
Journal of Physics: Condensed Matter

PAPER

Entanglement entropy and entanglement spectrum
of Bi1−x Sb x (1 1 1) bilayers

To cite this article: Marta Brzeziska et al 2018 J. Phys.: Condens. Matter 30 125501

 

View the article online for updates and enhancements.

Related content
Stability of topological properties of
bismuth (1 1 1) bilayer
Maciej Bieniek, Tomasz Woniak and Pawe
Potasz

-

Strain driven topological phase transitions
in atomically thin films of group IV and V
elements in the honeycomb structures
Zhi-Quan Huang, Chia-Hsiu Hsu, Feng-
Chuan Chuang et al.

-

Topological phases in two-dimensional
materials: a review
Yafei Ren, Zhenhua Qiao and Qian Niu

-

This content was downloaded from IP address 156.17.79.2 on 05/06/2018 at 00:15

https://doi.org/10.1088/1361-648X/aaaf54
http://iopscience.iop.org/article/10.1088/1361-648X/aa5e79
http://iopscience.iop.org/article/10.1088/1361-648X/aa5e79
http://iopscience.iop.org/article/10.1088/1367-2630/16/10/105018
http://iopscience.iop.org/article/10.1088/1367-2630/16/10/105018
http://iopscience.iop.org/article/10.1088/1367-2630/16/10/105018
http://iopscience.iop.org/article/10.1088/0034-4885/79/6/066501
http://iopscience.iop.org/article/10.1088/0034-4885/79/6/066501


1 © 2018 IOP Publishing Ltd Printed in the UK

1. Introduction

Exploring novel phases of quantum matter has gathered 
interest due to promising applications in the fields of spin-
tronics and quantum computation [1–3]. Considerable effort 
has been devoted to searching candidate materials for topo-
logical insulators (TIs), a class of band insulators hosting gap-
less edge states and described by a Z2 topological invariant 
[4–6]. Boundary modes lead to two spin-polarized counter-
propagating currents, which are immune to the backscattering 
in presence of non-magnetic disorder [1, 2]. For quantum dot 
geometry, orbital magnetization resulting from edge state 
circulation has also been shown to exhibit similar robust-
ness [7]. Essential ingredients for quantum spin Hall (QSH) 
phase are the time-reversal symmetry and spin–orbit coupling 
(SOC). Strong SOC is characteristic of heavy elements and 
opens the non-trivial bulk band gap. Proposals of realizing the 
QSH insulator in two dimensions (2D) [4, 8–10] were fol-
lowed by successful experimental observations, ranging from 
thickness-tunable quantum wells to honeycomb-like systems 
based on group-IV and group-V elements [11], and recently 

as thin films of insulators protected by crystalline symmetries 
[12, 13].

In particular, theoretical predictions have shown that a 
single Bi bilayer in the (1 1 1) plane manifests helical edge 
modes propagating in opposite directions [14–17] and subse-
quently it was confirmed by scanning tunneling microscopy 
measurements [18–20]. Moreover, protected 1D edge states 
were detected in Bi2Se3 thin films [21, 22] and at the interface 
between heterostructures Bi(1 1 1)/Bi2Te3 [23]. Robustness 
of topological properties of Bi(1 1 1) were recently discussed 
in [24–26]. Extensive studies have been carried out for few-
layer Bi and Sb systems [27–30]. Pure Bi(1 1 1) films up to 
eight bilayers in thickness were shown to exhibit a stable 
QSH phase [15]. In the case of Sb(1 1 1), films with less than 
four bilayers are expected to be topologically trivial [31]. To 
induce trans ition between trivial and QSH insulating phases, 
appropriate structure modifications were proposed, including 
SOC variation in Bi [24, 32], strain in Sb [33, 34], effect of 
substrates [16] and perpendicular electric field for strained Sb 
[35].

Over the years, quantum entanglement has been recog-
nized as a valuable tool to identify topological properties of 
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systems. Subtle non-local correlations inherent in topological 
states can be captured by bipartite entanglement measures [36, 
37]. Given a composite system AB in a pure state described by 
|ψAB〉 ∈ HA ⊗HB, the reduced density matrix corresponding 
to the subsystem A can be obtained by tracing out degrees 
of freedom related to the subsystem B, ρA = TrB|ψAB〉〈ψAB|. 
Commonly used in the context of quantum information is the von 
Neumann entanglement entropy, defined as SA = −TrρA log ρA. 
Li and Haldane [38] suggested that the Schmidt decomposi-
tion of quantum many-body wave function can be regarded as 
a unique signature of topological phase and provides more 
information about the system than a single value of SA. Several 
non-interacting models describing clean [39–46] as well as dis-
ordered systems [47–49] have been already analyzed through 
the entanglement spectrum. The non-trivial nature of the system 
is determined by the spectral flow of eigenvalues of the correla-
tion matrix, which is an analogy to the edge states crossing the 
energy gap and connecting valence and conduction bands in the 
systems with open boundary conditions.

In this work, we study topological properties of Bi1−xSbx 
bilayer through entanglement measures. We examine elec-
tronic properties and structural stability of Bi1−xSbx bilayers, 
which is achieved by employing multi-orbital tight-binding 
model and density functional theory (DFT) calculations. 
Both infinite and semi-infinite systems are considered. We 
investigate entanglement entropy and entanglement spectrum 
for free-fermion systems and show that they can be treated 
as viable tools to characterize topological properties of real-
istic models of topological insulators. Furthermore, topo-
logical phase transitions as a result of composition change x, 
perpend icular electric field applied to Bi bilayers and strain in 
Sb bilayers are discussed.

2. Methodology

2.1. Tight-binding model

A single sheet of Bi and Sb rhombohedral crystal structures 
in the (1 1 1) direction can be seen as a buckled honeycomb 
lattice and is illustrated in figure 1. We follow a widely used 
terminology calling a single sheet by bilayer [14, 18], as it 
consists of two sublattices forming two layers spatially sepa-
rated by a distance h.

To study electronic properties of ultrathin films, we employ 
an sp3 tight-binding model developed in [50] for bulk bismuth 
and antimony, neglecting hoppings between bilayers as pro-
posed in [14]. Interatomic hoppings are parametrized within 
the Slater–Koster approach [51] and atomic spin–orbit cou-
pling λ�L ·�S . The Hamiltonian of the model reads

HTB =
∑
i,α,σ

Eiαc†iασciασ +
∑
i,α,σ

VR,G
Fieldc†iασciασ

+
∑
〈i,j〉

α,α′ ,σ

Vαα′c†iασcjα′σ +
∑
〈〈i,j〉〉
α,α′ ,σ

V ′′
αα′c†iασcjα′σ

+
λ

3

∑
i

(c†iz↓cix↑ − c†iz↑cix↓ + ic†iz↑ciy↓

+ ic†iz↓ciy↑ + ic†ix↓ciy↓ − ic†ix↑ciy↑) + H.c.

 

(1)

where i, j are lattice indices (with 〈. . .〉 and 〈〈. . .〉〉 
denoting nearest and next-nearest neighbors, respectively), 
α = {s, px, py, pz} labels orbitals and σ = {↑, ↓} spins. Ei 
corresponds to the on-site energies. Vαα′ (V ′′

αα′ ) are the hop-
ping integrals between nearest (next-nearest) lattice sites (we 
keep this notation in order to be consistent with [50]). VField 
is a potential due to perpendicular electric field. In this case, 
atoms on two distinct sublattices are affected differently by 
the external field; on-site potentials of the atoms of two sublat-
tices are different. The absolute value of the potentials on each 
sublattice does not matter, only their difference. Thus, without 
loss of generality, we can model its effect by adding potentials 
on two sublattices with opposite signs, VR

Field = −VG
Field, on 

i ∈ R and i ∈ G  sites of two sublattices in a lattice indicated 
by red and green color in figure 1. The last term is the SOC 
with a strength λ. According to Chadi [52], 1/3 factor is intro-
duced to renormalized atomic SOC in order to obtain correct 
SOC splitting of the valence band.

Similarities between Bi and Sb crystals can be seen by 
looking at Slater–Koster parameters listed in table  1, taken 
from [50]. Most of the parameters differ by less than 15%. 
The only significant change is in the spin–orbit coupling con-
stant λ, 2.5 times larger in bismuth. Thus, a transition from 
QSH insulating phase to trivial insulator with increasing x 
in Bi1−xSbx is related, in general, to a decrease of spin–orbit 
coupling constant. While there can be some concerns related 
to application of the virtual crystal approximation (VCA), 
we note that more correct approach would require develop-
ment of ab initio like tight-binding model, which is beyond 
the scope of our study. However, VCA is commonly used by 

Figure 1. Lattice structure of Bi and Sb bilayer. (a) Top view of 
a ribbon with a zigzag edge termination of width Ny and periodic 
boundary conditions in x direction. Four atoms are within the 
unit cell of a ribbon. a the is lattice constant, 0 labels a unit cell, 
while  −1 and 1 denote left and right neighboring cells, respectively. 
Red and green colors distinguish two sublattices forming a 
honeycomb lattice. The system can be divided into two halves A 
and B, with a cut marked by a dashed line, in order to evaluate 
entanglement measures. (b) Side view of a bilayer. h corresponds to 
the bilayer thickness.

J. Phys.: Condens. Matter 30 (2018) 125501
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other authors, giving also the results in good agreement with 
the experiment, see [53].

2.2. DFT stability calculations of Bi1−xSbx alloys

We investigate the stability of Bi1−xSbx alloys with different 
composition x. This requires consideration a supercell of one 
of the monocrystals with one or more atomic sites replaced 
by the other compound. 3 × 3 × 1 supercells were used for 
modeling of Bi1−xSbx mixed crystals. We have modeled 
Bi0.72Sb0.28 and (Bi0.28Sb0.72) mixed crystals with the last two 
alloys corre sponding to 13 Bi(Sb) and 5 Sb(Bi) atoms in an 
18 atoms unit cell. We note that such a choice of composition 
allows us to verify stability of the crystal around 25% with a 
more irregular atomic substitution in a supercell, which can 
better confirm the structure stability for arbitrary value of x. 
We note that more detailed analysis of the Bi1−xSbx crystal 
stability would require analysis of all possible configurations 
of Sb atoms in large unit cells, comparison of their total ener-
gies and choosing the lowest ones for every composition x. 
These computationally demanding studies are not strictly 
related to the subject of this work.

DFT calculations have been performed in ABINIT soft-
ware [54] using the LDA exchange–correlation functional. 
The Bi and Sb atoms were modelled by fully relativistic 
PAW sets. The plane wave basis cut-off was 20 Ha and the 
Monkhorst–Pack k-point grid was set to 10 × 10 × 1. The 
structures were fully relaxed until the interatomic forces were 
lower than 10−8 Ha/Bohr. The phonon calculations were 
performed in Phonopy software [55] which implements the 
Parlinski–Li–Kawazoe method that is based on the supercell 
approach with the finite displacement method [56]. Phonon 
band structures were calculated along Γ-M-K-Γ path in the 
reciprocal space. The supercells of given size are commen-
surate with all the q-vectors of the high symmetry points in a 
hexagonal Brillouin zone (BZ) [57].

Phonon dispersions for Bi0.72Sb0.28 and Bi0.28Sb0.72 mixed 
crystals are shown in figure 2. The multiple phonon branches 
are the consequence of folding of the phonon states in the 
supercell first BZ. We observe no imaginary phonon modes, 
which confirms the structural stability. We have also verified 
structural stability of Bi0.5Sb0.5 crystals (not shown here), in 
agreement with recent results presented in [58]. Thus, we con-
firmed that mixed Bi1−xSbx 2D bilayers are stable, at least for 

some of different compositions x, which was shown before 
only for bulk 3D materials.

2.3. Entanglement measures for free-fermion systems

Quantum correlations between parts of the composite system 
can be studied quantitatively by means of entanglement mea-
sures [59]. Suppose the system is bipartited into two equal 
spatial parts, A and B, as in figure 1(a). Information about the 
part A is encoded into reduced density matrix ρA. In particular, 

Table 1. Tight-binding parameters for Bi and Sb taken from [50, 15]a, [34]b. d1 denotes nearest-neighbor distance between sites in a 
honeycomb lattice.

Parameter (eV) Bi Sb Parameter (eV) Bi Sb

Es −10.906 −10.068 Vppπ −0.600 −0.582
Ep −0.486 −0.926 V ′′

ssσ 0 0
Vssπ −0.608 −0.694 V ′′

spσ 0 0
Vspσ 1.320 1.554 V ′′

ppσ 0.156 0.352
Vppσ 1.854 2.342 V ′′

ppπ 0 0

λ 1.5 0.6
a (Å) 4.53 4.30 h (Å) 1.58a 1.64b

d1 (Å) 3.062 2.902

Figure 2. Phonon dispersion of (a) Bi0.28Sb0.72 and (b) Bi0.72Sb0.28 
mixed crystals. Lack of modes with imaginary frequencies indicates 
stability of the crystals.

J. Phys.: Condens. Matter 30 (2018) 125501
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ρA can be represented as ρA = e−HA/ZA, with ZA = Tr
(
e−HA

)
 

being the partition function. The matrix HA can be identified 
as the entanglement Hamiltonian and defined as a logarithm 
of thermal reduced density matrix at the fictitious temperature 
T  =  1, HA = − log ρA + c, where c is a normalization con-
stant. Therefore, the entanglement spectrum is defined as a set 
of eigenvalues of HA denoted by {ξ}.

Entanglement measures for free fermionic lattice systems 
can be computed from the two-point correlation function 
restricted to the subsystem [60]

Cαβ
ij = Tr

(
ρAc†iαcjβ

)
, (2)

where i, j are lattice indices within the subsystem A and α,β  
label orbitals or spins. If system is translationally-invariant, 
the Hamiltonian H can be written in the momentum space 

with the many-body ground state in a form |GS〉 =
∏

n,k a†nk|0〉 
with operators a†

nk corresponding to creation a particle with 
momentum k and n running over the occupied single-par-
ticle Bloch states. The Hamiltonian decouples into irreduc-
ible representations labeled by the conserved momentum 
k and can be diagonalized independently for each k value. 
Hence, the correlation matrix can be evaluated via form ula 
Cαβ

ij (k) = 〈GS|c†iαkcjβk|GS〉, where k labels different 
momentum sectors, but is not a basis transformation index. 
C(k) is a Hermitian matrix and can be regarded as a spectrally 
flattened physical Hamiltonian with eigenvalues (denoted 
by {ζk}) falling between 0 and 1. Most of the eigenvalues 
in the spectrum of C(k) lie exponentially close to either 1 or 
0, depending whether bulk states are fully localized in the 
subsystem A or B, respectively, and do not contribute to the 
entanglement entropy. However, states crossing the partition 
boundary give rise to non-zero entanglement entropy. If the 
Hamiltonian describes a topologically non-trivial Z2 phase in 
2D, C(k) will reveal the spectral flow associated with con-
tinuous set of intermediate eigenvalues [42, 46]. A relation 
between {ζk} and the spectrum of HA(k) labeled by {ξk} is 
following

ζk =
(
1 + eξk

)−1
. (3)

Due to this one-to-one correspondence, we refer to eigenvalues 
of the correlation matrix as the single-particle entanglement 
spectrum, which is a conventional practice in the literature 
[42, 45, 46]. Entanglement entropy [61, 62] is given by

SA = −
∑

a

(ζa log ζa + (1 − ζa) log (1 − ζa)) , (4)

where a is index running over all eigenvalues of C. SA can be 
calculated [63] by summing over the entanglement entropy 
for each k-point with a normalization factor being the number 
of unit cells SA = 1/Ny

∑
k SA(k).

It was also shown that the trace of C corresponding to 
the subsystem A called trace index is equivalent to the topo-
logical invariants for AII and A symmetry classes [45, 64]. 
Counting the discontinuities in the trace index provides a 
method to extract Z2 invariant. Physical edge states in the bulk 
gap that cross the Fermi level translate into discontinuities in 

the Tr C(k), thus trace index would not be applicable in the 
absence of boundary modes.

3. Entanglement spectra of pure Bi and Sb

3.1. Bi and Sb infinite bilayers

In figures  3(a) and (b) energy band structures of Bi and 
Sb infinite bilayers are shown. Both materials have well-
defined band energy gaps around the Γ point. Two band 
structures are inverted with respect to each other. The con-
cept of topological band inversion is usually confirmed by 
comparing orbital composition at a high-symmetry point 
in the BZ. In the case of bismuth and antimony, both con-
duction and valence band are made mostly from p orbitals. 
Here, the SOC-driven band inversion can be determined 
by measuring the degree of mismatch between the occu-
pied band projection operators with and without SOC by 
the so-called spin–orbit spillage, see [65]. We determine 
topological properties by calculating the Z2 invariant for 
inversion-symmetric systems, according to the method 
from [6]. The non-trivial topology of Bi is confirmed as 
well by observation of the spectral flow in the entangle-
ment spectrum of the reduced 1D BZ along the cut of the 
system into two parts, shown in figure 3(c). This feature is 
not manifested in the case of Sb, which indicates its trivial 
nature in figure 3(d).

3.2. Bi and Sb in a ribbon geometry

We consider a system in a ribbon geometry with periodic 
boundary conditions in x direction, where Ny denotes a width 
of the strip. Calculations are performed for the systems with 
Nat = 48 atoms. We divide the system into two parts with a 

Figure 3. Energy band structures of (a) Bi and (b) Sb infinite 
bilayers. (c) and (d) are corresponding entanglement spectra, with 
an evidence of non-trivial topology of Bi seen as a spectral flow, not 
exhibited for Sb.

J. Phys.: Condens. Matter 30 (2018) 125501
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cut parallel to the physical edges as depicted in figure 1(a). 
The considered system size ensures that two opposite edges of 
the system are sufficiently far that no hybridization between 
potential edge states is expected and edge modes would be 
perfectly confined within the subsystems.

Figure 4 compares energy spectra in the vicinity of the 
Fermi level ((a) and (b)), single-particle entanglement spectra 
((c) and (d)) and trace indices ((e) and (f)) of Bi and Sb zigzag 
ribbons, respectively. We look at the features characteristic 
of non-trivial and trivial phases. Edge states spectrally con-
necting the conduction and valence bands are observed in 
the Bi bilayer, figure 4(a), which is typical of the TI regime. 
It is in contrast to almost flat-band edge states in Sb exhib-
ited in the middle of the energy band gap and presented in 
figure 4(b). Entanglement spectra for a zigzag ribbon do not 
differ in comparision to the infinite case in figures 3(c) and 
(d). It was shown in [46] that the entanglement spectrum of 
the subsystem is strictly related to the energy spectrum of the 
spectrally flattened Hamiltonian with open boundary condi-
tions. Thus, the presence of the edge states in the energy gap 
of the energy spectrum is revealed in entanglement spectra, 
in both nontrivial figure  4(c) and trivial figure  4(d) cases. 
We note that ζ = 0.5 values mid-gap states in entanglement 
spectra are associated with the inversion symmetry present in 
the system.

We highlight that Bi armchair ribbons posses an extra pair 
of edge states in the energy gap, which lead to spurious modes 

in the single-particle entanglement spectra, but the subse-
quent conclusions would remain the same for both edge ter-
minations. Topological properties can be also determined by 
counting the number of trace discontinuities in half the BZ 
mod 2, which is related to Z2 invariant [45]. In figure 4(e) there 
is only one jump discontinuity by 1 in kx ∈ [0,π], which leads 
to nontrivial topological invariant Z2 = 1. On the contrary, 
two discontinuities in half the BZ are noticed in figure 4(f), 
hence Z2 = 0.

4. Topological phase transitions

4.1. Composition-induced phase transition in Bi1−xSbx

We investigate the transition to a trivial phase as the compo-
sition of antimony in Bi1−xSbx alloy increases. We consider 
a system in a torus geometry by applying periodic boundary 
conditions to the ribbon presented in figure  1(a) also along 
the y direction. Dividing the system into two spatial parts 
introduces two boundaries and results in a spectral symmetry 
as all the single-particle entanglement spectra eigenvalues 
come in pairs [66]. Three different size systems are exam-
ined: Ny = 7, 10, 13, corresponding to Nat = 28, 48, 52 
atoms, respectively. Using virtual crystal approximation, we 
effectively change the values of hopping integrals between all 
lattice sites tx = (1 − x) · tBi + x · tSb, where tBi/Sb are param-
eters from table 1.

Firstly, we look at the dependence of the energy band gap 
at k  =  0 on the alloy composition, shown in figure 5(a). The 
energy gap of pure Bi (x  =  0) is Egap = 0.3 eV. Finite-size 
effects are noticed in the range of small amounts of anti-
mony as a kink in the energy gap evolution around x ∼ 0.12 
for a system with Nat = 28. The energy gap decreases with 
an increase of Sb concentration x and closes at x  =  0.243 
regardless of the system size. It reopens again as the system 
transits from TI to a trivial phase and increases linearly up to 
Egap = 1.2 eV for pure Sb. The band gap closing point corre-
sponds to topological phase transition and is in an agreement 
with calculations done for infinite 2D crystal. We note that 
single-particle ES for different Sb composition x before and 
after phase transition (not shown here) do not differ qualita-
tively in comparison to pure Bi and Sb in figures 3(c) and (d).

Figure 5(b) presents dependence of the entanglement 
entropy of subsystem A, SA, of the antimony composition in 
Bi1−xSbx alloy. Pure Bi is characterized by the largest value 
of the entanglement entropy, which decreases monotonically 
with x. A discontinuity at x  =  0.243 is observed for all system 
sizes and coincides with the energy band gap closing point 
seen in figure  5(a). After topological phase transition, the 
entanglement entropy SA still decreases to its minimal value 
for pure Sb.

4.2. Electric field-driven topological phase transition in Bi 
bilayer

We apply an external electric field perpendicular to a pure Bi 
bilayer and observe whether distinct features are observed in 
the entanglement entropy and single-particle ES. An increase 

Figure 4. (a) and (b) Energy spectra near the Fermi level, (c) and 
(d) the corresponding single-particle entanglement spectra, and (e) 
and (f) trace indices for bismuth (left panel) and antimony (right 
panel) ribbons, respectively. The Fermi level is marked by red 
dotted lines.

J. Phys.: Condens. Matter 30 (2018) 125501
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in VField leads to the energetic separation between two sublat-
tices and acts similar to staggered potential in the Kane–Mele 
model [67].

In figure 6(a), the energy band gap as a function of external 
potential VField is plotted. The energy band gap does not 
close completely due to the finite size effects even for a very 
wide torus with Nat = 52 atoms, but entanglement measures 
are able to detect when topological phase transition should 
occur. In the thermodynamic limit, the band gap closes at 
VField = 0.439 eV.

Figure 6(b) presents the entanglement entropy and (c) its 
first derivative with respect to VField. Entanglement entropy is 
a continuous function of VField, while ∂SA/∂VField is not. An 
inflection point in the entanglement entropy can be seen and 
corresponds to the band gap closure for the infinite system. 
The point is more clear as we increase the system size, as 
sharpness of the discontinuity in the derivative is strongly 
size-dependent. SA decreases rapidly with the electric field 
after the phase transition. In the large VField limit the entan-
glement entropy saturates to almost zero value (not shown 
here) as the states are fully localized on the lattice sites. This 
is related to the fact that increase of the electric field weakens 
effectively the interatomic interactions described by hopping 
integrals and the effect of SOC, which are responsible for the 
entanglement. In the large electric field limit, the energy scale 
of hopping integrals and SOC are relatively negligible, and in 

consequence there is no entanglement between two parts of 
the system.

We look also at single-particle entanglement spectra for 
different values of the VField, shown in figure 7(a) before (for 
VField = 0.24 eV) and (b) after (for VField = 0.54 eV) phase 
transition. It differs significantly comparing to pure Bi and 
Sb. For small values of VField, initially two-fold degenerate 
spectrum splits into two sets of branches as illustrated in 
figure 7(a). After the phase transition to a trivial phase, the 
spectral flow is no longer exhibited, figure 7(b). Furthermore, 
there are no more mid-gap states at ζ = 0.5, which indicates 
breaking of the inversion symmetry. For VField → ∞ the 
single-particle entanglement spectra consist only of 0’s and 
1’s, which corresponds to the non-interacting atomic limit.

Figure 5. (a) Band gap evolution at the k  =  0 point and (b) 
entanglement entropy as a function of antimony composition in 
Bi1−xSbx. The red arrow in (a) indicates the band gap closing point. 
Different background colors refer to non-trivial/trivial regime. The 
inset in (b) zooms into discontinuity of SA.

Figure 6. (a) Band gap evolution at the k  =  0 as a function of 
external potential VField. For a sufficiently wide system, the band 
gap closes at VField = 0.439 eV, which is indicated by a red arrow. 
(b) Entanglement entropy as a function of external potential and 
(c) derivative of SA with respect to VField. The derivative of the 
entanglement entropy becomes discontinuous at VField = 0.439 eV.

J. Phys.: Condens. Matter 30 (2018) 125501
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4.3. Strain-induced topological phase transition in the Sb 
bilayer

We consider a strain-induced phase transition in the Sb 
bilayer. A strain is modeled by scaling hopping integrals due 
to a change of bond lengths and angles. Following Harrison 

[68], the value of the hopping parameter Vαβ is modified as 

Vαβ = V0
αβ · (d/d0)

−n, where V0
αβ corresponds to values for 

the unstrained case from table 1, while d and d0 are new and 
unmodified bond lengths, respectively. Here, we investigate 
n  =  8 in order to enhance the effect of Vij strength modification.

In figure 8(a), the band gap evolution at k  =  0 as a func-
tion of strain is presented. The band gap decreases with a 

strain strength and closes at the critical value 13.8% of strain. 
Originally a trivial antimony bilayer undergoes the topological 
phase transition with the bond lengthening. Since strain affects 
all hopping integrals between lattice sites, the inversion sym-
metry is preserved. Similar to the composition-induced phase 
transition, a small discontinuity in the entanglement entropy 
in figure 8(b) coincides with the band gap closing point. Also, 
the structure of single-particle entanglement spectra before 
and after phase trans ition is almost the same as those pre-
sented in figures 3(c) and (d) (not shown here).

5. Summary and discussion

To conclude, we have examined 2D Bi1−xSbx bilayers. We 
have confirmed their structural stability for different compo-
sition x by calculations of phonon dispersion within a DFT 
framework. We have shown that Bi0.28Sb0.72 and Bi0.72Sb0.28 
thin films are structurally stable, in addition to pure bismuth 
and antimony bilayers, as well as Bi0.5Sb0.5, already discussed 
in the literature. Next, we have used entanglement entropy and 
entanglement spectrum to determine their topological prop-
erties and analyze topological phase transition. It has been 
shown that single-particle entanglement measures can pro-
vide supplemental information on topological properties of 
a system compared to electronic structure studies. We have 
shown that entanglement spectrum of topologically nontrivial 
Bi reveals a spectral flow, which is not present in trivial Sb. 
By considering a system in a ribbon geometry, we have shown 
also that topological properties of the system can be deter-
mined by looking at the trace index in half the BZ, which 
exhibit a single jump (odd) in a case of TI or two jumps (even) 
in a trivial case.

We have analyzed also phase transitions between topo-
logically non-trivial/trivial phase driven by antimony compo-
sition x in Bi1−xSbx, due to applied electric field in pure Bi, 
and strain in pure Sb. A phase transition resulting in a com-
position change occurs at x = 24.3%, which differs from a 
TI regime in 3D bulk Bi1−xSbx, reported for x ranging from 
7% to 22% [6]. We point out that in 3D the band inversion 
process occurs at the L point in the BZ, which maps onto M̄ 
point on the surface, while the band gap is observed at the 
Γ point in 2D. Composition- and strain-induced phase trans-
itions reveal a finite discontinuity in the entanglement entropy. 
In the case of electric field, a phase transition seems to have 
a different character as entanglement entropy remains a con-
tinuous function of the electric field strength, while its first 
derivative is discontinuous. We relate this difference to the 
breaking of inversion symmetry in the last case. We do not 
qualify whether we observe the first and second order phase 
transitions, respectively, as this requires more careful analysis, 
including behavior of correlation length at a phase transition 
point and we leave it for a further work.
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