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Abstract. The formation and various possible decay processes of neutral and charged
excitonic complexes in electronic integral and fractional quantum Hall systems are discussed.
The excitonic complexes are bound states of a small number of the relevant negatively and
positively charged quasiparticles (e.g., conduction electrons and valence holes, reversed-spin
electrons and spin holes, Laughlin quasielectrons and quasiholes, composite fermions) that
occur in an electron system under specific conditions (e.g., electron density, well width,
electric and magnetic fields, or hydrostatic pressure). The examples of such bound states
are interband neutral and charged excitons, fractionally charged “anyon excitons,” spin
waves, skyrmions, or “skyrmion excitons.” Their possible decay processes include radiative
recombination, experimentally observed in photoluminescence or far infrared emission, or
spin transitions, important in the context of nuclear spin relaxation.

1. Introduction

The transport, optical, and spin properties of a two-dimensional electron gas (2DEG) in a
high magnetic field have been intensively studied both experimentally [1, 2, 3, 4, 5, 6] and
theoretically [7, 8, 9, 10, 11, 12, 13, 14, 15, 16] over more than a decade. Some of these studies
have demonstrated that a common scenario of the formation of what can generally be called
an excitonic complex occurs in various seemingly different physical situations. The excitonic
complexes, consisting of a small number of appropriate elementary charged excitations
(positively and negatively charged quasiparticles of various type depending on a particular
form of the electron–electron correlations in the underlying 2DEG), can often be considered
as nearly free particles with well defined single-particle properties. These properties, such as
electric charge, characteristic size, longitudinal or angular momentum, spin, binding energy,
or oscillator strength for a particular type of quasiparticle–antiquasiparticle recombination
process, determine the response of the 2DEG to the experimental perturbation. In particular,
being weakly coupled to one another or to the electrons, excitonic complexes recombine
obeying simple selection rules that result from their geometric (2D translational) or dynamical
(particle–hole) symmetries. These simple symmetries often persist under experimental
conditions despite complicated electron–electron correlations or such typical symmetry-
breaking mechanisms as disorder or collisions, and greatly simplify the measured response
of the entire system. Sometimes, such simplification is even undesirable as it can make
the experiment sensitive only to the simple properties of the excitonic complexes, and quite
insensitive to the specific properties of the underlying 2DEG.

For example, it has long been predicted that the photoluminescence (PL) spectrum in an
infinitely high magnetic field contains no information about the electron–electron correlations
(e.g., the presence or charge of Laughlin quasiparticles in the fractional quantum Hall regime)
regardless of possible disorder [15]. Instead, the spectrum is reduced to a single discrete
transition corresponding to the recombination of a neutral exciton in the zero momentum
ground state, and either decreasing the magnetic field in order to allow interactions to admix



Excitonic complexes in quantum Hall systems 2

higher Landau levels (LL’s) or applying an electric field to spatially separate electrons and
holes is needed for PL to become a useful tool for studying electron–electron interactions.

Another example is related to a prediction [17, 18] that the most strongly bound complex
involving conduction electrons (�) and a valence hole (�) in very high magnetic fields is a
triplet state of the charged exciton (�� � �� � �). This state is nonradiative because of
both geometrical and dynamical symmetry, and has not been experimentally confirmed in
earlier experiments in high magnetic fields [19], but only quite recently [20, 21], when special
measures were taken to detect its weak PL signal. While breaking of the dynamical, particle–
hole symmetry in a finite magnetic field is by no means surprising, the fact that collisions of an
�� with the surrounding electrons do not relax the geometrical selection rule associated with
the angular momentum conservation is a nice demonstration of Laughlin correlations of the
�� with other negative charges [22, 23]. As a result of these correlations, at small values of
the filling factor �, the ��’s remain spatially isolated and avoid high energy collisions with
one other or with electrons to become true quasiparticles of a 2DEG containing additional
valence holes [24].

In the following sections of this article we will review a few examples of excitonic
complexes that form in electronic quantum Hall systems: interband excitonic complexes in
Sec. 3, anyon excitons in Sec. 4, skyrmions in Sec. 5, and skyrmion excitons in Sec. 6. We
will discuss the similarities and differences between all these complexes, and show the role
they play in experimental studies of the 2DEG, particularly in PL.

2. Model

The numerical results presented here are obtained by exact numerical diagonalization of the
interaction Hamiltonian of a finite number � of electrons (and, sometimes, one or more
valence holes) confined on a spherical surface of radius �. In this model, the radial magnetic
field � is due to a monopole placed in the center of the sphere [9]. The monopole strength ��
is defined in the units of elementary flux 	� � 
���, so that �
��� � ��	� and the magnetic
length is � � ��

�
�. The single-particle states are the eigenstates of angular momentum �

and its projection � and are called monopole harmonics. The energies � fall into ��� � ��-
fold degenerate angular momentum shells separated by the cyclotron energy �
��. The �-th
(� � 	) shell (LL) has � � �� � and thus �� is a measure of the system size through the LL
degeneracy. Due to the spin degeneracy, each �-shell is further split by the Zeeman gap, ��.

Using a composite index � � 
���� (� is the spin projection), the Hamiltonian of
interacting particles can be written as � �

�
���������� �

�
�����

�
���������������, where ����

and ��� create and annihilate particle � (conduction electron � or valence hole �, reversed-
spin electron �� or spin hole 
, etc.) in state � with energy ���, and ������� are the
interaction (Coulomb) matrix elements. Hamiltonian � is diagonalized in the basis of
Slater determinants. The result of the diagonalization procedure is the set of many-body
eigenenergies and eigenvectors. The energies � will be shown as a function of the conserved
orbital (� and ��) and spin (� and ��) quantum numbers. To interpret the results obtained
in the spherical geometry for the infinite planar system, � and �� must be appropriately
translated into the corresponding planar quantities [24, 25]. For example, for the (charge
or spin) wave eigenstates that carry no net charge, angular momentum � must be replaced
by wave vector � � ���, while for the eigenstates corresponding to charged excitations �
and �� are connected with planar angular momentum projection � and its center-of-mass
component���. The eigenvectors ��� are needed to calculate spectral functions to describe
PL or other decay processes, ����	 � � �� � � ��� ��, where � � � or � are the initial and final
states, respectively, and � is the appropriate transition operator.
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Figure 1. The energy spectra (energy � vs. angular momentum �) of the �� � � system in
a symmetric GaAs quantum well of width � � ���� nm at the magnetic field � � �� T (a),
30 T (b), and 68 T (c), calculated on Haldane sphere with LL degeneracy ��� � � ��.

3. Neutral and charged interband excitons

An�� � ���� consists of only three particles. The energy spectra of this simple system are
shown in Fig. 1 for a GaAs symmetric quantum well of width  � ��!� nm and for � � �
,
30, and 68 T. The effects of LL mixing, finite well width, anisotropy of the hole mass and its
dependence on�, and the realistic Zeeman gap�� have all been included [24]. The energy �
is measured from the exciton energy ��, so that for the bound �� states it gives the binding
energy � � �� � �, and both singlet and triplet electron spin configurations are shown.

Because the emission of a photon does not change angular momentum of the (envelope)
electron wave function, and because the electron left in the lowest LL after the radiative ��

recombination has � � �, only those �� states at � � � are optically active. Of all bound
�� states in Fig. 1, three are of particular importance. The ��

	 (singlet) and ��

� (triplet-

bright) are the only strongly bound radiative states, while ��

� (triplet-dark) has by far the

lowest energy of all non-radiative states. The relative energy of different �� states depends
on experimentally variable parameters (e.g., �,  , or ��), and indeed, the transition between
the��

	 and��

� states can be seen in Fig. 1(b). The binding energies� and oscillator strengths

��� of the three �� states, extrapolated to the ��� �
�
� 	 
 limit, have been plotted in

Fig. 2 as a function of �. The ��
	 � ��


� transition is found at � � 
	 T, and the ��

� state

is about two times “brighter” than ��
	 (although both are considerably “darker” than the �).

Even in dilute systems, one might expect that collisions with surrounding electrons
can affect the �� recombination and in particular allow for weak emission from ��


�. The
surprising experimental fact that the effect of such collisions is minimal [19, 20, 21] results
from Laughlin correlations between �� and electrons in the fractional quantum Hall regime
[22, 23]. In Fig. 3 we plot the energy spectra of 
�� � systems, in which the lowest bands of
states describe repulsion of different �–�� pairs. The dependence of pair interaction energy �
on pair angular momentum � is the interaction pseudopotential, which completely determines
correlations in a degenerate LL. It is known that if � ��� is “superharmonic” (� decreases
more quickly than linearly as a function of separation �"�� when � is decreased), then
Laughlin correlations occur [26]. It turns out that �–�� pseudopotential is superharmonic
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Figure 2. The binding energies � (a) and oscillator strengths 	 �� (b) of different 
� states
in a symmetric GaAs quantum well of width � � ���� nm, as a function of magnetic field �.

0 5 10 15 20
L

0

1

2

3

4

E
− E

X
 (

m
eV

)

2

4

6

8

10

0 5 10 15 20
L

(a) B =13T (c) B =68T

0 5 10 15 20
L

1

2

3

4

5

6

(b) B =30T

e+X td
− 

e+X s
−

e+X tb
− 

S =1/2
S =3/2

3e+1v

Figure 3. The same as in Fig. 1 but for the ��� � system.

(similar to the �–� pseudopotential in the lowest LL). The resulting Laughlin correlations
between an�� and the electrons mean that one or more �–�� pair states of highest repulsion
are maximally avoided, or in other words, that the high energy �–�� collisions do not occur.

In Figs. 4 and 5 we plot the oscillator strengths ��� and emission energies �
� for the

� � � eigenstates corresponding to an �� interacting with an electron. In both figures,
the horizontal axes give pair angular momentum � which in a Laughlin correlated system
is simply related to the LL filling factor � (only the � 
 �
� � �� � # pair states occur at
� 
 #��). As expected, for small � (i.e., very dilute 2DEG) both �
� and ��� converge to
the values appropriate for single ��’s plotted in Fig. 2, meaning that there is no significant
effect of the �–�� interactions on the �� recombination at small �. Somewhat surprisingly,
the Laughlin correlations prevent considerable increase of the ���
� through interaction with
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Figure 4. The oscillator strengths 	�� of different 
� states interacting with an electron in
a symmetric GaAs quantum well of width � � ���� nm at the magnetic field � � �� T (a),
30 T (b), and 68 T (c), calculated on Haldane sphere with LL degeneracy �� � � � ��, and
plotted as a function of the �–
� pair angular momentum �.
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Figure 5. The same as in Fig. 4 but with recombination energy ��� shown on vertical axes.

electrons even at � � �


. This justifies a simple picture of PL in a dilute 2DEG, according

to which emission occurs from isolated, well-defined bound complexes (� and ��’s), and
hence it is virtually insensitive to �. In particular, this explains the absence of an ��


� peak
even in the PL spectra [19] showing strong recombination of a higher-energy triplet state ��


�

(although the ��

� emission has been eventually detected at very low temperatures [20, 21]).

An interesting feature in Fig. 5 is also merging of �
�
� and �
�
� which has actually also been
observed experimentally at � � �



[20].

4. Anyon excitons

The fractionally charged “anyon excitons” have been predicted to form in strongly asymmetric
quantum wells or heterostructures, in which the perpendicular electric field produced by the
doping layer spatially separates conduction electron (�) and valence hole (�) layers by a
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Figure 6. The energy spectra (energy� vs. angular momentum�) of an ideal 	��� system (no
LL mixing and zero quantum well width) calculated on Haldane sphere with LL degeneracy
��� � � �
 (a), 23 (b), 22 (c), and 21 (d). The �–� layer separation is 
 � �.

distance $ � � [27, 28, 29]. In such situation, the �–� attraction becomes too weak on
the characteristic 2DEG correlation energy scale and the resolution of the attractive Coulomb
potential of the hole becomes too low on the characteristic 2DEG length scale, and the 2DEG
retains its original Laughlin correlations even in the presence of the hole injected optically in
a PL experiment. Unlike in symmetric structures, because of the reversed ordering of the �–�
and �–� energy scales, the charge of the hole � injected into the 2DEG is no longer screened
with “real” electrons �, but with the fractionally charged Laughin quasielectrons (QE’s) [29]
or reversed-spin quasielectrons (QE�) [11, 30].

The energy spectra of �� � � systems at different values of the monopole strength ��
corresponding to��� � �, 2, and 3 QE’s in the Laughlin � � �



state of 9 electrons interacting

with the hole have been shown in Figs. 6, 7, and 8 for different values of the �–� layer
separation, $ � 	, �, and ��. These spectra have been calculated for a very ideal situation,
without taking into account the LL mixing or finite well width, so $�� must be regarded as
an effective parameter controlling the strength and resolution of the perturbation potential
introduced in the 2DEG by the presence of the hole, rather than as an actual displacement of
� and � wave functions in an experimental system [29].

In Fig. 6 ($ � 	; the “strong coupling” regime), the ��

�, which is the only bound

�� state in the lowest LL, is the most stable quasiparticle, and the anyon excitons do not
form. The open circles mark the so-called “multiplicative” states in which the � � 	
exciton decouples from the remaining 8 electrons due to the “hidden” symmetry (the exact
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Figure 7. The same as in Fig. 6 but for 
 � �.

�–� particle–hole symmetry in the lowest LL) [14]. All other, non-multiplicative low-energy
�� � � states contain an �� interacting with the remaining 7 electrons. These states can be
well described within the generalized composite fermion model [23] for the two-component
(�����) Laughlin liquid. Depending on the value of �� that varies between 24 and 21, the
lowest-energy �� � �� states contain between zero and three quasiholes (QH’s) analogous
to Laughlin quasiholes of a one-component electron liquid. The residual QH–�� attraction
whose pseudopotential can be extracted from the����� band marked in frame (d), leads to
the formation of ���� and ����� very weakly bound states and of an excited (unstable)
����
 states, identified in frames (b), (c), and (d), respectively.

In Fig. 7 ($ � �; intermediate-coupling regime), new low-energy bands of states emerge
in addition to those containing the � or ��’s. We interpret these new states as the anyon
exciton states. In some cases the two type of states occur in the same spectrum. For example,
the �QE�–QE band in Fig. 7(c) coexists with the� state and the��–QH band. In other cases,
the low-lying � or �� states occur at the same � as the low-lying anyon exciton states, and
the transition between the two is continuous. For example, �QE� is mixed with ��QH� in
Fig. 7(b), and �QE is mixed with ��QH
 in Fig. 7(a).

In Fig. 8 ($ � ��; weak-coupling regime), well developed anyon exciton bands occur.
The isolated �QE, �QE�, and �QE
 states are the ground states in the spectra corresponding to
��� � �, 2, and 3, respectively. Their angular momenta ��� are obtained by adding �� � �
and ��� � �� � �, where ��� � �� � ��� � �� is the effective monopole strength in the
composite fermion picture[13, 26] and �� � 
���������. Similarly, the angular momenta
of states containing an anyon exciton and the excess QP’s result from adding ��� and ���.
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(b), and including electron spin excitations. The �–� layer separation is 
 � 
� (a) and �� (b).

In Fig. 9 we show similar spectra for the �� � � system, but now including the possible
electron spin excitations [30]. In addition to the spinless anyon excitons �QE and �QE�,
the “reversed-spin anyon excitons” ����, and ������, and ������� can be identified, in
which one or more QE’s are replaced by the reversed-spin quasielectrons, QE�’s.
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Similarly as it was for ��’s, the translational symmetry of an isolated anyon exciton
leads to the conservation of its � and �� in the emission process. This leads to the strict
optical selection rules that can only be broken by collisions or disorder. The recombination of
an anyon exciton state formed in a Laughlin � � ��% � ���� electron liquid occurs through
annihilation of a well defined number of QE’s and creation of an appropriate number of QH’s
[27, 28]. It turns out that the processes involving more than the minimum number of QP’s all
have negligible intensity, which for % � � (� � �



) leaves only the following four possible

recombination events: �����	 �
������&, where � � 	, 1, 2, or 3, and & denotes the
photon. When the angular momentum conservation law is applied to the above recombination
events, we obtain [31] that the only radiative anyon excitons are �QE* (the first excited state
of a �–QE pair), �QE�, and �QE�, while all others (including �QE) are “dark.”

Because the formation of radiative anyon excitons depends on the presence of QE’s
or QE�’s in the 2DEG, the magneto-PL spectrum is expected to change discontinuously at
� � �



. Such anomalous behavior has actually been observed experimentally [3].

5. Spin waves and skyrmions

The integral quantum Hall system near � � � with spin excitations contains a small number
of reversed-spin electrons �� and spin holes 
, and it is very similar to the dilute system of
conduction electrons � and valence holes � in the lowest LL. The important difference is that
the energy of a � � 	 spin wave (which plays the role of an interband exciton) is equal to
the electron Zeeman splitting, ��, which can be made small compared to the characteristic
interaction energy, ����. Therefore, it is possible to achieve experimentally the situation in
which the skyrmions (the ��–
 analogues of interband��’s) are truly stable ground states of
the system [16, 18], with infinite lifetimes which are not limited by radiative recombination.

In Fig. 10 we present the low energy spectra of the � � � and � � �� (a single spin hole
in � � �) states. In this and all other spectra, only the lowest state at each � and � is shown
and ' � �

�
� � � counts the number of spin flips away from the fully polarized ground state.
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In Fig. 10(a), the ground state is the ferromagnetic integral quantum Hall � � � state at
� � ' � 	. Because the Zeeman energy �� is omitted, this state is degenerate with many
other states with the same � � ' � 	 but with different values of ��, and corresponding to
a number � � �� of � � 	 spin waves, each having energy �� � 	 and decoupled from one
another and from the underlying � � � state (the analogues of the �–� “mutiplicative” states).
Remarkably, the low-energy excited states in Fig. 10(a) form a linear band with � � ' � �,
2, . . . . These states contain a number ' of spin waves each with � � � and moving in the
same direction so as to build up the maximum total � � '. The linear dependence of � on
' within this band can be also interpreted as decoupling of so correlated � � � spin waves
from one another, although different from decoupling of � � 	 spin waves [25]. In particular,
note that a pair of � � � spin waves can be in two states of total angular momentum � � 	 or
2, and only the latter is noninteracting.

The ��–
 annihilation process analogous to the �–� radiative emission can be achieved
by hyperfine coupling of a 2DEG to localized nuclear spins. However, the selection rule for
such process is completely different from that governing PL. The appropriate spectral function
������ for the spin wave creation/destruction is shown in Fig. 10(c). It has a maximum at
�� � �, corresponding to the characteristic size of the electron cyclotron orbit [32].

In Fig. 10(b) for � � �� the band of states with ���� ��' and �(	 appears. These
are the (anti)skyrmion states, ��
 � '�� � �' � ��
, analogous to the interband charged
excitons��


 in the lowest LL [16, 18, 25]. These states are not only truly long-lived (provided
that�� can be made sufficiently small, e.g., by application of pressure or appropriate doping),
but unlike the ��


 states they are connected with one another through a sequence of spin-flip
transitions induced by the hyperfine interaction with a nuclear spin [32]. The ��


 � ��
��

spin-flip transitions are the analogues of the photon emission for the ��

 states. However, the

different selection rule described by the spectral function ������ the inset (instead of a strict
� � 	 rule for the interband emission) allows these transitions in contrast to the forbidden PL
of the ��


 states in the lowest LL. Actually, the ��

 � ��
�� process is believed to be largely

responsible for the nuclear spin relaxation in quantum Hall systems.
In Fig. 11 we show similar spectra to Fig. 10, but for the fractional quantum Hall regime,

near � � �


. Again, despite different character of the constituents – elementary charge
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Figure 12. The binding energies � of various skyrmion exciton states calculated in an ideal
system (no LL mixing and zero quantum well width), as a function of ��–� layer separation 
.

excitations (QE� and QH replacing �� and 
), the same type of bound excitonic complexes
are identified. These are spin waves ��� � ��, skyrmions ��
 � �' � ����� � ' ��,
and antiskyrmions ��
 � ' ��� � �' � ����.

6. Skyrmion excitons

When a valence hole � is introduced into a quantum Hall system with a small value of
��, it seems possible that it might substitute for one of the spin holes 
 in a skyrmion or
antiskyrmion bound state to form yet another type of excitonic complexes, a skyrmion exciton
[33, 34]. Such a complex shares the properties of both pure interband and pure spin excitonic
complexes, and for example it might both recombine radiatively via photon emission and
couple to nuclear spins via hyperfine interaction. It also has a richer energy spectrum as the
two kinds of holes, 
 and � become distinguishable under actual experimental conditions.
Unlike in a dilute �–� system with spin excitations where also three kinds of particles (� could
have two different spins) were involved in a ��

	 state, different orbitals of 
 and � holes
(e.g., due to different effective masses or different response to the electric field) make the �–

and �–� interactions different. This prevents the mapping of a 
–�–�� system on a simple
two-(iso)spin ��–��–� system with (iso)spin-symmetric interactions.

One possible scenario for the skyrmion exciton creation might be the following. When
a � is added to a quantum Hall state at � 
 �, there are no negatively charged excitations it
could bind. But if �� is sufficiently small, � may induce and bind one or more spin waves to
form a skyrmion exciton, � 	 �
� 	 ��
��� 	 ! ! !. The binding energies of these mixed
complexes are shown in Fig. 12(a) as a function of the �
–� layer separation $ (note that
we skip subscript “R” in symbol �� in this figure). The situation is different and quite more
complicated at � ) �, in the presence of free reversed-spin electrons or skyrmions. Being
negatively charged, they are attracted to the added hole �, and, depending on ��, $, and other
parameters, they can bind to it to form a rich variety of neutral or negatively charged 
–�–��
states, some of which have been indicated in Fig. 12(b). The fact that the binding energy for
the ����
�� 	 �
����� process remains negative for $ 
 �!
�� suggests that in symmetric
structures the attraction between � and ��� � 
����� (or a larger skyrmion) causes breakup of
the latter and emission of free spin waves: �����
���
 	 ����'�
��. This would make
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the equilibrium PL signal come from the same excitonic complex, ���, regardless of the size
of the skyrmions present in the 2DEG before illumination. On the other hand, the ��� exciton
might attract a second �� or �� to acquire charge and become able to induce and bind one or
more spin waves. So far these ideas have only been tested in an ideal system (only lowest LL
included, no disorder, and zero well width), and more realistic calculation will be needed to
verify their significance in actual PL experiments.
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[23] Wójs A, Szlufarska I, Yi K S, and Quinn J J 1999 Phys. Rev. B 60 11273
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[25] Wójs A and Quinn J J 2002 Solid State Commun. 122 407
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