha
core’’ can be accounted for by a CB transformation with 4R1
magnetic-flux quanta attached to each boson.33 This proce-

FIG. 3. Short-range parts of the pseudopotentialsV(R2) for the
interaction between~a! two QE2’s and~b! two pairs of electrons in
LL0, calculated on Haldane sphere for 2l 530.
20532
ir-

-

e

i-
s

dure defines the effective CB angular momentuml 2* 5 l 2

22R1(N221), effective LL degeneracyg2* 5g224R1(N2

21), and effective filling factorn2* 5(n2
2124R1)21.

The CB’s defined in this way condense into their on
allowed l 2* 50 state when the corresponding fermion syst
has the maximum density at which pairing is still possib
n15R 1

21. At lower filling factors, the CB-LL is degenerat
and the spectrum of all allowed states of theN2 CB’s repre-
sents the spectrum of the corresponding paired fermion
tem. In particular, using the assumption of the superharmo
form of boson-boson repulsion, condensed CB states are
pected at a series of Laughlin filling factorsn2* 5(2q)21.
Here, 2q is an even integer corresponding to the number
additional magnetic flux quanta attached to each CB in
subsequent CB transformation,l 2* → l 2** 5 l 2* 2q(N221), to
describe Laughlin correlations between the original CB’s
angular momentuml 2* . From the relation between the fe
mion and CB filling factors,n1

215(4n2* )211R1, we find
the following sequence of fractions corresponding to Ha
erin’s pair states,n1

215q/21R1. Finally, we setR151 for
the QE’s andR153 for the QH’s, and use the hierarch
equation,8

n2152p1~16nQP!
21, ~6!

to calculate the following sequences of electron filling fa
tors n derived from the parentn5(2p11)21 state

n2152p117~21q/2!21. ~7!

In Eqs. ~6! and ~7!, the upper sign corresponds to the QE
and the lower one to the QH’s. Remarkably, all fractio
reported by Panet al. are among those predicted for then
5 1

3 parent.
The l 2** 50 condition for the condensation of the CB

into a Laughlinn2* 5(2q)21 state allows the prediction o
the values of 2l[2l 1 at which these states should occur
finite systems ofN[N1 QP’s. The result is12

2l 5
q12

2
N2~q11!. ~8!

Interestingly, this result can be also obtained from the f
lowing picture. Let us arrange an even number of partic
(d) in a shell by grouping them into pairs and separat
each neighboring pairs by a numberq of empty states (s)
between them~e.g.,dd ss dd ••• ss dd represents
such paired configuration forq52; note that the sequenc
begins and ends with a pair!. Equation~8! is then obtained
by the equation of the total number of filled and emp
states,12 N(q12)2q, with the angular momentum shell de
generacy, 2l 11. The success of this picture is reminiscent
a Laughlinn5(2p11)21 state that can be pictured as sing
particles separated by 2p spaces~e.g.,d ss d ss ••• d

ss d to representn5 1
3 ; note that different numbers o

spaces correspond to an attachment of two flux quanta
particle and to a pair!.

For q51 and 4, Eq.~8! gives 2l 5 3
2 N22 and 3N25,

respectively. Note the difference from 2l 5 3
2 N characteristic
2-7
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of the Jainn5 2
3 state and and 2l 53N23 of the Laughlin

n5 1
3 state. This difference allows the distinction of Hal

erin’s paired states from the Laughlin-Jain states based
the numerical spectra of small systems. On the other h
2l 52N23 predicted forq52 coincides19 with the value
characteristic of a Moore-Read state18 describing a half-filled
LL1. The only series of nondegenerate ground states tha
found numerically in finite systems are at 2l 52N23 and
3N27 ~and at their particle-hole conjugate values, 2l 52N
11 and 3

2 N12, obtained by the replacement ofN by 2l
112N).

IX. NUMERICAL RESULTS

A. Model

Our numerical exact diagonalization calculations we
carried out on Haldane sphere.6 In this geometry,N particles
are confined in a degenerate shell of angular momentul.
The single-particle states are labeled bym52 l ,2 l
11, . . . ,l . The two-body interaction matrix elements a
connected with the pseudopotential parameters through
Clebsh-Gordan coefficients. TheN-body interaction Hamil-
tonian is diagonalized numerically using a Lanczos al
rithm to give the set of low-energy states labeled by to
angular momentumL.

Standard numerical calculations forNe electrons are no
useful for studying the new observed FQH states atn5 3

8 ,
4

11 , 5
13 , etc., because convincing results require values ofNe

too large to be diagonalized exactly. As these states invo
pairing of Laughlin QP’s and possible Laughlin correlatio
between the QP pairs, at least three such pairs must be
sidered. Forn5 3

8 this occurs forNe514 electrons with 2l
533, which seems beyond reach of exact diagonaliza
and explains the lack of earlier numerical evidence for
compressibility of this state. For other states, such an
5 4

11 , the systems become even larger.
Therefore, instead of diagonalizing theNe-electron

Hamiltonian, we use the QE-QE pseudopotential shown
Fig. 1~d! and diagonalize the~much smaller! interaction
Hamiltonian of theN-QE systems. This approach is expect
to accurately reproduce the low-energy spectra of interac
electrons at filling factorsn between1

3 and 2
5 ~up to an over-

all constant containing the energy of the underlying Laugh
n5 1

3 state and the QE creation energies,«QE for each QE!. It
is justified by fact that the QE-QE interaction energyVQE is
small compared to the energy gap for creation of additio
QE-QH pairs,«QE1«QH. As a result, it is well-known that in
this range ofn, the low-energy states of~strongly interact-
ing! electrons contain the~weakly interacting! QE’s moving
in an underlying~rigid! Laughlin n5 1

3 fluid. In the CF pic-
ture, this approximation corresponds to neglecting
inter-LL excitations of CF’s and only including the dynami
within the partially filled CF-LL1. In smaller systems, con
taining up to four QE’s or QH’s, this approximation has be
successfully tested by direct comparison with the ex
Ne-electron calculation.11,21 In larger systems, it has recent
been used by Leeet al.23

Accuracy of this approach is demonstrated in Fig.
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where we compare the energy spectra of two systems
nected by a mean-field CF transformation:~a! N512 elec-
trons in the LL0 shell with 2l 529 and~b! N54 QE’s with
2l 59. The four-QE energies, obtained using the pseudo
tential of Fig. 1~d!, are only determined up to an additiv
constant, but the structure and relative energies are virtu
identical in the two spectra. The agreement can still be
ticeably improved by using the QE-QE pseudopotential
Fig. 1~b! obtained forN510 electrons~yielding the same
2l 59 for the pair of QE’s!. However, a small residual dis
crepancy cannot be eliminated by fittingVQE(R). It is due to
the fact that~although remarkably accurate! the description
in terms of pair QE-QE interactions~relying on the conser-
vation of QE and QH numbers, i.e., on the lack of inte
CF-LL excitations! is not exact. Note also that using th
same pseudopotential parametersVQE(R) obtained in large
systems22 for the calculation of two-body interaction matri
elements at different~smaller! values of 2l eliminates the
finite-size effects due to surface curvature, and thus impro
accuracy of the diagonalization.34

Let us add the following comment about Fig. 4. Becau
N512 electrons at 2l 529 have anL50 ground state, and
because the value of 2l 59 for N54 QE’s coincides with
3N23 of a Laughlinn5 1

3 state, this single spectrum wa
earlier erroneously interpreted10,24 as a success of the C
hierarchy applied to the QE’s, and this state was incorre
assigned filling factorn5 4

11 . However, upon the analysis o
correlations in this state and similar spectra of larger s
tems, it becomes evident that the value 2l 59 must be inter-
preted at 2N11, this four-QE state is a particle-hole conju
gate of the 2N23 sequence, and it should be assigned
and electron filling factorsnQE5 1

2 andn5 3
8 , respectively.

B. Energy spectra, series of incompressible ground states, and
excitation gaps

We begin with a few examples of the energy spectra of
to N514 QE’s. Different frames in Fig. 5 show the spect
for: N512 and 2l 521 ~a!, N510 and 2l 523 ~b!, N512
and 2l 527 ~c!, and N514 and 2l 525 ~d!. Using the CF
picture, these values of (N,2l ) can easily be converted t
Ne5N1(2l 21) and 2l e52(l 21)12(Ne21), characteriz-

FIG. 4. Energy spectra~energyE as a function of angular mo
mentumL) calculated on Haldane sphere forN512 electrons in
LL0 with 2l 529 ~a! and forN54 QE’s in CF-LL1 with 2l 59 ~b!.
The energy scale is the same in both frames, but the QE spectru
only determined up to a constant.
2-8
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ing the actual electron system~here, 2l 21 is the degeneracy
of the completely filled CF-LL0 with angular momentuml
21). Thus, the fourN-QE systems in Fig. 5 correspond t
Ne532 and 2l e581 ~a!, Ne532 and 2l e583 ~b!, Ne538
and 2l e599 ~c!, Ne538 and 2l e597 ~d!. It is evident that in
frames ~b! and ~d! the FQH-like nondegenerate (L50)
ground states occur, separated from the excited states
gapD;531023 e2/l. On the other hand, in frames~a! and
~c!, the ground state is degenerate (LÞ0) and no similar gap
is observed. The excitation gapsD in ~b! and ~d! are larger
than other energy spacings in these spectra. This indic
that they are due to the QE-QE interactions rather than du
the size quantization in a finite system, and thus that t

FIG. 5. Energy spectra~energyE as a function of angular mo
mentumL) of up to N514 QE’s in LL shells with various degen
eracies 2l 11, calculated on Haldane sphere using QE-QE inter
tion pseudopotential of Fig. 1~d!.
20532
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will not vanish in the thermodynamic (N→`) limit. As we
show below, theL50 ground states in Fig. 5~b! and ~d!
correspond ton5 4

11 and 3
8 in this limit.

We have calculated similar (N,2l ) spectra for up to 14
QE’s at filling factorsnQE;N/(2l 11) between1

2 and 1
3 .

Note that the assignment of the filling factor to a finite sy
tem (N,2l ) is not trivial and it depends on the form of co
relations. The (N,2l ) sequences that correspond to a fillin
factorn in the thermodynamic limit are described by a line
relation,

2l 5N/n2gn , ~9!

where the ‘‘shift’’ gn depends on the microscopic nature
the many-body state causing incompressibility at thisn. For
example, the sequence of finite-size nondegenerate (L50)
ground states that extrapolates ton5 1

3 occurs at 2l 53N
23 for the Laughlin state, at 2l 53N25 for the Halperin
paired state,12,14 and at 2l 53N27 for the incompressible
QE state identified below.

In Table I we present the excitation gaps obtained for
QE systems with various values ofN and 2l . The table is
symmetric under the replacement ofN by 2l 112N which
reflects the particle-hole symmetry in a partially filled Q
shell ~i.e., in CF-LL1). This symmetry is only approximate
in real systems, but here it appears exact because of neg
ing the inter-LL excitations of the CF’s in our model. Th
largest of the gapsD ~those shown in boldface! occur for the
following two (N,2l ) sequences: 2l 53N27 and 2N23,
corresponding tonQE5 1

3 and 1
2 . Their particle-hole conju-

gates series~also in boldface! occur at 2l 5 3
2 N12 and 2N

11, corresponding tonQE512 1
3 5 2

3 and 12 1
2 5 1

2 , respec-
tively. Using Eq.~6!, these values can be converted to t
electron filling factorsn5 3

8 , 4
11 , and 5

13 .
The dependence of the excitation gapsD on the QE num-

berN for thenQE5 1
3 series at 2l 53N27 ~full dots! and for

the nQE5 1
2 series at 2l 52N23 ~open circles! is plotted in

Fig. 6. It is difficult to accurately extrapolate our finite-siz

-

(

TABLE I. Excitation gapsD, in units of 1023e2/l, above the nondegenerate (L50) ground states ofN
QE’s each with angular momentuml, interacting through pseudopotential in Fig. 1~d!. Circles (s) mark
degenerate (LÞ0) ground states. The values in boldface are the largest; they all belong to the threeN,2l )
sequences corresponding tonQE5

1
2 , 1

3 , and 2
3 .

2l
N 17 18 19 20 21 22 23 24 25 26 27 28 29

8 4.71 s s s 0.01
9 s s s 5.47 s s s 1.18
10 4.71 s s s s s 6.29 s 0.81 s s

11 s s s s s s s s s 6.07 s s s

12 s s 5.47 s s 0.37 s 4.02 s s s 5.28
13 s s s s s s s s s s

14 0.01 s 6.29 s 4.02 s s s s

15 s s s s s s s

16 1.18 0.81 6.07 s s s

17 s s s s

18 s s 5.28
2-9
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data to the thermodynamic limit to predict the magnitude
D in an infinite ~planar! system. However, we are confide
that these two series of finite-size nondegenerate gro
states describe the FQH states observed experimentallyn
5 4

11 and 3
8 . The gaps for the largerN areD;531023 e2/l.

For the experimental situation of Ref. 1~GaAs and B
512.5 T! this corresponds toD;0.1 meV or;1K, which
seems to be a reasonable value considering the fact tha
n5 4

11 state has only been observed at temperatures as lo
T535 mK.

C. The nQEÄ
1
3 „nÄ 4

11… state

The ‘‘shift’’ defined by Eq. ~9! and describing the 2l
53N27 sequence identified here (g57) is different not
only from g53 describing a Laughlin state, but also fro
g55 that results for Halperin’s paired state~with q54).
This precludes the interpretation of these finite-sizenQE5 1

3

ground states found numerically~and thus also of the exper
mentally observedn5 4

11 FQH state! as either Laughlin or
Halperin~paired! state of QE’s~i.e., particles in the partially
filled CF-LL1). Certainly, the fact that~despite being incom-
pressible! these states are not Laughlin states was expe
from the fact that QE’s form pairs over a wide range
nQE'

1
3 ~and in the whole low-energy band states, not only

the ground states!. However, it is far more surprising tha
Halperin’s paired state of QE’s turns out as an invalid d
scription for these states as well. Clearly, the correlati
between the QE pairs atnQE5 1

3 must be of a different, non
Laughlin type, and we do not have an alternative explana
for the incompressibility of this state.

This result is consistent with the form of the QE2-QE2
pseudopotential shown in Fig. 3. BecauseVQE2

(R2) is only

superharmonic atR256, the only Laughlin state expecte
for QE2’s could be the one in which all values ofR254 and
6 are simultaneously avoided. This possibly valid Halperi
paired state corresponds toq52 and nQE5 1

2 in Eq. ~7!,
while the nQE5 1

3 state corresponds toq54 and it would
have to avoid all four lowest values ofR254, 6, 8, and 10,
which certainly cannot be expected from the form
VQE2

(R2).

FIG. 6. Excitation gapsD for thenQE5
1
3 series ofN-QE ground

states at 2l 53N27 ~full dots! and for thenQE5
1
2 series at 2l

52N23 ~open circles!, plotted as a function of the QE number,N.
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While we do not completely understand the correlatio
between QE pairs atnQE5 1

3 , it may be noteworthy that the
value of g57 appropriate for the series of incompressib
states found here can be obtained for the Laughlin stat
QE triplets (QE3’s!, each with the maximum allowed angula
momentum,L53l 23. Such state would be pictured a
ddd sss sss ddd . . . sss sss ddd
with each two closest QE triplets separated by six vacanc
The idea of particles grouping into triplets or larger cluste
has been studied in more detail by Read and Rezayi17 in the
context of electrons in LL1. Although we do not yet have
enough evidence for such particular grouping of QE’s,
alone for Laughlin correlations between the clusters, t
possibility is definitely worth further investigation, especial
for the predicted exotic~parafermion! statistics of the exci-
tations of such hypothetical ground state.17 Note, however,
that the numerical results show anL50 ground state at 2l
53N27 for every integral value ofN, which seems incon-
sistent with the idea of complete clustering of QE’s into m
ecules of any size. It can also be noticed that partial pair
with 1

3 N of QE pairs and1
3 N of unpaired QE’s also leads t

2l 53N27, but again, only for values ofN that are divisible
by three.

D. The nQEÄ
1
2 „nÄ 3

8 … state

The other sequence of finite-sizeL50 ground states iden
tified in Table I occurs at 2l 52N23, i.e., at the same valu
as for the Moore-Read states of electrons half filli
LL1.18–20 This value also coincides12 with the value pre-
dicted for Halperin’s paired state withq52, in which the
eigenstates of two QE2 bosonic pairs corresponding to th
two lowest values ofR254 and 6, are avoided. Because
the subharmonic behavior ofVQE2

(R2) at R2Þ6 ~see Fig.

3!, this q52 state is the only Halperin paired state of t
series given by Eq.~7! that might possibly occur in a QE
system.

However, despite the facts that this sequence occurs a
predicted value of 2l 52N23 and only for even numbers o
QE’s ~as expected for paired states!, its interpretation as a
Halperin paired state~or Moore-Read state! of QE’s turns out
incorrect. First indication is that it only seems to occur f
odd numbers of QE pairs,1

2 N53, 5, and 7, while the ground
states for12 N54 and 6~at 2l 513 and 21, respectively! both
turn out degenerate. Unfortunately, we do not have data
1
2 N.7 to confirm our expectation that the finite-size grou
states at 2l 52N23 haveL50 and a large excitation gap fo
all odd values of12 N. Note also that the state found here f
N510 and 2l 517 happens to be a particle–hole conjuga
state ofN58 QE’s at the same value 2l ~i.e., it belongs to
the 2l 5 3

2 N12 sequence!, and thus we only find twoL50
ground states (N56 and 14! that are unique for the 2N23
series.

More direct proof for thenQE5 1
2 state not being Halp-

erin’s paired state~or a related Moore-Read state! comes
from the analysis of its three-body correlations.35 We find
significant occupation of the compact triplet state QE3 with
the minimum allowed relative angular momentumT53 at
nQE5 1

2 , which is inconsistent with the picture of Laughlin
2-10
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correlated~i.e., spatially separated! pairs. This is in contras
with the behavior of the Moore-Read paired state~an exact
trial state that describes Halperin-like pairing at a half fillin!
that is characterized by having exactly zero occupation of
T53 triplet state.19 In fact, we have calculated squared ove
lapsz of the finite-sizenQE5 1

2 states with the Moore-Rea
states of QE’s and they turn outvery small~e.g.,z50.03 for
N514) and insensitive to the parity of12 N. Nevertheless,
despite the fact that we do not yet understand the correlat
in thenQE5 1

2 state~e.g., the importance of12 N being odd in
finite systems!, we believe that the 2l 52N23 series identi-
fied here indeed describes the observedn5 3

8 FQH state.

X. RESULTS FOR MODEL INTERACTIONS

In this section we present the results of similar calcu
tions, obtained using a model pseudopotentialUa(R) in-
stead ofVQE(R). Its only nonvanishing coefficients are

Ua~1!512a,

Ua~3!5a/2. ~10!

It is known12 that the correlations characteristic of electro
in the partially filled LL0 and LL1 are accurately reproduce
by Ua with a'0 and1

2 , respectively. Similarly, by the com
parison of pair amplitudes, we have confirmed thatUa with
a'1 causes correlations characteristic of QE’s in their p
tially filled LL.

We have repeated the diagonalization of a few finite s
tems with 2l 52N23 and 3N27, for a varying between 0
and 1, in order to answer the following two questions. Fir
to what extent is the stability of the identifiedn5 3

8 and 4
11

states affected by the~width dependent! details of the
QE-QE interaction? And second, does a phase transition
cur for values ofa between1

2 and 1, indicating a differen
origin of the incompressibility of then5 3

8 and 4
11 states and

their electron counterparts~in LL1) at n5 5
2 and 7

3 ? The latter
question is naturally motivated by our two observations:~i!
the 2l 52N23 sequence of nondegenerate ground states

curs only for odd numbers of QE pairs (1
2 N53, 5, and 7!, in

contrast to the situation in LL1 where they occurred for an
value of 1

2 N, and~ii ! the nQE5 1
2 has small overlap with the

Moore–Read state~of QE’s!.
In Fig. 7 we plot theL50 excitation energy gapD0 ~dif-

ference between the two lowest energy levels atL50), as a
function of a. A minimum in D0(a) signals a~forbidden!
level crossing, i.e., a phase transition in theL50 subspace.
Such minima occur neara5 1

2 for all values ofN and for
both 2l 52N23 and 3N27. They reveal destruction o
Laughlin correlations that occur for smalla ~e.g., for elec-
trons in LL0) and formation of incompressiblen5 1

2 and 1
3

states of a different~paired! character that occur fora' 1
2

~e.g., for electrons in LL1).
In Fig. 7~a!, similar strong minima occur ata'0.7 for

N58 and 12~marked with thick lines!. This is consistent
with our observation that the correlations between the Q
and between the electrons in LL1 ~both at the half filling! are
different. In Figs. 7~a! and 7~b!, additional weaker minima
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betweena5 1
2 and 1 appear also for other combinations ofN

and 2l . This confirms that then5 1
2 and 1

3 incompressible
states of QE’s are generally different from those of the el
trons in LL1, despite the fact that they both usually occur
the same values of 2l 52N23 and 3N27 in the finite sys-
tems.

The absolute excitation gapsD(a) of the L50 ground
states~difference between the lowest energies atLÞ0 and
L50) are shown in Fig. 8. The negative value ofD means
that the absolute ground state is degenerate~i.e., has L
Þ0), and the abrupt changes in the slope ofD(a) occur
whenever level crossings occur for the lowestLÞ0 state.
Clearly, except forN58 and 12 with 2l 52N23, the lowest
L50 states remain the absolute ground states of the sys
in the whole range ofa between1

2 and 1. This was first
noticed by Greiteret al.19 for N510 at half filling, and it
implies that the incompressibility of thenQE5 1

2 and 1
3

ground states will not be easily destroyed in experimen
systems by a minor deviation from the model QE-Q
pseudopotential used here in the numerical diagonalizati

Let us finally examine the dependence of the leading p
amplitudes,G(1) and G(3), on a. In Fig. 9 we plot the
number of pairsN(R)5 1

2 N(N21)G(R), divided by N. A
transition from Laughlin correlations ata;0 to pairing at

FIG. 7. The excitation gapD0 between the lowest and the firs
excited states in theL50 subspace ofN particles on Haldane
sphere with the values of 2l corresponding ton5

1
2 ~a! and n5

1
3

~b!, plotted as a function of the interaction parametera defined by
Eq. ~10!.

FIG. 8. The excitation gapD from the lowest state withL50 to
the lowest state withLÞ0 for N particles on Haldane sphere wit
the values of 2l corresponding ton5

1
2 ~a! andn5

1
3 ~b!, plotted as

a function of the interaction parametera defined by Eq.~10!.
2-11
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a; 1
2 ~and possibly grouping into larger clusters ata;1) is

clearly visible in each curve. It is also confirmed that just
the Laughlin ground state remains virtually insensitive to
exact form of the interaction pseudopotentialVe as long as it
is stronglysuperharmonicat short range, the correlations
the nQE5 1

2 and states13 are quite independent of the deta
of the QE-QE interaction, as long asVQE is stronglysubhar-
monic at short range. This result supports our expectat
that the incompressible QE ground states found here num
cally indeed describe the FQHn5 3

8 and 4
11 electron states

observed in experiment.
On the other hand, correlations ata' 1

2 ~electrons in
LL1), characterized by havingG(1)'G(3), arequite differ-
ent from those ata;1 ~QE’s!, characterized by having th
minimum possibleG(3), much smaller thanG(1). Finally,
with thick lines in Fig. 9~a! we have marked the curves fo
N58 and 12 in the vicinity ofa;0.7 at which the forbidden
crossings were found in Fig. 7~a!. A different behavior of
N(1)/N and N(3)/N for these two values ofN is clearly
visible.

XI. CONCLUSIONS

Using exact numerical diagonalization in Haldane sph
cal geometry, we have studied the energy spectra and w
functions of up toN514 interacting QE’s in the Laughlin
n5 1

3 parent state~i.e., CF’s each carrying two flux quanta!.
We have demonstrated by direct calculation of the pair a
plitudes G(R) that, at their sufficiently large filling facto
(nQE. 1

5 ), the QE’s form pairs or larger clusters, with a si
nificant occupation of the minimum relative pair angular m
mentum,R51. The QE~and analogous QH! clustering is an
opposite behavior to Laughlin correlations characterizi
e.g., electrons partially filling LL0. Therefore it invalidates
the reapplication of the CF picture to the individual QE’s
QH’s ~and thus also the equivalent multiflavor CF mod!

FIG. 9. The average number of pairs with relative angular m
mentumR51 ~a,b! andR53 ~c,d! per particle,N(R)/N, calcu-
lated for the lowest state in theL50 subspace ofN particles on
Haldane sphere with the values of 2l corresponding ton5

1
2 ~a,c!

andn5
1
3 ~b,d!, plotted as a function of the interaction parametera

defined by Eq.~10!.
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and precludes the simple hierarchy interpretation of any
compressible states at6

17 ,n, 2
5 or 2

7 ,n, 6
19 .

The series of finite-size nondegenerate ground state
QE filling factors nQE5 1

2 , 1
3 , and 2

3 have been identified
These values correspond to the electronic filling factorsn
5 3

8 , 4
11 , and 5

13 , at which the FQH effect has recently bee
discovered.1 Due to a discussed similarity between th
QE-QE and QH-QH interactions, these three QE states h
their QH counterparts atnQH5 1

4 , 1
5 , and 2

7 , corresponding to
n5 3

10 , 4
13 , and 5

17 , all of which have also been experimen
tally observed.1 Finally, it is argued that the reported1 n
5 6

17 FQH state might be a standard hierarchy state~Laughlin
nQE5 1

5 state!, although it could only be observed in suffi
ciently wide systems. Its QH counterpart atn5 6

19 ~Laughlin
nQH5 1

7 state! would require a larger width thann5 6
17 which

might explain why it has not yet been observed.
The finite-sizenQE5 1

2 , 1
3 , and 2

3 states of QE’s~CF’s in
LL1) are found at the same values of 2l 52N23, 3N27,
and 3

2 N12 as then5 5
2 ~Moore-Read18–20!, 7

3 , and 8
3 FQH

states of electrons in LL1, respectively, despite the differen
electron and CF pseudopotentials. Therefore we have stu
the dependence of the wave functions and stability of
novel FQH states on the exact form of interaction at sh
range. We found several indications that the novel QE sta
are distinctly different from the electron states in LL1: ~i! the
nQE5 1

2 state appears incompressible only for the odd val
of 1

2 N; ~ii ! the pair-correlation functionsG(R) ~and, espe-
cially, the triplet-correlation functions35! are quite different;
~iii ! although they remain incompressible, the ground sta
appear to undergo phase transitions when the QE
pseudopotential is continuously transformed into that of el
trons in LL1; ~iv! the overlaps with the electron states in LL1
and with the Moore-Read trial state are very small. Howev
further studies are needed to understand these transitions
the other hand, weak dependence of the wave functions
excitation gaps of the novel FQH states on the details of
QE-QE interaction~as long as it remains strongly subha
monic at short range! justifies the use of a model pseudop
tential in the realistic numerical calculation.

We have also explored Halperin’s idea16,14 of the forma-
tion of Laughlin states of QE pairs (QE2’s!. An appropriate
composite boson model has been formulated and show
predict a family of novel FQH states at a series of fractio
including all those observed in experiment. However, seve
observations strongly point against this simple model:~i! the
QE2-QE2 interaction pseudopotential is not superharmonic
support Laughlin correlations of QE2’s ~except possibly for
nQE5 1

2 ); ~ii ! the values of 2l predicted for finiteN are dif-
ferent from these obtained from the numerical diagonali
tion ~except fornQE5 1

2 ); ~iii ! the numerical results do no
confirm the significance of parity of the number of QE’s
finite systems~the nQE5 1

2 states occur only forN56, 10,
and 14, and thenQE5 1

3 states occur for both even and od
values of N); ~iv! the analysis of three-body correlation
suggests formation of clusters larger than pairs.35 In fact,
despite an earlier expectation,19 we find35 that Halperin’s
pairing idea is far more appropriate for the electrons in L1
than for QE’s in CF-LL1.

-

2-12
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We have not found evidence for only partial pairing~and
possibly Laughlin-correlated mixed states of pairs and
paired electrons! or grouping of QE’s into larger clusters o
well-defined size~and possibly Laughlin correlations be
tween them17!. However, further investigation of both thes
ideas is necessary. Also, since the experiment1 indicates
complete spin polarization of the novel FQH states, here
have not studied unpolarized systems, considered in g
detail in a number of earlier studies begun with the work
Park and Jain.36 Finally, the connection between the QE pa
ing studied here and recent shot-noise experiments37 indicat-
.

ys

20532
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ing bunching of QP’s in Laughlin and Jain FQH states
ultra-low temperatures is not yet clear.
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Quinn, Physica E~Amsterdam! 12, 63 ~2002!.

13F.D.M. Haldane and E.H. Rezayi, Phys. Rev. Lett.54, 237~1985!.
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35A. Wójs and J. J. Quinn~unpublished!.
36K. Park and J.K. Jain, Phys. Rev. B62, R13 274~2000!; I. Szlu-
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