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Fractional quantum Hall states of clustered composite fermions

Arkadiusz Wgs,>? Kyung-Soo Yil® and John J. Quirn
tUniversity of Tennessee, Knoxville, Tennessee 37996, USA
2Wroclaw University of Technology, 50-370 Wroclaw, Poland
3pusan National University, Pusan 609-735, Korea
(Received 10 December 2003; published 28 May 2004

The energy spectra and wave functions of up to 14 interacting quasiele¢®@&® in the Laughlinv
=% fractional quantum HallFQH) state are investigated using exact numerical diagonalization. It is shown
that at sufficiently high density the QE’s form pairs or larger clusters. This behavior, opposite to Laughlin
correlations, invalidates thesometimes invokedreapplication of the composite fermion picture to the indi-
vidual QE’s. The series of finite-size incompressible ground states are identified at the QE filling fegtors

1 % 2 corresponding to the electron fillings= 3, i%, . The equivalent quasihol&H) states occur at

vou=17, &, 5, corresponding ta= 15, 73, 7. All these six novel FQH states were recently discovered
experimentally. Detailed analysis indicates that QE or QH correlations in these states are different from those
of well-known FQH electron statgg.g., Laughlin or Moore—Read statekeaving the origin of their incom-
pressibility uncertain. Halperin’s idea of Laughlin states of QP pairs is also explored, but is does not seem

adequate.
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[. INTRODUCTION tions, and those only occur if the interactions are sufficiently
strong at short rang€.Moreover, it is known precisely that
Panet all recently(and Goldman and Shayedam little  “sufficiently strong” means that the interaction pseudopoten-
earliep observed fractional quantum H&EQH) effect*ina tial is superharmonit:*?1t should also be noted that the CF
two-dimensional electron gas at novel filling fractiomoof  analogy is not sufficient to explain all new observed states
the lowest Landau level (LJ). The new FQH states are regardless of the fact that tieeapplied CF modeldoes ndt
found to be spin-polarized and occur between the neighbogenerally describe correlations between the CF's themselves.
ing =1 and? states of the Jain sequeregrresponding to  Specifically, thev= {5 state corresponds t¢* = §, while the
one and two completely filled composite fermi@@F) LL's, electronic state at this filling isot incompressible.
respectively. Some of them, such &s 7; or 15,% appear in The aim of this paper is to present the results of our “nu-
the standard hierarchy of quasipartié@P) condensates for- merical experiments” for the new FQH states and show that
mulated by Haldarfeand Halperir/, but their “hierarchical”  they are described by grouping of QP’s into pdirs (al-
interpretation was earlier ruled Subecause of the specific though probably without pair-pair Laughlin correlatiéfsor
(subharmonigform of the QP—QP interaction. Others, such into larger clusterd’ rather than by a multiflavor CF picture.
as thev=23 or 3 states, do not belong to the Haldane hier-To do so, we:(i) present results of extensive numerical di-
archy, and the origin of their incompressibility is puzzling in agonalization studies of up to 14 interacting Laughlin
an even more obvious way. quasielectronsQE’s); (ii) demonstrate directly the QE clus-
Recently there have been attenifitsexplain these states tering by the calculation of pair amplitudej) identify the
in terms of “multiflavor” CF pictures, with coexisting CF's series of finite-size nondegenerate ground stateg,at 3,
carrying different numbers of fluxegvortices. Being 3, 5. corresponding tov=3, 71, 55; (iv) investigate the
equivalent to the CF hierarcHyof Laughlin-correlated spin- dependence of the stability of these states on the details of
polarized QP states, not only are these models not conceptthe QE-QE interaction pseudopotenti@)) calculate their
ally new, but they are also unjustified at the QP fillings in pair-correlation functionsfvi) show that they have different
questiorf In fact, some of the numerical results obtained QE-QE correlations than those of electrons in the Laudhlin
earlier in a slightly different conteXt'? and more detailed or Moore-Reatf 2 states; (vii) construct the equivalent
results presented here show that theynotdescribe the new quasihole(QH) states atvoy=73, &, 5, corresponding to
FQH states. =3, &, =: (viii) discuss a recent modéhssuming pairing
The appeal of the CF models lies in the fact that theyof QP’s and Laughlin correlations between the pa&osgi-
allow one to think of a more complicated FQH state at filling nally proposed by Halperifi for electrons in Llg); and (ix)
factor v as a CF analog of a simpler and better understoogbropose an explanation for the FQH state observed at
state at an effective CF filling factar*. The best known =1%.
examples are=3 andZ states corresponding tf =1 and Standard numerical calculations fbl, electrons are not
2, respectively. In the present case 7; and 3 correspond useful for studying the new states, because convincing re-
to v*=3% and2, that is, to one-third and one-half filled first sults require too large values dbf,. Therefore, we take ad-
excited CF LL (CF-LLy), respectively. However, it cannot vantage of the knowled§é'~**of the dominant features of
come as a surprise that the CF model does not always workhe pseudopotentialog(R) of the QE-QE interactiorii.e.,
It is valid only for systems which support Laughlin correla- the QE-QE interaction energyqe as a function of relative
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pair angular momentunR), and diagonalize thémuch 2I=2N-3 (as predicted for Halperin's paired statnd the
smalle) interaction Hamiltonian of th&\-QE systems. This voe= 3 Series at =3N—7 (different from -5 of a Hal-
procedure was earlier shofinto accurately reproduce the perin’s paired staje However, as mentioned above, we find
low-energyN.-electron spectra at filling factonsbetweens several strong indications that Halperin's paired state does
and2. It was also used in a similar, many-QE calculation bynot occur for QE's at neitherge= 3 nor 3.
Lee et al?® (who, however, have not found support for QE
clustering.

Our results confirm series of nondegenerate ground stated: PSEUDOPOTENTIALS, LAUGHLIN CORRELATIONS,

with finite excitation gaps atl? twice the QE angular mo- AND THE COMPOSITE FERMION PICTURE

mentum, equal to 8—3, 3N—7, and3N+2 (the last two The essential information about the interaction of par-
states are particle—hole symmelrichese series extrapolate cles confined to some Hilbert space can be obtained by
10 voe=N/(2I+1)=>, 5, and5, and to the electron filling  gefining the value of interaction energy for all allowed pair
factors v=73, 1, and 13, respectively. The fact that the giates. For charged particles confined to a LL in the presence
vqe=73 Sequence occurs al 23N—7 rather than BI—3  of 3 magnetic field, the relative motion is strongly quantized.
implies that this state isot a Laughlin state of QE'Sor  The orbital pair eigenstates can be labeled with a single dis-
CF's). Indeed, the assumption that thge= 5 sequence must  crete quantum number, relative angular momenfmiThis

be described by the relation 23N—3 led to its being over- number is a non_negative integer; it must be wﬂbr) for a
looked in earlier finite-size Calculatioﬁ§.The identified se- pair of identical fermioniboson% and it increases with in-

qguence is also different froml23N—5 characteristic of
Halperin's paired staté corresponding tOVQE=%. On the
other hand, the value ofl 2 2N — 3 for thevoe=3 sequence
suggests that this state could be a Halperin paired QE sta
(Laughlin state of QE pait¥*!® similar to the

Moore-Read~?state of electrons at the half filling of LL

However, the squared overlaps with the Moore—Read sta

are very small 0.03 for N<14), and the nondegenerate . s . 5
ground states occur in this series only for odd numbers of ngwa%netlc length . hcleB, this can be written aQ\
=R). The total pair angular momentub (here,L means

pairs GN=3, 5, and 7, which implies that the nature of this o5 angular momentum dfl particles, and.’ is reserved
state is different. for N=2) results from an addition of two angular momenta
The comparison of the QH-QH and QE-QE pseudopotent of individual particles, and it is connected to the relative
tials (which differ mainly by a hard-core &R=1 for the  pajr angular momentum via relatid’ =21 — R. Thus, the
QH's) result in the following correspondence relation for the jyaximum value ol.’ = 2| (for bosons or 21 — 1 (for fermi-

creasing average distan&@ﬂ) between the two particles.
In Haldane’s spherical geomeftymost convenient for
finite-size calculations, the Lgis represented by a degener-
e shell of single-particle angular momentlim Q. Here
2Qd¢, is the strength of Dirac monopole in the center, de-
fined as 4rR°B, the total flux of the magnetic field
tf?wough the surface of radiu® (using the definition of the

incompressible QH and QE states ong corresponds to the smallest pair state With-0 or 1.
. . The pair interaction energy expressed as a function of
Vou=2+ vgE. N R is called the pseudopotential, and the series of its param-
. A . . L , etersV(R) entirely determines many-body correlations. On
For voe=3, 3, ands, this relation givesyg=3z, 5, and?, 3 sphereR <2l and thus the number of pseudopotential pa-
corresponding tov=15, 73, and 5, respectively, all of rameters is finite. However, even in an infinigana) sys-
which have also been observed experimentally. tem, only those few leading parameters at the value® of

To understand the origin of incompressibility in the new
states we explore an id€d” of Laughlin states of QP pairs
_(orlglnaLIII_y prcg)osed by I:aIpEe:r’rﬁto d|_e|1sc_r|be ele_ctron Pall* - orrelations are indeed characterized by firgite) ).
e Gt e o of o, Remarkabiy. e for e completly replie inerc
d'gt] d fu the uth If Ey Eg Idl gH H q ![O tions, different correlations can result in a partially filled
t'ICIe hrom ¢ € ocrjmbo ? “QE and Q 'Q_ 1ps::‘ut opoden-she” depending on the form of(R). For example, ifV
|as,_c aracterized by strong minima Rlge=1 state an increasesas a function ofR (as in atomic shells in the ab-
RQH_s: Itis c!early Qemonstratgq by the calculation of thesence of magnetic fieldthe low-energy many-body states
appropriate pair amplitude coefficiefitsrelated to the frac- obev Hund's rule and tend to have the maximum bossible
tional grandparentad® in the many-QE ground states. In y P

2 ; ) . degeneracyi.e., the maximum R+ 1). In the opposite ex-
Halperin’s paired state, Laughlin correlations between th%re?ne situa{ion whel decreasesuff?ciently quirc):il)}g as a

QP pairs would depend on the superharmonic behavior of thleunction of R, Laughlin correlations occur. These correla-
pair-pair interaction pseudopotenti&glop (R,) at the rel- - 9 S :

. 2 tions are defined as the tendency to avoid pair states with one
evant values ofR,, the relative angular momentum of two oy more smallest values @, i.e., with the largest repulsion
pairs. The analysis of the calculat¥he,(R) suggests that (the relative occupation of different pair states in a many-
of the whole sequence of incompressible Laughlin states dbody state is a well-defined quantity, given by the pair am-
QE pairs, onIyuQE:% might satisfy the condition for Laugh- plitude coefficiert).
lin correlations. This appears to be in agreement with our As a result of Laughlin correlations, the low-energy
“numerical experiments,” which reveal theQEzé series at many-body states usually have small degeneracy and effects

corresponding to the average distan@ not exceeding
the correlation lengtlg are of significancéprovided that the
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commonly associated with the FQH physics occur, including It has been showh that it is the superharmonic behavior
the formation of incompressible ground states at certain valef the Coulomb repulsio®/(r)~r~! in LL, in the entire
ues ofv. What is often not realized or overlooked is that it is range of R that explains the success of the CF picture
precisely the Laughlin correlations that justify the CF pic-through the entire Jain sequence of fractidrswas also
ture. In other words, the mean-field CF picture that attacheshowrt? (by direct calculation of pair amplitudeshat be-
2p magnetic-flux quantdor vortices to each fermion and cause the Coulomb pseudopotential in,Li roughlylinear
predicts the family of Jain wave functions for the lowest- betweenR=1 and 5, the electrons tend to form pairs with
energy states is corredt and only if those fermions have R=1 when filling a fraction;<v,<3 of LL,. This is ex-
Laughlin correlations, i.e., the lowest-energy states indeedctly the opposite behavior to the avoidance of this pair state
maximally avoid having pair states witR<(2p+1). For that would characterize a state with Laughlin correlations
example, in order to bind 2 vortices and transform into and that could justify the CF pictufsometimes erroneously
CF’s, electrons must have Laughlin correlatidgaad indeed used in literature to describe the FQH statesyat2+ v,
they do in LLy). These CF’qor, more precisely, the QP'sin =3, Z or$).
partially filled CF-LL's) would bind additional vortices and Let us stress here that the mean-field CF picture simply
turn into “higher-order” CF’s if they themselves had Laugh- mimics the fact thatin a Laughlin-correlated systeneach
lin correlations(and in this paper we show that, at the rel- electron drags & =1 correlation hole with it - by replacing
evant filling factors, theylo noj. the “bare” electron LL degeneracy with an appropriately
Another important class of pseudopotentials are the “harsmaller, “effective” one(and an effective CF magnetic field
monic” ones, i.e., those for which paramet&fgs(R) fall on B* is just an intuitive physical picture that cannot be treated
a straight line when plotted as a function of the averagditerally). In fact, it has recently been demonstratatiat the
squared distancgr?). Clearly, all harmonic potentials adiabatic addition of flux(instead of addition via gauge
Vy(r)=ag+a,r? have this property regardless of the LL transformatioh automatically gives rise to Laughlin correla-
confinement. It has been shottnhat for particles confined tions without the need of any mean field approximation.
in an angular momentum shell on a sphevg, is a linear  Having said this, there simply ar® CF’s in thev=3, %, or
(increasing in case of repulsipriunction of squared pair £ states, let alone the CF pairs. Instead, at least the Moore-
angular momentunt,’ (L’ +1). It follows from considering Read state at=3 is clearly a paired state aflectron$®?°
the large-radius limit R— and A\ =const) that on a plane (although models involving pairing of CF’s in this state can
(or on a “large” sphere, i.e., forR<2l), Vy is a linear also be found in literatufd. It is surprisingly often over-
function of R. The importance of the harmonic pseudopo-looked that the FQH effect does not prove the existence of
tential lies in the fact that it cause® correlations, i.e., all CF's or Laughlin correlations, but only the existence of a
many-body states with the same total angular momeritum nondegenerate ground state separated from the continuum of
are degeneratéand their energy is just a linear function of QP excitations by a finite gap—the property which can also
L(L+1) orR, depending on geometry* It is thus only the  result from correlations of a different nature.
anharmonic part o¥/(R) that causes correlations, while the It is indeed quite remarkable that the knowledge of the
harmonic part only shifts the entire energy spectrum by dnteraction pseudopotenti®l(R) at short range is sufficient
constant time4¢ (L+1) or R. to predict or rule out Laughlin correlations in different FQH
From the analysis of the sum rufébeyed by the pair system&:**°3However, it must be carefully noticed that
amplitudesGy (R) measuring the fraction of pairs with rela- the predicted absence of Laughlin correlations does not pre-
tive pair angular momentur® out of the total number of clude the FQH effect itself, only a microscopic origin of the
IN(N—1) pairs in anN-particle stateW, it has been effect attributable to Laughlin correlations. It should also be
showrt**?that Laughlin correlations occur near filling factor realized that immediate application of the CF model without
v if the dominant anharmonic contribution Yois positive at ~ studying the interactions between the relevant parti@tes-
the avoided values oR. For example, for fermions at trons, QP’s, et¢. whenever real or numerical experiments
~(2p+1) 1=1%, the pseudopotential(R) must decrease reveal incompressibility is not justified. Precisely such a situ-
“superlinearly” through any three values<b<c beginning  ation was recently encountered with the discovery of new
with a=1. By the superlineafi.e., superharmonjcbehavior ~FQH states at=3, 77, etc., which turn out not to be Laugh-

we mean that lin or Jain stategof QP’s) despite being incompressible.
V(a)—V(b)>V(b) —V(c) @ lll. QP INTERACTIONS
b—a c-b - It follows from the preceding discussion that in order to

explain the origin of incompressibility in the new FQH
Only then do Laughlin correlations occur and justify the usestates, one has to begin with the identification of the relevant
of the mean field CF transformation that attachgs=2 (quas) particles(electrons, holes, Laughlin QP’s, CF’s, ex-
fluxes (vortices to each electron. Moreover, any pseudopo-citons, skyrmions. . . ), analyze their interaction pseudopo-
tential that is strongly superharmonic at short range causdentials, understand their correlations, and finally derive the
the same(Laughlin) correlations which explains the robust filling factors » at which those correlations cause incom-
character of the FQH states in realistic systems or in modgbressibility. In contrast to the CF modgVhich, nevertheless,
calculations. is still very elegant and usefuafter it is proven valid for a
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1L 0.02 affect correlations and only shifts the whole many-body
spectrum by adiffereny constant. On the other hand, the
repulsive character of the QP-QP interaction and the long-
range behavior o¥ o R) ~R ~ 2 follow from the fact that
QP’s are charged particlgghe form of QP charge density
affectsVqp only at short range, comparable to the QP kize
i In Fig. 1(d) we plotVog(R) obtained more recently by Lee
| .00 et al?? using a somewhat different approach. Since it con-
. firms the oscillatory behavior at short range in Figh)land
behaves as expected at long range, we will use it later to
- diagonalize interaction in the systems of more than two
--0.01 QE’s.
I Clearly, the dominant features ®f,e are the small value
at R=1 and a strong maximum &=3. Similar analysis
for Vou(R) shown in Fig. 1a) for 8<N=11 reveals the
maxima atR=1 and 5, and the nearly vanishing,,(3).
(o) QE's Actually, it follows from the comparison of Figs.(d and
o 11 1(b) that the slightly reduced energy scale fég(R) and
the additional strongly repulsive stateRg,=1 are the only
FIG. 1. Interaction pseudopotentidiéR) for the QH's(a) and  Significant differences between the two pseudopotentials.
QE’s (b) of the Laughliny=1} state calculated in the systems of up 1heVoe(R)~Vou(R+2) correspondence and the fact that
to N=12 electrons on a sphere. Insefs: Dependence of the lead- Vor(1) is the largest of all QE or QH parameters will be
ing QE-QE pseudopotential coefficients corresponding to the smallised to construct the QH states corresponding to the incom-
est values ofR on N~!. Extrapolation toN~'—0 corresponds to pressible QE states studied numerically in detail.
an infinite planar systenfd) QE-QE pseudopotential calculated by =~ The above conclusions about the properties of QP-QP
Leeet al?? pseudopotentials weakly depend on such assumptions as zero
layer thicknessw or infinite magnetic fieldB, and their os-
particular system this line of thought is free of unproven cillations at smallR persist in realistic FQH systems. It is
assumptions, such as that of a cancellation between the Coteteworthy that this result cannot be obtained from|ites-
lomb and gauge interactions beyond the mean field. ally understoodoriginal formulation of the CF model in
It is well established that 8_.aughlin-correlatefisystem  which the weak “residual” CF-CF interactions are said to
of electrons ag <v<£ can be viewed as one dfraction-  result from partial cancellation of strong Coulomb and gauge
ally charged and thus less strongly interacti@d’s moving interactions between the electrons. This is because these two
in the underlying Laughlinv=73 ground state. This is el- interactions have different character and, for example, de-
egantly pictured in the CF model, in which the Laughlin statepend differently onw or B.**
corresponds to the completely filled CF+,Land the QE’s
correspond to théweakly interacting particles moving in
the (partially filled) CF-LL;. Similarly, the electron system

0.02+
-0.01

.01

Ve o

0.00+

-0.01 4

--0.02

IV. CORRESPONDING QE AND QH STATES

at s<v<3$ can be viewed as the QH’s moving over the It can be seen in Fig. 1 thafgy(1) is the strongest an-
=1 backgroundwith the QH’s pictured as vacancies in CF- harmonic contribution t&ou(R). This causes the maximum
LLy). avoidance of the two-QH state witR=1 (Laughlin QH-QH

Therefore, we begin the study of the new FQH states ircorrelation$ and justifies the CF transformation withp2
the 3<v<£Z range with the analysis of the QE-QE and =2 fluxes attached to each Qe., such reapplication of
QH-QH pseudopotentials. In the following we will use the the CF transformation to the vacancies in the partially filled
fermionic statistics to describe QP’s which is consistent withCF-LL,). The states of CF-QH'’s obtained in this way form
the CF picture(and conversion to bosons or anyons can behe lowest band of QH states at their filling factorgy
done in a standard waj. The qualitative behavior of <1. At vQH=%, the QH Laughlin state occurs that corre-
Vor(R) at short range is well known from the numerical sponds to ther=2 hierarchy/Jain state. MQHzé, the CF-
studies of small systenf$'~23 In Fig. 1(b) we compare QH's (unlike electrons do not bind any more vortices be-
Voe(R) calculated for the systems bf=8-12 electrons. As  cause of the subharmonic character\Gfy(R) around’R
the calculation involves subtraction of tiNeelectron ener- =3,
gies corresponding to zero, one, and two QE’s thafinite If follows from the Vqoe(R)~Vou(R+2) correspon-
systemgoccur at different values @ = JR/\ (i.e., different  dence seen in Fig. 1 that the pseudopotential for the interact-
surface curvaturgsthe zero of energy is determined much ing CF-QH'’s is similar to that of QE’s. To confirm this, we
less accurately than the relative values of different pseuddhave calculated this pseudopotential in a standard®my,
potential parameters. However, when the data for aeie  numerical diagonalization oN QH's interacting through
extrapolated to largé\, the positive sign oVog(R) is re- Vg in a shell of angular momentut@Hzg(N—l)JrZ. The
stored, as shown in Fig.(d). Still, only the relative values similarity betweenVqog(R) and Vee.q R) not only con-
are of importance, since adding a constan¥(®) does not firms that no additional fluxes can be attached to the CF-
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QH's (i.e., not more than two fluxes to the original QH's ing the coexistence of CF’s carrying two and four flux quanta
but it also implies that the same correlations will occur in QE(or vortices.® In the latter, “multiflavor” CF model, the CF’s
and CF-QH systems, and that any incompressible QE statarrying two additional flux quanta are constructed by a re-
must have its CF-QH counterpart at the same filling factor. application of the CF transformation to those QP’s in the
The conversion of the CF-QH filling factors g, gives zfilled CF-LL,. This procedure was actually first proposed

Eq. (1), connecting the observed states into pairs: (3 and by Sitkoet al,* so it is not new, and it is equivalent to the
3Y (4 and4 d (& and2). Using the hierarchy equa- Haldane hierarchyexcept that it is expressed in terms of
i6), (1_11an i3): fn_l(” an 11)' g yea fermionic rather than bosonic QE's compared to Haldane’s
tion, v~ =2+ (") " wherer* =1+ v Or 1= vy, itCAN  yginal papef). Furthermore, it has been clearly

also easily be shown that the two fractions in each palfyemonstratettin small systems with superharmonic pseudo-

(v,u) are connected by potentialsV that adding =24, ... fluxquanta to each
PR particle in a mean-field CF transformation partitions the en-
v itp =6 @ tire many-body Hilbert space into subspaces separated by
energy gaps associated with the avoid&dR).
V. FINITE-WIDTH EFEECT AT v=% What are these non-LaughIin QE-QE correlations?

Clearly, the avoided pair state must nowRe= 3 while hav-

While the hierarchy interpretation is certainly invalid for ing pairs in the weakly repulsiv®=1 state does not in-
the three pairs of states discussed in the preceding sectiogrease the total interaction energygiven by
and an alternative explanation must exist for their incom-
pressibility, the situation with another observed state, 1
=2 corresponding toge= %, is less obvious. Its QH coun- E= EN(N_ 1)% GRIV(R), (4)
terpart atv= 15 has not been observed, and it is not clear if
the finite widthw of the actual experimental systefwhich ~ whereG(R) denotes the pair amplitudée., the fraction of
tends to weaken oscillations Mqp) does not liftVog(1)  pairs with relative pair angular momentuR). Therefore at
enough compared t¥o(R=5) that avoiding botfR=1  least some of the QE’s will form such pairs (& or even
and 3 at the same tim@e., formation of the Laughlin state larger clusters (QEs) at filling factors vog>35 (when the
of the QE's with voe=35 as assumed in the CF hierarchy avoidance of botfR=1 and 3 at the same time is not pos-
picture becomes energetically favorable. If true, this wouldsible). Let us stress that the proposed clustering is not a
be a similar scenario to that in LI where thev=1 stateis  result of some attractive QE-QE interactifrhut due to an
nota Laughlin state, but the=$ stateis. If the v=2 state  obvious tendency to avoid the strongly repulsiRe-3 pair
could indeed only be observed in sufficiently wide electronstate in a system of sufficiently large density.

systems, then it is possible that the unobserveds; state As an illustration for such clustering, consider a system of
(corresponding tovoe=3) would simply require slightly —one-dimensional classical point charges moving alongzthe
larger width to become incompressible. axis, at a fixed linear densitgN/dz=1, and interacting

The difference between critical widths could probably bethrough a repulsive potential(z). Let us compare the fol-
explained by the fact that QH-QH pseudopotential parametdpwing two configurations:(a) equally spread particles at
that must be lifted is at a largé® (at 3 instead of lwhich ~ z=Kk, and (b) pairs atzy =z, =k, wherek=0,+1,
thus corresponds to a larger average in-plane QH-QH sepa:2, ... . The diference between the total energies counted
ration \(r%). Unfortunately, our estimates of théo:(R)  per one particle ise,—ea=3V(0)—2_4[V(2k—1)
pseudopotentials are not sufficiently accurate to make defi=V(2k)], and it can have either sign depending on the form
nite predictions about the critical widths. However, the  of V(z). For example, ifV(z)=|z|~! at |z|=1, then the
=10 electron calculation for the QE’s shows thsg(1) paired configuratior{b) has lower energy iV(z)<2In2 at
indeed moves up relative tdoe(5) andVoe(7) when the  short range. For such form &f(z), the transition between
width is increased fronw=0 to 20 nm. Similar behavior configurationga) and(b) will occur at sufficiently high den-
was found forVqy, calculated folN=8: theVq,(3) moved sity dN/dz.
up relative toVou(7) andVqy(9) with increasing width, A clustered state proposed here for the QE's would be
only at a smaller ratel\V/dw than it did for QE’s. characterized by a greatly reduced pair amplitg¢@) com-
pared to the Laughlinn=3 state in order to minimize the
total energy. At the same time, the valuegfl) would be
increased from nearly zero to a value of the order Nf (

Although in the following discussion of QP states we will —1)~* describing allN QE’s forming3 N (relatively widely
concentrate on the QE'’s, the extension to QH'’s remains valigeparatedpairs. This behavior is demonstrated in Figa)2
as discussed above. Even without further numerical proof ith which we compare; plotted as a function ofR, calcu-
is evident from Fig. 1 alone that the QE's interacting throughlated for the lowest states with total angular momentum
Voe(R) will not have Laughlin correlations. This implies =0 in systems ofN=12 particles in the shell with|2=33,
that the mean-field CF transformatioannotbe reapplied to interacting through different pseudopotentials. TH&) is a
the particles or vacancies in CF-LL This rules out the form of pair-correlation function, more suitable to analyze
simple hierarchy picture of the= 1 state, as well as the correlations in a Hilbert space restricted to oLthan the
(equivalent though even less justifiéidterpretation involv-  “real-space” pair-correlation functiog(r). It is defined®in

VI. QP CLUSTERING
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tions. Being pairs of fermions, the @B will be treated as

bosons carrying angular momentu@‘?“lepz:ZI—RQp

=2l -1 forthe QB’s and 4 — 3 for the QH,’s. However, in
two dimensions they can be easily converted to fermions by
a transformation consisting of attachment of one flux
quantum?? i.e., by an adjustment of angular momentum,
5o "= 185 3(No— 1), whereN,= 3N is the number of
: \ pairs. The QR-QP, interaction is described by an effective
00 1 5 © 13 17 21 25 99 3320 22 24 26 28 30 32 ' pseudopotentiaVsz(Rz) that includes correlation effects
R 2l caused by the fact that the two-pair wave function must be
. . ) ) _ symmetric under exchange of @Bosons and at the same
FIG. 2. (a) Pair-correlation functiongpair amplitudeg as a  {ime antisymmetric under exchange of any two QP fermions.
function of relative pair angular momentu®) for the lowestL In order to calculate this pseudopotential one must solve
=0 eigenstates oN=12 particles on Halda_ne sphere _thh 2 the problem of the stability of two QB in the absence of
fss'hlqa{ fq“tazes a;ebrorktzetelem?ns t;]noL(aE;')pr_mt(lmattg the surrounding QP’s. We have done it by constructing trial
aughlin »=3 statg and black dots are for the QE's interacting paired wave functionR,) . in the following way. The four

through the pseudopotential of FigidL Inset(c) shows the same , L . . - . .
for model pseudopotentialé; andV,. (b) Dependence of the two QP s are divided ”?to two pairs distinguished by_ two _p_rOJeC
tions of pseudosping=1 and |. A o-asymmetric pairing

leading pair amplitudesj(1) andg(3), on 2 for N=12 electrons . L ! .
(squar?e;and QE’s(dots).(T)he hori(zo)ntal dotted line indicates the Nteraction is defined a¥,,, (R)=— 500’57372@ with Roe
valueG=(N—1)"" corresponding tgN widely separated pairs. =1 andRqu=3. It is diagonalized in the basis of totally
antisymmetric four-QP states, i.e., in the subspace of maxi-
terms of the projection operat@t;(R) onto the subspace in mum total pseudospin. The resulting lowest-energy eigen-
which pair(ij) is in the eigenstatER), and it can readily be states at each angular momentumare the “maximally
calculated! (using eigenfunctions of the actual pseudopoten-paired” states R,) 4 COrresponding to the relative angular
tial) as an expectation value of a “selective” interaction momentum R,=2lgp,—L. By “maximally paired” we

pseudopotentiaV/ ,(R) = .z , mean here that these states have the largest possible pair
G(R)=(Vy). (5) amplitude_gm(RQp)+_gu(RQp) which is _s?mpl_y equa_l to
the negative of the eigenvalue of the pairing interaction en-
The squares in Fig.(3) correspond to the ground state of ergy. The “complete pairing” corresponding to the eigenen-
electrons interacting through the Coulomb potential inLL ergy equal to- 2 is not allowed for identical QP’s, i.e., in the
The full dots describe the QE's interacting through thesybspace of maximum total pseudospin, because the three
pseudopotential shown to in Fig(d). In the inset(c), the  angular momentaRop for each pair anck, describing rela-
squares and circles describe the ground states of selectiyige motion of the two pairs, cannot be simultaneously con-
interactionsV,(R). The ground state oV, is the exact gerved.
Laughlin v=3 wave function, andv; remarkably well re- The relaxation of the angular momentand thus also of
produces correlations of the QE system, which proves that inergy of each of the two pairs that come in contact is due
is the ability to avoidR=3 that selects the low-energy to the appropriate required symmetry of the total two-pair
many-QE states. The significant reduction@f3) and an  state with respect to an interchange of the individual QP’s.
increase otj(1) when going from electrons to QE’s are also This is a statistics-induced correlation effect, independent of
clearly visible. the electric interaction between the palitsalso occurs for
Since the reason for the QE clustering is the avoidance othe model pairing interaction that vanishes for a pair of QP’s
R=3 rather than QE-QE attraction, it seems reasonable t¢hat belong to different paiysThe pair-pair pseudopotential
assume that some of the clusters should break up at lowar,, (R,), calculated as the expectation energi/eh in the
filling factors. Mixed states of pairs and unpaired electrons;i5ie |Ro)par» Minus twice the energy of one pair,

> . d
have been proposed earlier in attempt to explain ithe; 2Vo(Rop), automatically includes this effect. However, it

. 12 .
state in LL;,™* but here we have not found evidence for suchpy, st he realized that the pair-pair interaction is more com-

behavior down tovge=35. In Fig. 2b) we plot §(1) and  plicated due to the internal structure of each pair that comes
G(3), calculated in the lowedt =0 states oN=12 particles  jntg play via statistics, and that at short range its description
(electrons and QEJsas a function of £ For the QE's, asP i terms of an effective pseudopotential is only an approxi-
increases from 20 to 3@.e., v decreases from-; to ~3), mation.

the 9(3)1d€'0re<’=139S to zero whilg(1) remains larger than  Figure 3a) shows the result obtained for the QE’s in a
(1N—1)_ , the value corresponding to the widely separatedshe|| with 2 =30, interacting through the pseudopotential of
zN pairs. Fig. 1(d). The minimum value ofR,=4 corresponds to the
maximum-density four-particle droplet with=41-6, and

we only show the data up t8,=24. TheVQEZ(RZ) appears

If the QP fluid consisted of QPmolecules, the QRQP,  weakly subharmonic &R,=4 [i.e., betweerR,=4 and 8 in
interactions would need to be studied to understand correldhe sense of definitiof2)], but it is clearly superharmonic at

0.2

014 !

(a) N=12, 21=33
bl Ao m L

VII. INTERACTION OF QP PAIRS
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_ dure defines the effective CB angular momenttjn=1,

J 1.5 n (b) electron : * _
—2R.(N,—1), effective LL degeneracy; =g,—4R (N,
—1), and effective filling factow? = (v, ' —4R,) ™.

The CB'’s defined in this way condense into their only
allowed|3 =0 state when the corresponding fermion system
has the maximum density at which pairing is still possible,
V1=R1’1. At lower filling factors, the CB-LL is degenerate
and the spectrum of all allowed states of thig CB'’s repre-
sents the spectrum of the corresponding paired fermion sys-
tem. In particular, using the assumption of the superharmonic
form of boson-boson repulsion, condensed CB states are ex-
pected at a series of Laughlin filling factorg = (2q) 1.
Here, 2y is an even integer corresponding to the number of
— T T T T additional magnetic flux quanta attached to each CB in a

8 12 16 20 24 subsequent CB transformatidd,—13* =15 —q(N,—1), to
describe Laughlin correlations between the original CB’s of
angular momentunh; . From the relation between the fer-

FIG. 3. Short-range parts of the pseudopotentdlR,) for the  mion and CB filling factors,y; *=(4v%) "*+R,, we find
interaction betweer@) two QE,'s and(b) two pairs of electrons in  the following sequence of fractions corresponding to Halp-
LLo, calculated on Haldane sphere fdr-230. erin’s pair statesy; =q/2+R,. Finally, we setR,=1 for

) ) o the QE's andR;=3 for the QH’s, and use the hierarchy
R,=6 (i.e., betweerR,=6 and 10. For comparison, in Fig. equatiorf
3(b) we show the superharmonic and rather featureless pair-
pair pseudopotential for the electrons ind.L v i=2p+(1xwgp) 1, (6)

V (/)

, to calculate the following sequences of electron filling fac-
VIIl. HALPERIN'S PAIRED QP STATES tors v derived from the parent=(2p+1)~! state

If QP’s formed pairs (QPs) in a many-QP state, and if
the pseudopotentialsz(Rz) were superharmonic in the en-

tire range, then the QR would have Laughlin correlations. In Egs.(6) and(7), the upper sign corresponds to the QE’s
Being bosons, they would then form a sequence of incomand the lower one to the QH's. Remarkably, all fractions

pressible Laughlin states at=(2q) !, characterized by re;:l)orted by Paret al. are among those predicted for the

having R,=2q for all QP,-QP, pairs. These states have =3 parent.

been originally proposed by Halpetfrto describe such elec- ~ The I3* =0 condition for the condensation of the CB’s
tron states in L asv=2. Later they were often invokédl  into a Laughlinv =(2q) ! state allows the prediction of

in the context of FQH effect at=3 to describe pairing of the values of P=2I, at which these states should occur in
electrons in half filled L. They can be conveniently de- finite systems oN=N; QP’s. The result £

scribed using the following “composite boson{CB)

v 1=2p+1F7(2+q/2)~ L. (7)

model? 2I—q+2N— 1 g

In spherical geometry, let us consider the systenNef T2 (@+1). )
fermions(QP’s) each with(integral or half-integralangular ) ) )
momentum, (i.e., in a LL of degeneracy,=2l,+1). Ne- Interestingly, this result can be also obtained from the fol-

glecting the finite-size corrections, this corresponds to thdOWing picture. Let us arrange an even number of particles
filling factor »,=N;/g;. Let the fermions formN,=21N; (@) in a shell_by grouping them into pairs and separating
bosonic pairs each with angular momentuge=21,—R,,  €&ch neighboring pairs by a numbgof empty states ©)
whereR, is an odd integer. The filling factor for the system between thente.g., #® OO @@ ... OO @@ represents

of pairs, defined as,=N,/g, whereg,=2l,+1, is given such paired conﬁggranon f_c11{=2; _note that the sequence
by v,=2%v,. The allowed states of two bosonic pairs arebegins and ends with a paifEquation(8) is then obtained

labeled by total angular momentuim=21,— R,, whereR, by the equation of the total number of filled and empty
is an even integer. states N(q+2)— g, with the angular momentum shell de-

Of all even values oR,, the lowest few are not allowed 9€neracy, P+ 1. The success of this picture is reminiscent of
1 . _ _l - .

because of the Pauli exclusion principle applied to the indi& Laughliny=(2p+1)~" state that can be pictured as single
vidual fermions. The condition that the two-fermion statesParticles separated bypspacese.g..® OO @ OO - -- @

1. :
with relative angular momentum smaller th&g are forbid- ©O @ to represenv=3; note that different numbers of
den is equivalent to the elimination of the states wRh  SPaces correspond to an attachment of two flux quanta to a

<4R, from the two-boson Hilbert space. Such a “hard Particle and to a pair
core” can be accounted for by a CB transformation wifR,4 Forg=1 and 4, Eq(8) gives 2= 2N—-2 and N-5,
magnetic-flux quanta attached to each boSofhis proce-  respectively. Note the difference from=23N characteristic
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of the Jainv=1% state and and 2=3N—3 of the Laughlin O PR RN (b) QE's, N=4, 21=9
y=1 state. This difference allows the distinction of Halp- 377 «,**+ss2ig*s """ U
erin’s paired states from the Laughlin-Jain states based ¢ | .

the numerical spectra of small systems. On the other haniz | . . . | 0.4
21=2N-3 predicted forq=2 coincide® with the value % { - ", PR
characteristic of a Moore-Read stdtdescribing a half-filled — w T et

LL ;. The only series of nondegenerate ground states thatw |, ) . . " )

found numerically in finite systems are at=22N—3 and ;44 -
3N—7 (and at their particle-hole conjugate value$=2N l@yelections, N2 229 || Lo
+1 and$N+2, obtained by the replacement bf by 2l 0 5 L 10 15 0 5 | 10 15
+1—N).

FIG. 4. Energy spectréenergyE as a function of angular mo-
mentumL) calculated on Haldane sphere =12 electrons in

IX. NUMERICAL RESULTS LL with 21=29 (a) and forN=4 QE’s in CF-LL; with 21=9 (b).
The energy scale is the same in both frames, but the QE spectrum is
A. Model only determined up to a constant.

Our numerical exact diagonalization calculations were
carried out on Haldane sphétén this geometryN particles ~ where we compare the energy spectra of two systems con-
are confined in a degenerate shell of angular momentum nected by a mean-field CF transformatida} N=12 elec-
The single-particle states are labeled by=—I,—I trons in the Ll shell with 2 =29 and(b) N=4 QE’s with
+1,... ). The two-body interaction matrix elements are 2I=9. The four-QE energies, obtained using the pseudopo-
connected with the pseudopotential parameters through thential of Fig. 1d), are only determined up to an additive
Clebsh-Gordan coefficients. Tié-body interaction Hamil-  constant, but the structure and relative energies are virtually
tonian is diagonalized numerically using a Lanczos algo4dentical in the two spectra. The agreement can still be no-
rithm to give the set of low-energy states labeled by totalticeably improved by using the QE-QE pseudopotential of

angular momentunh. Fig. 1(b) obtained forN=10 electrons(yielding the same

Standard numerical calculations fbk, electrons are not 2I1=9 for the pair of QE’$. However, a small residual dis-
useful for studying the new observed FQH states at3, crepancy cannot be eliminated by fittiNge(R). It is due to
4 5

11, 13, etc., because convincing results require valuedof the fact that(although remarkably accuratéhe description
too large to be diagonalized exactly. As these states involvan terms of pair QE-QE interaction(selying on the conser-
pairing of Laughlin QP’s and possible Laughlin correlationsvation of QE and QH numbers, i.e., on the lack of inter-
between the QP pairs, at least three such pairs must be co@F-LL excitations is not exact. Note also that using the
sidered. Forv= 3§ this occurs forNe=14 electrons with B same pseudopotential paramet¥gs(R) obtained in large
=33, which seems beyond reach of exact diagonalizatiosystem& for the calculation of two-body interaction matrix
and explains the lack of earlier numerical evidence for in-elements at differentsmalley values of 2 eliminates the
compressibility of this state. For other states, suchvas finite-size effects due to surface curvature, and thus improves
=+, the systems become even larger. accuracy of the diagonalizatidfl.

Therefore, instead of diagonalizing th&l.-electron Let us add the following comment about Fig. 4. Because
Hamiltonian, we use the QE-QE pseudopotential shown ilN=12 electrons at =29 have arL=0 ground state, and
Fig. 1(d) and diagonalize th&much smaller interaction because the value ofl 29 for N=4 QE'’s coincides with
Hamiltonian of theN-QE systems. This approach is expected3N—3 of a Laughlinv=3} state, this single spectrum was
to accurately reproduce the low-energy spectra of interactingarlier erroneously interpret¥* as a success of the CF
electrons at filling factors between: andZ (up to an over-  hierarchy applied to the QE’s, and this state was incorrectly
all constant containing the energy of the underlying Laughlinassigned filling factow= 7;. However, upon the analysis of
v= 13 state and the QE creation energiegg for each QR It correlations in this state and similar spectra of larger sys-
is justified by fact that the QE-QE interaction enegyc is  tems, it becomes evident that the value=® must be inter-
small compared to the energy gap for creation of additionapreted at A+ 1, this four-QE state is a particle-hole conju-
QE-QH pairsgqet eqn. As aresult, it is well-known that in - gate of the 21—-3 sequence, and it should be assigned QE
this range ofy, the low-energy states dbtrongly interact- and electron filling faCtOYS/QE=% andv=3, respectively.
ing) electrons contain theéveakly interacting QE’s moving
in an underlying(rigid) Laughlin v= % fluid. In the CF pic-
ture, this approximation corresponds to neglecting the
inter-LL excitations of CF's and only including the dynamics
within the partially filled CF-LL;. In smaller systems, con-  We begin with a few examples of the energy spectra of up
taining up to four QE’s or QH’s, this approximation has beento N=14 QE's. Different frames in Fig. 5 show the spectra
successfully tested by direct comparison with the exacfor: N=12 and 2=21 (a), N=10 and 2=23 (b), N=12
N,-electron calculatiod>?! In larger systems, it has recently and 2=27 (c), and N=14 and 2=25 (d). Using the CF
been used by Leet al® picture, these values of\(2l) can easily be converted to

Accuracy of this approach is demonstrated in Fig. 4 N.=N+(2l—1) and 2,=2(1—1)+2(Ne—1), characteriz-

B. Energy spectra, series of incompressible ground states, and
excitation gaps
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0.60 -'”Eii'ii'::: .'.:!”:up;us 03 will not vanish in the thermodynamidN— <) limit. As we
_ ':';:!::3.25:33-: ":°.’,§§:::!.:-: show below, theL=0 ground states in Fig.(b) and (d)
G | tectlacds ,ecr, Jialileacset correspond tar= 74 and 2 in this limit.
w RN PAPR L | LR SR S| We have calculated simila\(2l) spectra for up to 14
Lt e ° . Lo0a QE’s at filling factorsvoe~N/(21+1) between; and 3.
0597 ‘e W . . - Note that the assignment of the filling factor to a finite sys-
* . I tem (N,21) is not trivial and it depends on the form of cor-
v=4/11 I relations. The ,2l) sequences that correspond to a filling
(a) N=12, 21=21 * (b) N=10,21=23 | factor v in the thermodynamic limit are described by a linear
RO E ¥ M HMUHIDERITHIHIL relation,
SR HHERMIRH U HIH
] '2:::Z:=:§-z . :225:553;.;;3,—07 21=N/v—1y,, 9)
:% . e . * . :. ° S0 i Lot where the “shift” y, depends on the microscopic nature of
* : * . I the many-body state causing incompressibility at thig-or
. I example, the sequence of finite-size nondegenetate0(
0.53 V=318 o7 ground states that extrapolates #e=3 occurs at 2=3N
{c) N=12, 21=27 > (d)N=14,21=25 | —3 for the Laughlin state, atl23N—5 for the Halperin
0 2 4 6 8 101214 0 2 4 6 8 1012 14 paired staté?!* and at 2=3N—7 for the incompressible
L L QE state identified below.

FIG. 5. Energy spectréenergyE as a function of angular mo- In Table | we presgnt the excitation gaps obtained fqr the
mentumL) of up toN=14 QE’s in LL shells with various degen- QE systems with various values df and 2. The table is

eracies 2+1, calculated on Haldane sphere using QE-QE interacSymMmetric under the replacement Nfby 2/+1—N which
tion pseudopotential of Fig.(d). reflects the particle-hole symmetry in a partially filled QE

shell (i.e., in CF-LL;). This symmetry is only approximate
ing the actual electron systethere, 2— 1 is the degeneracy @n real systems, but .he(e it appears e>fac_t because of neglect-
of the completely filled CF-L, with angular momentunh ing the inter-LL excitations of the_ CF’s in our model. The
—1). Thus, the fouN-QE systems in Fig. 5 correspond to: Iargegt of the gapA (those shown in boldfageccur for the
N,=32 and 2,=81 (a), N,.=32 and 2,=83 (b), N,=38 following two (N,2) slequenfes: Izb_3N—_7 and 2N—3_,
and 2,=99 (c), No=38 and 2,=97 (d). It is evident thatin  Corresponding tavge=3 and . Their particle-hole conju-
frames (b) and (d) the FQH-like nondegeneratel € 0) gates seriesalso in boldfacgoccur at 2=5N+2 and N
ground states occur, separated from the excited states by-al, corresponding tege=1— 3 =% and 1-3 =3, respec-
gapA~5x10 3 e?/\. On the other hand, in framé¢a) and tively. Using Eq.(6), these values can be converted to the
(c), the ground state is degenerate#0) and no similar gap electron filling factorsy=2, 7%, and .
is observed. The excitation gagsin (b) and (d) are larger The dependence of the excitation gapsn the QE num-
than other energy spacings in these spectra. This indicatémr N for the voe= 5 series at 2=3N—7 (full dots) and for
that they are due to the QE-QE interactions rather than due tile vQE=% series at 2=2N—3 (open circles is plotted in
the size quantization in a finite system, and thus that theyig. 6. It is difficult to accurately extrapolate our finite-size

TABLE I. Excitation gapsA, in units of 10 3e?/\, above the nondegenerate=£0) ground states dfl
QE’s each with angular momentulminteracting through pseudopotential in Figd{l Circles (O) mark
degeneratel(# 0) ground states. The values in boldface are the largest; they all belong to theNh2Be (

sequences correspondingitge=3, 3, and3.

2
N 17 18 19 20 21 22 23 24 25 26 27 28 29
8 471 O O O 0.01
9 O O O 5.47 O O O 1.18
10 471 O O O O O 6.29 O 0.81 O O
11 O O O O O O O O O 6.07 O O O
12 O O 5.47 O O 0.37 O 4.02 O O O 5.28
13 O O O O O O O O O O
14 001 O 6.29 O 4.02 O ©) O O
15 O O O O O O ©)
16 118 0.81 6.07 O @) O
17 O O O O
18 O O 5.28
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While we do not completely understand the correlations
between QE pairs atge= 1, it may be noteworthy that the
value of y=7 appropriate for the series of incompressible
states found here can be obtained for the Laughlin state of
QE triplets (QE’s), each with the maximum allowed angular
momentum,L=3l—-3. Such state would be pictured as
000 OO0 OO0 e0® ... OO0 OO0 o000
with each two closest QE triplets separated by six vacancies.
The idea of particles grouping into triplets or larger clusters
has been studied in more detail by Read and RéZayihe
000 r+—7——F——T—"—"T—+ context of electrons in LL Although we do not yet have

6 8 10 12 14 enough evidence for such particular grouping of QE’s, let
alone for Laughlin correlations between the clusters, this

FIG. 6. Excitation gap4 for the vQE=% series oN-QE ground  possibility is definitely worth further investigation, especially
states at P=3N—7 (full dots) and for thevoe=73 series at 2 for the predicted exoti¢parafermion statistics of the exci-
=2N-3 (open circle} plotted as a function of the QE numbak,  tations of such hypothetical ground stafeNote, however,

that the numerical results show an=0 ground state atl2
data to the thermodynamic limit to predict the magnitude of= 3N—7 for every integral value oN, which seems incon-
sistent with the idea of complete clustering of QE’s into mol-

A in an infinite (planay system. However, we are confident . ; ) -
that these two series of finite-size nondegenerate grounﬁcUIes of any size. It can also be noticed that partial pairing

states describe the FQH states observed experimentally atW'th 3N of QE pairs and;N of unpaired QE's also _Ie_a_ds to
=2 and?. The gaps for the largdd areA~5x 103 e?/\. 21=3N—7, but again, only for values i that are divisible
For the experimental situation of Ref. (GaAs andB by three.
=12.5T) this corresponds ta ~0.1 meV or~ 1K, which
seems to be a reasonable value considering the fact that the D. The voe=3 (v=3) state
v=1; state has only been observed at temperatures as low as The other sequence of finite-size=0 ground states iden-
T=35 mK. tified in Table | occurs at2=2N—-3, i.e., at the same value
as for the Moore-Read states of electrons half filling
LL,.18-29 This value also coincidé% with the value pre-
dicted for Halperin's paired state with=2, in which the
The “shift” defined by Eq.(9) and describing the |2  eigenstates of two QEbosonic pairs corresponding to the
=3N—7 sequence identified herey€7) is different not two lowest values ofR,=4 and 6, are avoided. Because of
only from y=3 describing a Laughlin state, but also from the subharmonic behavior MQEZ(Rz) at R,#6 (see Fig.
y=5 that results for Halperin's paired stat@ith q=4).  3) this q=2 state is the only Halperin paired state of the
This precludes the interpretation of these finite—s’vgg:% series given by Eq(7) that might possibly occur in a QE
ground states found numericallgnd thus also of the experi- system.
mentally observed/={; FQH stat¢ as either Laughlin or However, despite the facts that this sequence occurs at the
Halperin(paired state of QE's(i.e., particles in the partially predicted value of P=2N— 3 and only for even numbers of
filled CF-LL,). Certainly, the fact thatdespite being incom- QE’s (as expected for paired staleits interpretation as a
pressiblg these states are not Laughlin states was expectedalperin paired statér Moore-Read stajef QE’s turns out
from the fact that QE’s form pairs over a wide range ofincorrect. First indication is that it only seems to occur for
voe~3 (and in the whole low-energy band states, not only inodd numbers of QE pairgN=3, 5, and 7, while the ground
the ground statg¢s However, it is far more surprising that states forkN=4 and 6(at 21 =13 and 21, respectivelypoth
Halperin’s paired state of QE's turns out as an invalid deturn out degenerate. Unfortunately, we do not have data for
scription for these states as well. Clearly, the correlationsg N> 7 to confirm our expectation that the finite-size ground
between the QE pairs ate=3 must be of a different, non-  states at P=2N—3 havel =0 and a large excitation gap for
Laughlin type, and we do not have an alternative explanation)| odd values o N. Note also that the state found here for
for the incompressibility of this state. N=10 and 2=17 happens to be a particle—hole conjugate
This result is consistent with the form of the QBE,  state ofN=8 QE's at the same valud Zi.e., it belongs to
pseudopotential shown in Fig. 3. Becaukge (Ro) is only  the 2=3N+2 sequence and thus we only find twd.=0
superharmonic aR,=6, the only Laughlin state expected ground statesN=6 and 14 that are unique for thel@—3
for QE,’s could be the one in which all values &,=4 and  series.
6 are simultaneously avoided. This possibly valid Halperin’s More direct proof for therE=% state not being Halp-
paired state corresponds tp=2 and voe=; in Eq. (7),  erin's paired statgor a related Moore-Read stateomes
while the VQE:% state corresponds t9q=4 and it would from the analysis of its three-body correlaticRswe find
have to avoid all four lowest values &,=4, 6, 8, and 10, significant occupation of the compact triplet state,Q#th
which certainly cannot be expected from the form ofthe minimum allowed relative angular momentuns 3 at
VQEZ(RZ). VQE=%, which is inconsistent with the picture of Laughlin-

0.01

A (e3/)

C. The voe=3 (v=1}) state
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correlated(i.e., spatially separat¢gbairs. This is in contrast 08
with the behavior of the Moore-Read paired stéa exact

trial state that describes Halperin-like pairing at a half filling o6
that is characterized by having exactly zero occupation of the
7=3 triplet state'® In fact, we have calculated squared over- &
laps ¢ of the finite—sizerE=% states with the Moore-Read
states of QE’s and they turn ouéry small(e.g.,{=0.03 for

(b) v=1/3, 2I=3N-7

N=14) and insensitive to the parity ¢fN. Nevertheless, 27

despite the fact that we do not yet understand the correlation. 1 (a) v=1/2, 21=2N-3

in the voe= 3 state(e.g., the importance ofN being odd in 00— —
finite systemy we believe that thel2=2N—3 series identi- 00 02 04 o 06 o0& 00 02 04 o 06 08 10

fied here indeed describes the observed: FQH state.
FIG. 7. The excitation gap, between the lowest and the first

X. RESULTS FOR MODEL INTERACTIONS excited states in th&=0 subspace oN particles on Haldane
sphere with the values ofl Zorresponding to=3 (a) and v= 3
In this section we present the results of similar calcula<(b), plotted as a function of the interaction parametedefined by
tions, obtained using a model pseudopotentigl(R) in- Eq. (10).
stead ofVoe(R). Its only nonvanishing coefficients are

betweena= 3 and 1 appear also for other combinationgNof

and 2. This confirms that ther=3 and 3 incompressible

U.(3)=al2. (10) states of QE’s are generally different from those of the elec-
“ trons in LL;, despite the fact that they both usually occur at
It is known'? that the correlations characteristic of electronsthe same values oflZ22N—3 and 3N—7 in the finite sys-
in the partially filled LLy and LL; are accurately reproduced tems.
by U, with ~0 and3, respectively. Similarly, by the com- The absolute excitation gaps(«) of the L=0 ground
parison of pair amplitudes, we have confirmed tbgtwith states(difference between the lowest energiesLa 0 and
a~1 causes correlations characteristic of QE’s in their parL=0) are shown in Fig. 8. The negative valueofmeans
tially filled LL. that the absolute ground state is degenefat, hasL
We have repeated the diagonalization of a few finite sys#0), and the abrupt changes in the slopeAqfx) occur
tems with 2=2N—3 and N—7, for « varying between 0 whenever level crossings occur for the lowést0 state.
and 1, in order to answer the following two questions. First,Clearly, except foN=8 and 12 with 2=2N—3, the lowest
to what extent is the stability of the identifiet=3 ands; = L=0 states remain the absolute ground states of the system
states affected by théwidth dependent details of the in the whole range ofx between3 and 1. This was first
QE-QE interaction? And second, does a phase transition ocioticed by Greiteret al*® for N=10 at half filling, and it
cur for values ofa between3 and 1, indicating a different implies that the incompressibility of theqe=3 and 3
origin of the incompressibility of the=32 and+; states and ground states will not be easily destroyed in experimental
their electron counterpart® LL,) atv=3 and$? The latter systems by a minor deviation from the model QE-QE
guestion is naturally motivated by our two observatiofis: pseudopotential used here in the numerical diagonalization.
the 2 =2N—3 sequence of nondegenerate ground states oc- Let us finally examine the dependence of the leading pair
curs only for odd numbers of QE pair3i=3, 5,and 7,in ~ amplitudes,G(1) and G(3), ona. In Fig. 9 we plot the
contrast to the situation in LLwhere they occurred for any number of pairsV(R) = zN(N—1)G(R), divided byN. A
value ofiN, and(ii) the VQE:% has small overlap with the transition from Laughlin correlations at~0 to pairing at

Moore—Read statéof QE’s).

U (1)=1—a,

In Fig. 7 we plot theL =0 excitation energy gap (dif- 0z

ference between the two lowest energy levels a0), as a o

function of @. A minimum in Ay(«) signals a(forbidden 044

level crossing, i.e., a phase transition in the 0 subspace. <

Such minima occur neax=13 for all values ofN and for 0.0 7

both 2=2N—-3 and N-7. They reveal destruction of 1 7

Laughlin correlations that occur for smatl (e.g., for elec- 01177

trons in LLy) and formation of incompressible=3 and % ool / ;

states of a differentpaired character that occur for~ 3 L @yela 2IT2N-3 [ 1 (B) V=13, 21=3N-7

(e.g., for electrons in LY. 00 02 04 06 08 00 02 04 06 08 1.0
In Fig. 7(a), similar strong minima occur a¥~0.7 for o o

N=8 and 12(marked with thick lines This is consistent FIG. 8. The excitation gap from the lowest state with =0 to

with our observation that the correlations between the QE’she lowest state with.#0 for N particles on Haldane sphere with
and between the electrons in LLboth at the half filling are  the values of 2 corresponding to=% (a) andv=1 (b), plotted as
different. In Figs. 7a) and qb), additional weaker minima a function of the interaction parameterdefined by Eq(10).
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and precludes the simple hierarchy interpretation of any in-
compressible states @ <v<?2 or 2<p<.

The series of finite-size nondegenerate ground states at
QE filling factors voe=3, 3, and 5 have been identified.
These values correspond to the electronic filling facters
=3, f1, and 3, at which the FQH effect has recently been
discovered. Due to a discussed similarity between the
QE-QE and QH-QH interactions, these three QE states have
their QH counterparts ato,= 7, 5, and3, corresponding to
v=15, 15, and >, all of which have also been experimen-
tally observed. Finally, it is argued that the reported
= % FQH state might be a standard hierarchy stagighlin
vQEzé statg, although it could only be observed in suffi-
ciently wide systems. Its QH counterpartiat 35 (Laughlin

FIG. 9. The average number of pairs with relative angular mo-Yon= 7 State would require a larger width than= 77 which

mentumR=1 (a,p andR=3 (c,d) per particle, M\(R)/N, calcu-
lated for the lowest state in the=0 subspace oN particles on
Haldane sphere with the values of 2orresponding to/=% (a,0
andv=1% (b,d), plotted as a function of the interaction parameter
defined by Eq(10).

~ 3 (and possibly grouping into larger clustersaat 1) is

might explain why it has not yet been observed.

The finite-sizevge=3, 3, and$ states of QE'SCF’s in
LL,) are found at the same values df=22N—3, 3N—7,
and EN+2 as ther=3 (Moore-Reaf 29, Z, and¢ FQH
states of electrons in Ll respectively, despite the different
electron and CF pseudopotentials. Therefore we have studied
the dependence of the wave functions and stability of the

clearly visible in each curve. It is also confirmed that just asnovel FQH states on the exact form of interaction at short
the Laughlin ground state remains virtually insensitive to therange. We found several indications that the novel QE states

exact form of the interaction pseudopoteniialas long as it

are distinctly different from the electron states inL L) the

is stronglysuperharmoniat short range, the correlations in .=} state appears incompressible only for the odd values
the voe=73 and stateg are quite independent of the details of IN; (ii) the pair-correlation function§(R) (and, espe-

of the QE-QE interaction, as long &g is stronglysubhar-

cially, the triplet-correlation functioid are quite different;

monic at short range. This result supports our expectationjii) although they remain incompressible, the ground states
that the incompressible QE ground states found here numergppear to undergo phase transitions when the QE-QE

cally indeed describe the FQb=2 and i electron states
observed in experiment.

On the other hand, correlations at~% (electrons in
LL,), characterized by having(1)=~G(3), arequite differ-
ent from those atr~1 (QE’s), characterized by having the
minimum possibleG(3), much smaller tharg(1). Finally,
with thick lines in Fig. 9a) we have marked the curves for
N=28 and 12 in the vicinity okx~0.7 at which the forbidden
crossings were found in Fig.(&. A different behavior of
MZ1)/N and M(3)/N for these two values oN is clearly
visible.

Xl. CONCLUSIONS

pseudopotential is continuously transformed into that of elec-
trons in LLy; (iv) the overlaps with the electron states in;LL
and with the Moore-Read trial state are very small. However,
further studies are needed to understand these transitions. On
the other hand, weak dependence of the wave functions and
excitation gaps of the novel FQH states on the details of the
QE-QE interaction(as long as it remains strongly subhar-
monic at short ranggustifies the use of a model pseudopo-
tential in the realistic numerical calculation.

We have also explored Halperin's idéa* of the forma-
tion of Laughlin states of QE pairs (QE). An appropriate
composite boson model has been formulated and shown to
predict a family of novel FQH states at a series of fractions
including all those observed in experiment. However, several
observations strongly point against this simple mog@glthe

Using exact numerical diagonalization in Haldane spheri-QE,-QE; interaction pseudopotential is not superharmonic to
cal geometry, we have studied the energy spectra and wawipport Laughlin correlations of QE (except possibly for

functions of up toN=14 interacting QE’s in the Laughlin
v=73 parent statéi.e., CF’s each carrying two flux quanta

voe=13); (i) the values of 2 predicted for finiteN are dif-
ferent from these obtained from the numerical diagonaliza-

We have demonstrated by direct calculation of the pair amtion (except forvge= 2); (iii) the numerical results do not

plitudes G(R) that, at their sufficiently large filling factor

(voe>3), the QE's form pairs or larger clusters, with a sig-

confirm the significance of parity of the number of QE’s in

finite systems(the vQE=% states occur only foN=6, 10,

nificant occupation of the minimum relative pair angular mo-and 14, and thezQEz% states occur for both even and odd

mentum,R=1. The QE(and analogous Qttlustering is an

values ofN); (iv) the analysis of three-body correlations

opposite behavior to Laughlin correlations characterizingsuggests formation of clusters larger than p&irin fact,

e.g., electrons partially filling L. Therefore it invalidates

despite an earlier expectatibhwe find® that Halperin's

the reapplication of the CF picture to the individual QE’s or pairing idea is far more appropriate for the electrons in LL
QH's (and thus also the equivalent multiflavor CF mqdel than for QE’s in CF-Ll.

205322-12



FRACTIONAL QUANTUM HALL STATES OF CLUSTERED. .. PHYSICAL REVIEW B9, 205322 (2004

We have not found evidence for only partial pairiand  ing bunching of QP’s in Laughlin and Jain FQH states at
possibly Laughlin-correlated mixed states of pairs and unultra-low temperatures is not yet clear.
paired electronsor grouping of QE’s into larger clusters of
well-defined size(and possibly Laughlin correlations be-

tween then). However, further investigation of both these  The authors thank V. J. Goldman, M. Shayegan, and R. G.
ideas is necessary. Also, since the experithentlicates Mani for helpful discussions. This work was supported by
complete spin polarization of the novel FQH states, here wgrant No. DE-FG 02-97ER45657 of the Materials Science
have not studied unpolarized systems, considered in gre@rogram—Basic Energy Sciences of the U.S. Department of
detail in a number of earlier studies begun with the work ofEnergy. A.W. acknowledges support from Grant No.
Park and Jairi® Finally, the connection between the QE pair- 2P03B02424 of the Polish KBN. K.S.Y. acknowledges sup-
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