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Correlations in partially filled electron and composite fermion Lan-
dau levels are studied numerically. Insight into the nature of the correla-
tions is obtained by using model pair pseudopotentials. Energy spectra of a
model short-range three-body repulsion are calculated. Moore—Read ground
state at the half-filling and its quasielectron, quasihole, magnetoroton, and
pair-breaking excitations are all identified. The quasielectron/quasihole exci-
tations are described by a composite fermion model for Laughlin-correlated
electron pairs. Comparison of energy spectra and wavefunction overlaps ob-
tained for different pseudopotentials suggests that finite-size effects can be
important in numerical diagonalization studies on a sphere.

PACS numbers: 71.10.Pm, 73.43.—f

1. Introduction

Laughlin correlations [1] among electrons in the lowest Landau level (LLg)
imply maximum possible avoidance of pair states with the smallest relative angular
momentum Rs. They are responsible for the most prominent fractional quantum
Hall (FQH) states at filling factors v = n(2pn 4= 1)1 [2, 3]. However, FQH states
with different, non-Laughlin correlations occur as well, e.g., in higher electron LL’s
(LL, with n > 1) [4] or in composite fermion (CF) LL’s [5]. The correlations are
determined by the pseudopotential [6] defined as the pair interaction energy V5 as
a function of Ro. A “harmonic” pseudopotential® produces no correlations (i.e.,

* A harmonic pseudopotential is linear in average squared separation (r2). On a sphere it is
linear in Lo (L2 + 1)7 where { and Ly = 2{ — Ry are the single-particle and pair angular momenta,
respectively. On a plane (i.e. for 2{ — o), it is linear in Rs.

(575)
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each multiplet with the same total angular momentum L has the same energy
E) [7]. Often, the essential correlations associated with an actual interaction can
be reproduced by a simple “model” pseudopotential in which the harmonic part
is neglected, and an anharmonicity is introduced at a few lowest values of Rs.
For example, the Laughlin wavefunction [1] at the filling factor v = % is an exact
E = 0 eigenstate of Vo(R2) = br, 1.

We use an exact diagonalization on a Haldane sphere [2] to study eigenstates
of a model two-body pseudopotential Uy (R2) = (1 —«) ér, 1+ %Oé(SRQ’g. Fora =0
and 1, the low-energy states avoid having a large pair amplitude G5 [6] at Rs = 1
and 3, respectively. For a ~ %, amplitudes for pairs with R, = 1 and 3 are
comparable. Because U, is subharmonic at R2 = 1 for o > %, Laughlin correlations
cannot be responsible for the observed v = g and % FQH states (corresponding to
half-filled LL; and CF-LLy, respectively). Proposed trial wavefunctions include
Halperin [8] and Haldane-Rezayi [9] states with Laughlin correlations between
spin-triplet and spin-singlet pairs, respectively, and the Moore—Read [10] state that
can be defined as the £ = 0 ground state of a short-range three-body repulsion [11].
These paired states were investigated in detail [12-14]. However, which model best
fits different experimental situations is not certain.

In this note we concentrate on the half-filled LL;. Because the pair—pair
interaction does not conserve Rs of each individual pair, its pseudopotential is
not well defined [15]. Therefore, Laughlin correlations among the pairs invoked in
Halperin and Haldane-Rezayi pairing models cannot be rigorously established. In
fact, it has been incorrectly assumed [11] that such pairing results for pseudopo-
tentials attractive at short range rather than “harmonically” repulsive like U%. On
the other hand, the Moore-Read wavefunction correctly describes the ground state
for an interaction with a very special short-range behavior, while the pseudopoten-
tials in experimental systems depend on sample parameters (e.g., layer width w).
Earlier diagonalization studies indicated that realistic Coulomb pseudopotentials
in LLy are slightly too weak at short range to support the Moore—Read state [14].
This suggests that it is not quite as accurate a description of the v = g state as

the Laughlin wavefunction is of the v = % state.

2. Model

For electrons confined to a spherical surface in a shell of angular momentum /,
Va(R2) is simply an expectation value of the Coulomb interaction for an electron
pair in LL, with a total angular momentum Lo = 2] — R,. For CF quasiparticles
(QP’s), V2(R2) can be obtained from the numerical diagonalization of the Coulomb
interaction for small electron systems which contain two Laughlin QP’s [6]. Results
for Va(R2) in LLg, LLy, CF-LLg, and CF-LL; can be found in the literature
[7, 16-18]. Numerical results for small systems on a sphere are qualitatively correct,
provided that the range of the interaction (or correlation length), scaled with a

magnetic length A = \/hc¢/eB, is small compared to radius of the sphere R.
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Correlations in a specific many-body multiplet |L, 3) are conveniently de-
scribed by a pair amplitude function G2(R3) equal to the number of pairs with a
given value of R divided by the total number of pairs (J;f) [7]. The total interaction
energy of a multiplet is given by E(L, 5) = (J;f) YR, G2(Ra)Va(Ra).

3. Results and discussion
3.1. Two-body correlations

In Fig. 1 we display Ga(1) and G2(3) for the lowest L = 0 states of the model
pseudopotential Uy (R2). The values of N and 2 were chosen to correspond to

the known families of incompressible v = % and % ground states in L1, and in
CF-LLq, corresponding to the total electron filling factors v = g, %, %, and 14—1.

It is clear that Laughlin correlations with G3(1) < G2(3) occur for o ~ 0, and an
opposite relation G2(3) < G»(1) holds for & ~ 1. For a ~ % (corresponding to
electrons in LL;) the situation is not so simple because Va(Rz2) is nearly harmonic
at short range, and the correlations cannot be expressed in terms of avoidance of
a single value of Ra2. However, the Moore-Read state is known [11] to be an exact
E = 0 ground state of a short-range three-body repulsion. This suggests that a

careful investigation of three-body correlations might be useful.

03 ]
(a) N=14, 21=2N-3

(b) N=12, 21=3N-7
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Fig. 1. Dependence of pair amplitudes G> on parameter « of pair interaction Ua, ob-

tained for the lowest I = 0 states of N particles at 2l = 2N — 3 (a) and 3N — 7 (b),

1

corresponding to a ;3

and %—ﬁlled shell, respectively.

The criterion for the avoidance of a specific pair state at R» is that it corre-
sponds to the dominant positive anharmonic term of Va(R2) [7]. The three-body
states are also labeled by relative (with respect to the center of mass) angular
momentum Rs = 3, 5, 6,..., and larger R3 means a larger average area spanned
by the three particles. Since no degeneracies appear in the V3(R3) spectrum for
Rs < 9, its low-Rg3 part can be considered a three-body pseudopotential analo-
gous to Va(Rz). The results obtained for different pair interactions are shown in
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Fig. 2. Triplet interaction pseudopotentials V3(R3) for various pair pseudopotentials.

A 1s the magnetic length.

Fig. 2. The nonmonotonic behavior of V3(R3) in frame (c¢) most likely precludes
the tendency to avoid the Rz = 3 triplet state in the quasielectron (QE) systems.
On the other hand, the monotonic character of V3(R3) in frame (b) might lead
to the avoidance of the same Rs = 3 triplet state in a partially filled L7L,. The
dependence of V3(R3) on Va(R2) can be captured by calculating the leading V3
coefficients for the model pair pseudopotential U,. Only around « ~ % is V3(R3)
a superlinear (i.e., superharmonic) function for small Rs.

3.2. Three-body correlations

The hypothesis of the avoidance of the R3 = 3 triplets in partially filled
LIL; can be tested using “triplet amplitude” G3(R3). It is defined in analogy to
the pair amplitude, as an expectation value of the operator ﬁljk(Rg, f3) projecting
a many-body state ¥ onto the subspace with three particles 75k being in an eigen-
state |Rs, 3) (here, 85 distinguishes different multiplets at the same Rg; it can be
omitted for R3 < 9). The triplet amplitudes are normalized, ZRayﬁagg(Rg, B3)=1,
and satisfy an additional sum rule:

NN -3) NN -1 3" Ga(Ra, B Ls(Ls+ 1), (1)

L(L+1) + -
R3,83

l(l—I—l):

where Lz = 31 — R3 is the total triplet angular momentum. Energy of ¥ is £ =
(3) Xra 5, G3(Rs, B3) Va(Rs, Bs).

In Fig. 3 we plot the leading amplitudes G3(R3) as a function of «, calculated
in the lowest L = 0 states of the FQH systems used earlier. Clearly, all triplet
amplitudes significantly depend on «, but we especially want to point out the
following three features for R3 = 3: (i) at v = %, the tendency to avoid Rs = 1

pairs at o ~ 0 is not synonymous with the avoidance of Rg = 3 triplets; (ii) Gs(3)
vanishes for o % at v = %; (iii) G3(3) increases when « increases beyond % in

all frames.
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Fig. 3. Dependence of triplet amplitudes Gs on parameter « of pair interaction Ua,
obtained for the lowest I = 0 states of N particles in the same FQH states as used in
Fig. 1.

Observation (iii) confirms the suspicion based on the form of V3(R3) in
Fig. 2¢ that, against an earlier assumption [11], the Halperin paired state [8] is not
an adequate description for systems with subharmonic pseudopotentials at short
range. In particular, such a model appears inappropriate for the QFE’s in CF-L L,
(i.e., in the FQH states at v = % and %) Instead of Halperin’s pairing, grouping
into larger clusters most likely occurs.

We have evaluated the value ag at which G3(3) drops (nearly) to zero at
2l = 2N — 3 for different N < 14, but it 1s difficult to reliably estimate o on a
plane. However, other evidence [19] suggests that aqg is close to % for N — oo.
Since U% accurately models Coulomb interaction in LL;, the R3 > 3 correlations
are expected to accurately describe experimental FQH systems at v ~ g

3.3. Spectra of three-body repulsion

To study excitations of the Moore-Read state, a simple model three-body
repulsion W(R3) = ér, 3 can be used [12, 13], which induces exactly the right type
of correlations (Rs > 3). In Fig. 4a we present the energy spectrum for N = 14
and 2] = 2N — 3. There 1s exactly one £ = 0 state in the spectrum at L = 0
(at 21 < 2N — 3 every state has £ > 0, and at 2/ > 2N — 3 there is more than
one E = 0 state). This fact makes the Moore-Read an extension of the Laughlin
idea for the v = % state at 20 = 3N — 3 being the only state in its Hilbert space

with no pair amplitude at R = 1. Just as the avoidance of more than one pair
11

§’ g’ ...
triplets gives rise to incompressibility at new values of v.

state generated the whole v = sequence, the avoidance of not pairs, but

The analogy to the Laughlin v = % state goes beyond the incompressible
ground state. The low-energy excitations clearly form a band that resembles the
magnetoroton curve [13]. In frame (b) we overlay data obtained for N = 6 to 14
and plot it as a function of wavevector k = L/R. The continuous character of this
band and the minimum at k& ~ 1.5A~! are clearly visible.
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Fig. 4. (a) Energy spectrum E(L) of N = 14 particles interacting through triplet
pseudopotential W(Rz), at the Moore-Read value of 2l = 2N — 3 = 25. (b) Energy
dispersion E(k) for the excited magnetoroton band. A is the magnetic length.

An increase in Gs(1) for o > % in Fig. 1la as compared to the Laughlin
correlated state at o = 0 might indicate pairing. If the pairs had Laughlin corre-
lations [8], novel FQH states would result. However, until now such correlations
have not been established in any realistic FQH system. Since only for N = 6, 10,
and 14 (but not for N = 8 or 12) do the L = 0 ground states occur for QE’s,
this picture seems inadequate in CF-LLq [15]. However, for half-filled LL;, large
values of G3(1) and, at the same time, the vanishing of G3(3) supports this idea
in the Moore—Read state. By effectively acting like a short-range three-body re-
pulsion W, Coulomb repulsion in LL; allows grouping electrons into pairs, but
yields Laughlin correlations among them. This can be modeled by a fictitious flux
attachment in a standard way.

The CF model describing Laughlin-correlated pairs with Ro = 1 and Ls =
2{—1 works in the following way: 7 flux quanta (4 to account for the Pauli principle,
4 to model correlations among the pairs, and —1 to convert bosons to fermions) are
attached to each of the Ny = %N pairs, giving an effective angular momentum I =
(20—1) = (N3 —1) of the lowest CF-pair shell (CFP-LLg). For 21 = (2N —3)+ A,
its degeneracy is ¢ = 2l§ + 1 = Na £ 2A. When A = 0, the CFP’s completely
fill CFP-LLy giving an L = 0 ground state. The magnetoroton band describes
a QH-QE excitation between the CFP-LLy and CFP-LLq shells. The quasihole
(QH) and QE angular momenta are {§ = %(Nz — 1) and & = [} + 1, respectively,
giving a QE-QH band with 1 < L < Ns. The lower-L states of this band merge
with the continuum, but those at larger L are clearly visible in Fig. 4a.

In Fig. 5 we present the spectra obtained for even values of N and 2! =
(2N —3)+ 1. At 2l = (2N — 3) + 1, there is always a band of F = 0 states at
L =Ny, Ny—2, ... [13], corresponding to two QH’s in CFP-LLj of degeneracy
g5 = Na+2. The first excited band above the two-QH states contains an additional
QE-QH pair. At 2/ = (2N —3) — 1 no states can have &/ = 0, but the lowest band

contains two QE’s in CFP-LL; of degeneracy g7 = Ns. Indeed, in spectrum (b),
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Fig. 5. The same as Fig. 4a but for (a) 2l = 2N —2 and (b) 2l = 2N —4, corresponding
to two QH’s and two QE’s in the Moore—Read state, respectively.

the low-energy band at L = Ny — 2, Ny —4,... can be found.
The CFP model cannot describe pair-breaking excitations, generally ex-
pected to be neutral fermions. They can be identified in the spectra for odd N and

20 = 2N — 3 [11], as shown in Fig. 6a. For any odd value of N, the lowest band
5 7

5’ 5’. .
of two QP’s of opposite charge. This becomes more convincing in Fig. 6b; where

occurs at L = . %N, that seems to describe dispersion of an excitonic state

the data obtained for different NV is plotted together as a function of wavevector &,
and a clear magnetoroton-type minimum appears at k ~ 1.0 A~1.
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Fig. 6. (a) The same as Fig. 4a but for an odd number of particles N = 13 and
2l = 2N — 3 = 23. (b) Energy dispersion E(k) for the pair-breaking band. A is the

magnetic length.

3.4. Finite-size effects

Earlier studies using Coulomb pseudopotential in LL; [11, 14, 17] showed
L = 0 ground states with a gap at 2l = 2N —3 but there were no clear indications
of the QP or pair-breaking excitations identified in the spectra of W [12, 13]. A
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major problem with the calculations on a sphere is the size-dependence of the crit-
ical value oy at which R3 = 3 is avoided. It is clear from the analysis of squared
overlaps (u(a) = [{¢a|ty)|? of the eigenstates ¢, of U, with the eigenstates
of various other interactions u: three-body repulsion W and electron and QE pair
pseudopotentials Vo in LLg, LLq, and CF-LL;. The exact Moore—Read eigenstate
of W turns out to be an excellent ground state of U, at a = 0.425. So is the
ground state of Coulomb pair interaction in LL;, but at a different o & 0.5. The
disagreement between these two values of @ does not disappear in wide samples
(e.g., | {(¥wlrr1)|? = 0.48, 0.58, and 0.71 for w/A = 0, 1.75, and 3.5, respec-
tively). This raises the question of whether the Moore-Read trial state and its
QP excitations actually occur in the FQH v = g state. Fortunately, the disagree-
ment appears to be largely artificial. The size-dependence of ag can be traced
to that of the pair amplitudes G3(R2) of the triplet eigenstates at Rz = 3, b,
6,..., directly caused by the surface curvature. This curvature causes ay to be
smaller than the value % appropriate for the Coulomb pseudopotential in LL,. As
N — 00, we expect og — % in agreement with the behavior of V2(R3) in the same
limit. Then the energy spectra of V3(R2) in LL; and of W(R3) should become
similar. We surmise that: (i) Finite-size calculations on a sphere using Coulomb
pair interaction do not correctly reproduce correlations of an infinite v = g state.
They use pseudopotentials corresponding to a & %, different from ag < % leading
to the avoidance of Rg = 3. The a = oy = % coincidence is probably recov-
ered for N — oo which would mean that the real, infinite systems at v = g do
have the “Rs > 3”7 correlations while the correlations in finite systems are differ-
ent and size-dependent. (ii) In finite systems, correct “Rg > 3” correlations are
recovered if the pair pseudopotential is appropriately enhanced at short range.
(iii) Assuming that the o« = ag = % coincidence is restored in infinite systems, the
equivalence of Coulomb and W interactions at half-filling is not limited strictly
to the Moore-Read ground state. The (+e/4)-charged QP’s and the pair-breaker
identified in the spectra of W accurately describe the low-energy excitations in the

real v = g systems.

4. Conclusion

We have studied two- and three-body correlations in partially filled degen-
erate shells for various interactions between the particles. Variation of the relative
strength of two leading pair pseudopotentials drives the correlations through three
regimes. The intermediate regime, corresponding to the nearly harmonic pseudopo-
tential at short range, describes correlations among electrons in LLq, particularly
in the v = g FQH state.

In contrast to the correlations between electrons in LLj or between Laughlin
QFE’s in CF-LL; (whose pseudopotentials are strongly super- and subharmonic at
short range, respectively), the intermediate regime is not characterized by a simple
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avoidance of just one pair eigenstate corresponding to the strongest anharmonic
repulsion. Instead, we have shown that near half-filling the low-energy states for
such interactions have simple three-body correlations. They consist of the maxi-
mum avoidance of the triplet state with the smallest relative angular momentum
Rs = 3. In particular, at exactly half-filling, this corresponds to the fact [11] that
the Moore-Read ground state is the F = 0 eigenstate of a model short-range
three-body repulsion W with the only pseudopotential parameter at Rs = 3. The
Moore-Read ground state is a three-body analog of the Laughlin v = % state
with Ro > 1. It is separated by a finite excitation gap from a magnetoroton band
with a minimum at k & 1.5A~1. Tts elementary excitations are the (£e/4)-charged
QP’s and the pair-breaker. The bands of few-QP states near half-filling are well
described by a CF picture appropriate for Laughlin pair—pair correlations.

Finally, the problem of numerical calculations on a sphere associated with
the surface curvature is addressed. It is found that finite-size models using Coulomb
interaction between electrons do not correctly reproduce correlations of the
v= g FQH state due to the distortion of triplet wavefunctions. Overlaps with the
Moore-Read-like correlated states are small. However, it is argued that the v = g
FQH state observed experimentally is described much better by the Moore-Read
trial state than could be expected from the calculation of overlaps in small sys-
tems. Consequently, the origin of its incompressibility is precisely the avoidance
of the R3 = 3 triplet state, and its elementary excitations are the (+e/4)-charged
QP’s and the pair-breaker.
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