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Fermionic Moore–Read Fractional Chern Insulator
in the Thin-Torus Limit
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We investigate a fermionic Thouless pump in the Rice–Mele model at half filling of the lower band. Such
a system can be regarded as a 1D limit of a 2D flat-band Chern insulator. We consider two kinds of model
interaction, a two- and three-body one. We show that both of them lead to the emergence of Moore–Read-like
states provided that the energy scale of the interaction is small compared to the band gap. However, when the
interaction is stronger, the two types yield different results: while for the latter the Moore–Read-like state is stable,
in the former case it is destroyed by the band mixing.
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1. Introduction

The topological flat bands (TFBs) are the lattice coun-
terparts of the Landau levels, allowing for the existence
of the fractional Chern insulators (FCI), states analogous
to the fractional quantum Hall (FQH) liquids [1, 2]. The
FQH states can be intuitively understood in terms of the
thin-torus (TT) limit [3]. Such an approach was also ap-
plied to FCIs [4–8]. In addition to studying the TT limit
of Laughlin states [4–6, 8], it was shown that the TT limit
of bosonic Moore–Read (MR) and Read–Rezayi states
can be created by applying a three- or four-body inter-
action [7]. Here we show that a fermionic MR TT state
emerges in the 1D flat band model with two- or three-
body interaction. Although such a state is not topolog-
ically ordered per se, we consider a setup of a Thouless
pump, within which the Chern number can be defined as
the system depends on an external parameter.

It is often assumed in the calculations that the energy
scale of the interaction, leading to the presence of FCIs, is
much smaller than the band gap. However, the Laughlin
FCI (both in 2D and in TT limit) was shown to be stable
even for infinite interaction — although one could have
expected that the band mixing destroys it [9, 10]. Here,
we study this issue for the TT MR state and show that
it is destroyed by large enough two-body interaction, but
remains stable if the interaction is three-body.

2. Model

We work within the Rice–Mele (RM) model [11]. It
contains two sites A, B per unit cell (orange and blue
circles in Fig. 1a, respectively) and can be described by
a Hamiltonian
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H = τ1
∑
n

a†nbn + τ2
∑
n

b†nan+1 + ε
∑
n

(−a†nan + b†nbn),

where an, bn are the annihilation operators of a parti-
cle on site A,B, respectively, in unit cell n. To define a
pumping cycle, we introduce a parameter φy. The hop-
ping integrals vary with φy with a period of 2π. We divide
the hoppings into variable parts t1, t2 and a constant part
tc, so that τ1,2 = t1,2+ tc. We choose t1 = 0, t2 = cos(φy)
for φy ∈ [2kπ − π/2, 2kπ + π/2), k ∈ Z and t1 =
− cos(φy), t2 = 0 for φy ∈ [2kπ+π/2, 2kπ+3π/2), k ∈ Z,
as well as ε = sin(φy) for any φy (see Fig. 1b–d).

We start from tc = 0 case, for which both bands are
exactly flat. At each φy one of the hoppings τ1,2 vanishes,
and the model breaks into the set of disconnected dimers.
The energy eigenstates of each dimer, created by opera-
tors γ†n, δ†n, where n labels the dimers, are the Wannier
functions (WFs) of lower and upper band, respectively.
For the lower band, they are created by operators

γ†n=


1
A (cos(φy)b

†
n−1 − (1 + sin(φy))a

†
n), φy ∈ [0, π2 ],

1
A ((−1− sin(φy))a

†
n + cos(φy)b

†
n), φy ∈ [π2 , π),

1
A (cos(φy)a

†
n + (1 + | sin(φy)|)b†n), φy ∈ [π, 3π2 ),

1
A ((1 + sin(φy))b

†
n − cos(φy)a

†
n+1), φy ∈ [ 3π2 , 2π].

with A =
√

2 + 2 sin(φy) being the normalization con-
stant. They exhibit the shift property γn(2π) = γn+1(0)
(see Fig. 1e).

When the lowest band is fully filled, the shift property
guarantees that in one pumping cycle (φy changing from
0 to 2π) every particle is transported by one unit cell.
Since the pumped charge is proportional to a 1D realiza-
tion of the Chern number, it does not change when finite
tc is introduced, as long as it does not close the band gap
for any value of φy (which occurs for tc = −0.5).

If φy is interpreted as momentum in the y direction,
the RM model can be thought of as a 1D limit of a
2D flat band model. The shift property of the Wan-
nier functions guarantees that its bands are topologi-
cally nontrivial. The hoppings can be deduced from
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Fig. 1. The topological charge pump in the RM model.
(a) The model parameters. The circles and lines denote
the sites and hoppings, respectively. (b–d) The depen-
dence of model parameters on φy in the perfect case
(blue solid lines) and in the approximate case with three
first Fourier components kept (orange dashed lines). (e)
The WF γ†

2 |0〉 for different φy. The areas of red dots
correspond to particle density on given sites (empty
circles). (f) The 2D lattice model whose approximate
1D limit is the RM model. The lines correspond to
hoppings: 1/π (violet), i/2 (black along arrow), 1/4
(blue), −1/4 (green), 1/(3π) (red). Only hoppings start-
ing from one unit cell are shown. (g) The six ground
states of a many-particle system of a L = 8 system with
Npart = 4 particles. The dashes are the WFs, while the
circles denote the particles.

the decomposition of τ1, τ2 and ε into Fourier series in φy.
The maximum flatness is achieved at tc = 0. A strictly
flat band requires infinite-range hoppings in the y direc-
tion. However, a good approximation can be achieved by
considering three first terms of the t1 and t2 series (see the
orange lines in Fig. 1b,c), which correspond to hoppings
up to fourth neighbours (see Fig. 1f) and a bandwidth-
to-bandgap ratio (flatness ratio) F ≈ 0.058.

3. Results

We investigate the many-particle states occurring at
half-filling of the lower band of the RM model by study-
ing finite chains of length L unit cells, populated with
Npart particles, using the exact-diagonalization (ED) and
density matrix renormalization group (DMRG) meth-
ods. We start from the tc = 0 case. To achieve
the MR TT states with a two-body interaction V̂2B ,
we require that after the projection to the lower band,
it can be expressed as

PV̂2BP =
1

2

∑
m,n

V|m−n|γ
†
mγ
†
nγnγm, (1)

where every quantity and operator except from V̂2B de-
pends on φy, P is the projector to the lowest band, and
the coefficients Vi satisfy the equalities V3 = V1/3 = V2/2
and Vi>3 = 0 at any φy. Such an interaction is a
fermionic analog of an effective spin Hamiltonian for FQH
MR TT states [10], and naturally implements a MR gen-
eralized Pauli principle (GPP), leading to the occurrence
of 6 degenerate ground states at half-filling [12]. When
φy is varied by 2π, each of the ground states is shifted by
one unit cell. Thus, the states return to themselves after
four pumping cycles. This results in the pumping of two
particles, hence the average charge pumped in one cycle
is a half the charge of the single particle. This is a 1D
analog of the fractional Hall conductivity. If the filling
is slightly lower than 1/2, the number of ground states
agrees with the number of quasihole states in GPP.

For Eq. (1) to be valid at any φy, we introduce a model
two-body interaction of the form

V̂2B =
1

2

∑
i,j

U|i−j|ninj , (2)

where i, j are the site indices (odd and even i correspond
to A and B sites, respectively), ni is the particle density
operator at site i, and U|i−j| is a coefficient depending
on the distance between sites i and j. We set U1 = 4U ,
U2 = 3U , U3 = 2U , U4 = 2U , U5 = 2U , U1 = U , and
Ui = 0 for i > 6. In general, we perform the calculations
without explicit band projection.

Finite tc introduces coupling between the dimer wave
functions, both within each band and between the bands.
This results in lifting of the degeneracy of the six ground
states. Unlike the degeneracy splitting of the thin-torus
Laughlin states [5, 8], it does not vanish in the thermody-
namic limit. This can be understood by treating tc as a
perturbation. Regardless of the system size, the effective
Hamiltonian in the perturbation theory has second-order
terms, whose value is different for two groups of states
enclosed in two dashed boxes in Fig. 1g. The effect of
introducing tc into the φy = 0 system with V̂2B and
U = 1 is seen in Fig. 2a. For both positive and nega-
tive tc we observe the splitting of the six-fold degenerate
ground state into two groups containing two and four
states. The states within the second group are also split,
which is a result of the finite size of the system. For neg-
ative tc the many-particle gap closes at tc = −0.5, which
coincides with the single-particle topological phase tran-
sition. Although no such transition occurs at positive
tc, the energy splitting of the ground states leads to gap
closing at tc ≈ 1.

The lifting of the degeneracy of the ground states al-
lows for the observation of the spectral flow, which is one
of the signatures of the FCI states which is preserved in
the thin torus limit [5, 8]. It can be observed by intro-
ducing twisted boundary conditions with the phase eiφx

in the x direction. Figure 2b and c shows the evolution
of the six lowest energy levels with φx. The levels di-
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Fig. 2. (a) The ED energy spectrum of a band-
projected L = 12, Npart = 6 system with V̂2B , U = 1,
at φy = 0, as a function of tc. The six lowest states are
shown in red, the rest of states in blue. (b,c) The spec-
tral flow of a L = 12, Npart = 6, φy = 0, tc = −0.2 sys-
tem for (b) two lowest eigenvalues, (c) four next eigen-
values from six quasi-degenerate ground states. The
colors correspond to momenta. All spectra are rescaled
so that the ground state is at energy zero.

Fig. 3. (a),(b) The low-energy spectrum of the L =
12, Npart = 6 system with tc = 0.2 as a function of
interaction strength: (a) ED results for V̂2B , (b) DMRG
results for V̂3B , obtained using the iTensor software [13].
Seven lowest eigenvalues at φy = 0 and φy = π/2 are
shown. The hatching in (a) and (b) symbolizes the fact
that we are interested only in the gap between the 6th
and 7th state. (c) A site-space configuration of a L = 8,
Npart = 4, φy = 0 system yielding lowest interaction
energy Eint = 14U , compared to the energy Eint = 16U
of the band-projected ground state. Filled and empty
circles denote filled and empty sites, respectively, and
lines reflect the dimerization of sites.

vide into three pairs, in each of which the states flow
into each other as the phase changes by 2π, which is a
behavior characteristic to the Moore–Read FCI.

Figure 3 shows the energy spectrum of a L = 12 chain
with tc = 0.2 as a function of U . Many-body gap above
6th state in (a) closes for sufficiently strong interaction
(U ≈ 2.3), i.e. the MR TT state is destroyed by inter-
band excitations. This can be compared with another
way of implementing the GPP — using a three-body in-
teraction

V̂3B = U
∑
i

6∑
j=1

6∑
k=j

(nini+jni+k + nini−jni−k).

Then, the gap closing does not occur (see Fig. 3b). The
difference between these two approaches can be easily
understood. For V̂2B we can construct a configuration
(Fig. 3c) which has lower interaction energy than any
of the configuration making up the MR TT states. On
the other hand, all the six MR TT states for V̂3B have
zero interaction energy. The finite gap for large U can
be explained by the fact that in the U → ∞ limit the
hopping between the dimers is suppressed and the low-
est excitation consists of moving the particle from γ to
δ WF within a dimer, which costs energy 2. Indeed, the
many-body gap in Fig. 3b seems to converge to 2.

4. Summary and conclusions

In summary, we have shown the emergence of the
Moore–Read-like states in the thin torus limit of a frac-
tionally filled topological flat band model. For the per-
fectly dimerized model and small interaction, we ob-
tained the analytical solutions not only for a 3-body
model interaction, but also for a 2-body one. Adding
a finite coupling between dimers splits the degeneracy of
the sixfold ground state. Unlike the 2D case, the split-
ting does not have to vanish in the thermodynamic limit,
hence it is not a topological degeneracy. This shows that
the MR TT states are not topologically ordered, which
was expected, as the topological order cannot exist in
purely 1D states with conserved particle numbers. It was
also shown for the Laughlin FCIs that their 1D counter-
parts are symmetry-protected phases [4, 6]. We investi-
gated also the influence of the interband excitations on
the stability of the MR-like states. We have shown that
these states are destroyed when a too strong two-body
interaction is applied. However for three-body interac-
tion they survive even when its strength far exceeds the
band gap.

Acknowledgments

This work is supported by National Science
Centre, Poland (NCN) grant PRELUDIUM no.
2016/21/N/ST3/00843.

References

[1] D.N. Sheng, Zheng-Cheng Gu, Kai Sun, L. Sheng,
Nature Commun. 2, 389 (2011).

[2] T. Neupert, L. Santos, C. Chamon, C. Mudry,
Phys. Rev. Lett. 106, 236804 (2011).

[3] E.J. Bergholtz, A. Karlhede, Phys. Rev. B 77, 155308
(2008).

[4] B.A. Bernevig, N. Regnault, arXiv:1204.5682 (2012).
[5] Huaiming Guo, Shun-Qing Shen, Shiping Feng,

Phys. Rev. B 86, 085124 (2012).
[6] J.C. Budich, E. Ardonne, Phys. Rev. B 88, 035139

(2013).
[7] Tian-Sheng Zeng, W. Zhu, D.N. Sheng, Phys. Rev. B

94, 235139 (2016).

http://dx.doi.org/10.1038/ncomms1380
http://dx.doi.org/10.1103/PhysRevLett.106.236804
http://dx.doi.org/10.1103/PhysRevB.77.155308
http://dx.doi.org/10.1103/PhysRevB.77.155308
http://arXiv.org/abs/1204.5682
http://dx.doi.org/10.1103/PhysRevB.86.085124
http://dx.doi.org/10.1103/PhysRevB.88.035139
http://dx.doi.org/10.1103/PhysRevB.88.035139
http://dx.doi.org/10.1103/PhysRevB.94.235139
http://dx.doi.org/10.1103/PhysRevB.94.235139


922 B. Jaworowski, P. Kaczmarkiewicz, A. Wójs

[8] B. Jaworowski, P. Kaczmarkiewicz, P. Potasz,
A. Wójs, Phys. Lett. A 382, 1419 (2018).

[9] S. Kourtis, T. Neupert, C. Chamon, C. Mudry,
Phys. Rev. Lett. 112, 126806 (2014).

[10] E.J. Bergholtz, J. Kailasvuori, E. Wikberg,
T.H. Hansson, A. Karlhede, Phys. Rev. B 74,
081308 (2006).

[11] M.J. Rice, E.J. Mele, Phys. Rev. Lett. 49, 1455
(1982).

[12] B.A. Bernevig, N. Regnault, Phys. Rev. B 85, 075128
(2012).

[13] E.M. Stoudenmire, S. White, Itensor, accessed 13
January 2018.

http://dx.doi.org/10.1016/j.physleta.2018.03.035
http://dx.doi.org/10.1103/PhysRevLett.112.126806
http://dx.doi.org/10.1103/PhysRevB.74.081308
http://dx.doi.org/10.1103/PhysRevB.74.081308
http://dx.doi.org/10.1103/PhysRevLett.49.1455
http://dx.doi.org/10.1103/PhysRevLett.49.1455
http://dx.doi.org/10.1103/PhysRevB.85.075128
http://dx.doi.org/10.1103/PhysRevB.85.075128
http://itensor.org

