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Energy spectra of fractional quantum Hall systems in the presence of a valence hole
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The energy spectrum of a two-dimensional electron gas~2DEG! in the fractional quantum Hall regime
interacting with an optically injected valence band hole is studied as a function of the filling factorn and the
separationd between the electron and hole layers. The response of the 2DEG to the hole changes abruptly at
d of the order of the magnetic lengthl. At d,l, the hole binds electrons to form neutral (X) or charged (X2)
excitons, and the photoluminescence~PL! spectrum probes the lifetimes and binding energies of these states
rather than the original correlations of the 2DEG. The ‘‘dressed exciton’’ picture~in which the interaction
between an exciton and the 2DEG was proposed to merely enhance the exciton mass! is questioned. Instead,
the low energy states are explained in terms of Laughlin correlations between the constituent fermions~elec-
trons andX2’s! and the formation of two-component incompressible fluid states in the electron-hole plasma.
At d.2l, the hole binds up to two Laughlin quasielectrons~QE! of the 2DEG to form fractionally charged
excitonshQEn . The previously found ‘‘anyon exciton’’hQE3 is shown to be unstable at any value ofd. The
critical dependence of the stability of differenthQEn complexes on the presence of QE’s in the 2DEG leads to
the observed discontinuity of the PL spectrum atn5

1
3 or 2

3 .
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I. INTRODUCTION

A number of experimental1–20 and theoretical21–37studies
of the optical properties of quasi-two-dimensional~2D! elec-
tron systems in high magnetic fields have been carried ou
the recent years. In structures where both conduction e
trons and valence holes are confined in the same 2D la
such as symmetrically doped quantum wells~QW’s!, the
photoluminescence~PL! spectrum of an electron gas~2DEG!
involves neutral and charged exciton complexes~bound
states of one or two electrons and a hole,X5e-h and X2

52e-h).10–20,29–35TheX2 can exist in the form of a numbe
of different bound states. In zero or low-magnetic fieldsB
<2 T in GaAs!, only the optically active spin-singletXs

2

occurs.29,34,35 Although it is predicted to unbind in theB
→` limit as a consequence of the ‘‘hidden symmetry’’ of a
e-h system in the lowest Landau level~LL !,21–23 the Xs

2 is
observed in the PL spectra even in the highest fields av
able experimentally (;50 T in GaAs!.14 A different X2

bound state is formed in a finite magnetic field: a nonrad
tive ~‘‘dark’’ ! spin-tripletXtd

2 .12,13 In contrast with an earlier
prediction,23 the Xtd

2 remains bound in theB→` limit,30,31

and the transition from theXs
2 to the Xtd

2 ground state is
expected atB'30 T ~in GaAs!.34,35 At even higher fields,
Laughlin incompressible fluid states of strongly bound a
long-lived Xtd

2 fermionic quasiparticles were predicted.32,33

Very recently, yet another boundX2 state has been
discovered34 in a strong~but finite! magnetic field: a radia-
tive ~‘‘bright’’ ! excited spin-tripletXtb

2 . The Xtb
2 has the

smallest binding energy but the largest oscillator strength
all X2 states, and dominates the PL spectrum at very h
magnetic fields.14
0163-1829/2000/63~4!/045303~14!/$15.00 63 0453
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The PL spectra of symmetric QW’s are not very useful
studying thee-e correlations in the 2DEG. In such system
the 2DEG responds so strongly to the perturbation create
an optically injected hole that the original correlations a
locally ~in the vicinity of the hole! completely replaced by
the e-h correlations describing anX or X2 bound state. The
PL spectra containing more information about the proper
of the 2DEG itself are obtained in bilayer systems, where
spatial separation of electrons and holes reduces the ef
of e-h correlations.24 The bilayer systems are realized e
perimentally in heterojunctions and asymmetrically dop
wide QW’s, in which a perpendicular electric field caus
separation of electron and hole 2D layers by a finite dista
d. Unlessd is smaller than the magnetic lengthl, the PL
spectra of bilayer systems show no recombination fromX2

states. Instead, they show anomalies1–7 at the filling factors
n5 1

3 and 2
3 , at which Laughlin incompressible fluid states38

are formed in the 2DEG, and the fractional quantum H
~FQH! effect39 is observed in transport experiments.

The bilayere-h system can be viewed as an example o
more general one in which the 2DEG with well-defined co
relations~e.g., Laughlin correlations atn5 1

3 ) is perturbed by
a potentialVUD of an additional charge~mobile, in case of a
valence hole!, with controlled characteristic strength~energy
scale! U and range~length scale! D. Although the layer sepa
ration d is the only adjustable parameter in ane-h system,
larger control over bothU andD is possible by replacing the
hole with a sharp electrode whose potential and dista
from the 2DEG can be tuned independently, as in a scann
tunneling microscope~STM!.40 In another similar system, a
charged impurity can be located at a controlled distance fr
the 2DEG.18,41,42 The 2DEG has its own characterist
©2000 The American Physical Society03-1
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lengths and energies, such as the average distance (;%21/2

5lA2p/n) and Coulomb energy of a pair of nearest ele
trons, or the energy gap«QE1«QH to create Laughlin quasi
particle excitations and the average separation between t
Therefore, different types of response of the 2DEG to a p
turbation VUD are expected, depending on the relation b
tweenU andD, and the characteristic lengths and energies
the 2DEG.

Although the properties of bilayere-h systems in the
FQH regime have been extensively studied in the past,23–28

the existing theory is by no means satisfactory. For exam
we argue that the suggestive concept of a ‘‘dres
exciton’’25,26 at small d is not valid, and that the ‘‘anyon
exciton’’27 is not the relevant quasiparticle for description
the PL spectra at larged. In the present work, the elementa
~‘‘true’’ ! quasiparticles~TQP’s! of the e-h system are iden-
tified at an arbitrary layer separationd. A unified description
of the response of the 2DEG to the perturbing potential of
optically injected hole is proposed, and a transition24 from an
e-h correlated~excitonic! to an e-e correlated~Laughlin!
phase atd'1.5l is confirmed. This transition has a pro
nounced effect on the optical spectra: at largerd, the discon-
tinuities occur atn5 1

3 and 2
3 , which allow for the optical

probing of the Laughlin correlations in the 2DEG.
At small layer separations (d,l), we show that the low-

est energy band ofe-h states does not describe a magneto
citon dispersion,23 and that the ‘‘dressed exciton’’ mode
proposed by Wanget al.25 and by Apalkov and Rashba26 is
not valid. Instead, the formation of~two-component! incom-
pressible fluid33,38,43e-X2 states in ane-h plasma is demon-
strated. The states previously misinterpreted as the dis
sion of a ‘‘dressed exciton’’ with an enhanced mass
shown to contain anX2 interacting with a quasihole~QH! of
such incompressible fluid. The list of possible bound sta
~TQP’s! of the system atd,l includes theX state, different
X2 states, and theX2QHn states in which one or two QH’s
of the e-X2 fluid are bound to anX2. Which of the TQP’s
occur at the lowest energy depends critically ond andn.

The dependence of the excitation energy gap of the
compressiblee-X2 states ond is also studied. The enhance
ment of the gap at smalld.0 is predicted for some state
Combining the present result with Ref. 34, we find th
Laughline-X2 correlations, which isolate theX2’s from the
surrounding 2DEG, survive~or are enhanced! at smalld for
all of Xs

2 , Xtd
2 , andXtb

2 states. Hence, the understanding
the PL spectra in terms of weakly perturbedX2 states re-
mains valid atd,l.

At large layer separations (d.2l), following the work of
Chen and Quinn,28 we study the formation and properties
fractionally charged excitons~FCX’s!, or ‘‘anyonic ions,’’
hQEn consisting ofn Laughlin quasielectrons~QE’s! of the
2DEG bound to a distant hole. We give a detailed analysi
all FCX complexes in terms of their angular momenta a
binding energies. The pseudopotentials44,45 ~pair energy as a
function of pair angular momentum! describing interactions
between the hole, electrons, and the Laughlin quasiparti
are calculated. Using the knowledge of the involved inter
tions, we predict the stability ofhQE andhQE2 complexes
04530
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and explain the behavior of their binding energy as a fu
tion of the layer separationd. Somewhat surprisingly, the
hQE3 complex is found unstable at any value ofd.

The general analysis sketched above is illustrated with
energy spectra obtained in large-scale numerical diagona
tion of finite systems on a Haldane sphere.49,50 Using
Lanczos-based algorithms,51 we were able to calculate th
exact spectra of up to nine electrons and a hole at the fil
factorsn' 1

3 . Since our numerical results obtained for fair
large systems can serve as raw ‘‘experimental’’ input
further theories, we discuss them in some detail in the
section. They agree with all our predictions made through
the paper.

Although in the present work we study a very ideale-h
system in the lowest LL, our most important conclusions
qualitative, and thus apply without change to realistic s
tems. To obtain a better quantitative agreement with part
lar experiments, the effects due to the LL mixing~less im-
portant atd>2l) and finite QW widths must be included i
a standard way~see, e.g., Ref. 34 ford50). Some of our
conclusions should also shed light on the physics of ot
related systems, such as the STM. In particular, the scree
of a potential of a sharp electrode by a 2DEG is expected
involve ‘‘real’’ electrons whenU is large andD is small, and
Laughlin quasiparticles in the opposite case. An asymme
between the response of a 2DEG to a positively and ne
tively charged electrode is expected in the latter case,
cause of very different QE-QE and QH-QH interactions
short range. Let us also add that the problem atn5 2

3 is
equivalent to that atn5 1

3 because of the charge-conjugatio
symmetry in the lowest LL.

The presented identification of bound states (X, X2,
X2QHn , andhQEn) in e-h systems at an arbitraryd and the
study of their mutual interactions is necessary for the corr
description of the PL from the 2DEG in the FQH regim
While the complete discussion of the optical properties of
bound e-h states will be presented in a followin
publication,46 let us mention that the translational invarian
of a 2DEG results in strict optical selection rules for bou
states@analogous to those forbidding emission from an is
lated Xtd

2 ~Refs. 31–33!#. As a result,h ~the ‘‘uncorrelated
hole’’ state!, hQE* ~an excited state of anh-QE pair!, and
hQE2 are the only stable radiative states at larged, while the
recombination ofhQE ~the ground state of anh-QE pair! or
of ~unstable! hQE3 is forbidden. Different optical propertie
of different hQEn complexes and the critical dependence
their stability on the presence of QE’s in the 2DEG expla
the discontinuities observed1–7 in the PL atn5 1

3 or 2
3 .

II. MODEL

We consider a system in which a 2DEG in a strong m
netic field B fills a fraction n,1 of the lowest LL of a
narrow QW. A dilute 2D gas of valence-band holes (nh
!n) is confined to a parallel layer, separated from the el
tron one by a distanced. The widths of electron and hole
layers are set to zero~finite widths can be included throug
appropriate form-factors reducing the effective 2D intera
tion matrix elements34!, and the mixing with excited electron
3-2
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and hole LL’s is neglected. The single-particle statesum& in
the lowest LL are labeled by orbital angular momentum,m
50, 21, 22, . . . for the electrons andmh52m50, 1, 2,
. . . for the holes. Sincenh!n and no bound complexe
involving more than one hole~such as biexcitonsX2
52e-2h) occur at largeB, the h-h correlations can be ne
glected and it is enough to study the interaction of the 2D
with only one hole. The many-electron–one-hole Ham
tonian can be written as

H5(
i jkl

~ci
†cj

†ckclVi jkl
ee 1ci

†hj
†hkclVi jkl

eh !, ~1!

wherecm
† (hm

† ) andcm (hm) create and annihilate an electro
~hole! in stateum&. Because of the lowest LL degeneracy,H
includes only thee-e and e-h interactions whose two-bod
matrix elementsVee and Veh are defined by the intra- an
interlayer Coulomb potentials,Vee(r )5e2/r and Veh(r )5
2e2/Ar 21d2. The convenient units for length and ener
are the magnetic lengthl and the energye2/l, respectively.
At d50, the e-h matrix elements are equal to thee-e ex-
change ones,Vi jkl

eh 52Vik jl
ee , due to the particle-hole symme

try, and atd.0 the e-h attraction is weaker than thee-e
repulsion~at short range!.

The 2D translational invariance ofH results in conserva
tion of two orbital quantum numbers: the projection of to
angular momentumM5(m(cm

† cm2hm
† hm)m and an addi-

tional angular momentum quantum numberK associated
with partial decoupling of the center-of-mass motion of
e-h system in a homogeneous magnetic field.47,48 For a sys-
tem with a finite total charge,Q5(m(hm

† hm2cm
† cm)eÞ0,

the partial decoupling of the center-of-mass motion me
that the energy spectrum consists of degenerate LL’s.47 The
states within each LL are labeled byK50, 1, 2, . . . and
all have the same value ofL5M1K. Since bothM andK
~and hence alsoL) commute with the PL operatorP, which
annihilates an optically active~zero-momentum,k50) e-h
pair ~exciton!, M, K, and L are all simultaneously con
served in the PL process.

The effects associated with finite~short! range correla-
tions ~such as formation and properties of bound states! can
be studied in finite systems by exact numerical diagonal
tion, provided that the system sizeR can be made larger tha
the characteristic correlation lengthd ~i.e., the size of the
bound state!. Numerical diagonalization ofH for finite num-
bers of electrons (N5(mcm

† cm) and holes (Nh5(mhm
† hm)

in a finite physical space~area! requires restriction of single
particle electron and hole Hilbert spaces to a finite size
the planar geometry, inclusion of only a finite number
electron and hole states in the calculation~states withm only
up to certain valuemmax) breaks the translational symmet
and the conservation ofK. A finite dispersion of calculated
LL’s, which disappears only in themmax→` limit, hides the
underlying symmetry of the modeled~infinite! system. Also,
the calculated PL oscillator strengths do not obey the ex
DK50 optical selection rule that holds in an infinite syste

More informative finite-size spectra are obtained here
ing Haldane’s geometry,49 where electrons and holes a
04530
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confined to a spherical surface of radiusR and the radial
magnetic field is produced by a Dirac monopole. The rea
for choosing the spherical geometry for the calculations
strictly technical and of no physical consequence for the
sults. Finite area~and thus finite LL degeneracy! of a closed
surface results in finite size of the many-body Hilbert spa
obtained without breaking the 2D translational symmetry
a plane~which is preserved in the form of the 2D group
rotations!. The exact mapping34,52between quantum number
M andK on a plane, and the 2D algebra of the total angu
momentumL on a sphere allows investigation of effec
caused by those symmetries~such as LL degeneracies an
optical selection rules! and conversion of the numerical re
sults back to the planar geometry. The price paid for clos
the Hilbert space without breaking the symmetries is the s
face curvature that modifies the interaction matrix eleme
Vi jkl

ee andVi jkl
eh . However, if the correlation lengthd can be

made smaller thanR ~as happens for both Laughlin correla
tions in FQH systems and for bound states!, the effects of
curvature are scaled by a small parameterd/R and can be
eliminated by extrapolation of the results toR→` ~in a simi-
lar way, as the results obtained in the planar geometry ca
extrapolated tommax→`).

The detailed description of the Haldane sphere model
be found for example in Refs. 49, 50, and 53~see also Refs.
32–34 for application toe-h systems! and will not be re-
peated here. The strength 2S of the magnetic monopole is
defined in the units of flux quantumf05hc/e, so that
4pR2B52Sf0 and the magnetic length isl5R/AS. The
single-particle states are the eigenstates of angular mom
tum l>S and its projectionm, and are called monopole ha
monics. The single-particle energies fall into (2l 11)-fold
degenerate angular momentum shells~LL’s !. The lowest
shell hasl 5S and thus 2S is a measure of the system siz
through the LL degeneracy. The charged many-bodye-h
states form degenerate total angular momentum (L) multip-
lets ~LL’s ! of their own. The total angular momentum pro
jectionLz labels different states of the same multiplet just
K or M did for different states of the same LL on a plan
Different multiplets are labeled byL just as different LL’s on
a plane were labeled byL. The pair of optical selection
rules,DLz5DL50 ~equivalent toDM5DK50 on a plane!
results from the fact that an optically active exciton carr
no angular momentum,l X50.

It is clear that certain properties of a ‘‘strictly’’ spherica
system do not describe the infinite planar system that
intend to model. For example, if understood literally, fini
separationd between the electron and hole spheres wo
lead to different values of the magnetic length in the tw
layers, and thus introduce an asymmetry between elec
and hole orbitals~even in the lowest LL!. While this effect
disappears in theR→` limit, it is eliminated by formally
calculating the matrix elements of the interaction poten
Veh(r ) at any value ofd for electrons and holes confined t
a sphere of the same radiusR. This procedure justifies the
use of spherical geometry at arbitrarily large layer separa
~not only atd!R).
3-3
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III. BOUND ELECTRON-HOLE STATES
IN A DILUTE 2DEG

In order to understand PL from a 2DEG at arbitrary fillin
factor n and layer separationd, one must first identify the
bound complexes in which the holes~minority charges! can
occur. After these bound complexes are found and un
stood in terms of such single-particle quantities as to
chargeQ, binding energyD, angular momentuml, or PL
oscillator strength ~inverse optical lifetime! t21, a
perturbation-type analysis can be used to determine if th
complexes are the relevant~or ‘‘true’’ ! quasiparticles
~TQP’s! of a particulare-h system, weakly perturbed by in
teraction with one another and the surrounding 2DEG. If i
so, the low-energy states can be understood in terms of t
TQP’s and their interactions. The PL~emission! probes the
electron system in the vicinity of the annihilated hole a
therefore the optical properties of TQP’s determine the~low-
temperature! PL spectra of the system.

This type of analysis has been recently applied to thee-h
systems atd50 in the lowest LL,32,33and it showed that the
low-lying states contained all possible combinations
bounde-h complexes~excitonsX5e-h and excitonic ions
Xn

25nX-e) and excess electrons, interacting through eff
tive pseudopotentials. The short range of these pseudopo
tials yields Laughlin correlations between electrons and
citonic ions, which isolate the latter from the 2DEG a
make them act like well-defined TQP’s without internal d
namics. When applied to realistic symmetrically dopedd
50) QW’s at largeB and low density (n, 1

3 ), a similar
analysis showed34 that the observed PL spectra contain tra
sitions only from radiative bound states~in that case, spin-
singlet andexcitedspin-tripletX2 states! and explained why
the expected35 singlet-tripletX2 crossing was not observe
in some experiments.14

A. Hidden symmetry at zero layer separation

The exact particle-hole symmetry between electrons
valence holes in the lowest LL atd50 results from~i! the
identical electron and hole single-particle orbitals, scaled
the same characteristic lengthl, which yields equal strength
of e-e and e-h interaction matrix elements,Vi jkl

eh 52Vik jl
ee ,

and~ii ! no effects of different effective masses on scatter
because of the infinite cyclotron gap. This ‘‘hidden symm
try’’ results23 in the following commutation relation betwee
the Hamiltonian~1! and the PL operatorP † that creates a
k50 exciton,

@H,P †#5EXP †, ~2!

whereEX52Ap/2e2/l is the exciton energy in the lowes
LL and P †5(m(21)mcm

† hm
† ~on the Haldane’s sphere!. Be-

cause of Eq.~2!, a ‘‘multiplicative’’ ~MP! eigenstate ofH ~a
state containingNX neutral excitons with momentum zero!
can be constructed by application ofP † NX times to any
eigenstate of the interacting electrons. The excitons cre
or annihilated with operatorsP † andP ~i.e., by absorption or
emission of a photon! have the same energyEX that is inde-
pendent of other electrons or holes present. The numbeNX
04530
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of such ‘‘decoupled’’ excitons is conserved byH, only the
states withNX.0 are radiative, and the emission~absorp-
tion! governed by the selection ruleDNX521 (11) occurs
at the bare exciton energyEX .23

Somewhat surprisingly, it turns out28,30 that the ‘‘totally
multiplicative’’ eigenstate

uCNh
&5~P †!NhuC&, ~3!

obtained by adding the Bose-condensed ground state oNX
5Nh excitons each withk50 to the ground stateuC& of
excessN2Nh electrons, isnot alwaysthe ground state of the
combinede-h system. This results because the interaction
an excited excitonic state~i.e., one withkÞ0) of the Bose
condensate with the fluid of excess electrons can lower
total energy by more than the cost of creating the exci
excitonic state. Typically, a MP stateP †uF& created by op-
tical injection of ak50 exciton into a stateuF& is an excited
state, and the absorption is followed by relaxation to a d
ferent ~non-MP, i.e., nonradiative! ground state.

The condition under which the totally MP state in Eq.~3!
is thee-h ground state follows from the mapping23 onto the
↑–↓ ~spin-unpolarized electron! system, in whichuCNh

& cor-

responds to the↑-↓ state with the maximum spin. Sincen↑
512n andn↓5nh , and the 2DEG is spin-polarized~in the
absence of the Zeeman splitting! only at the Laughlin
fillings,54 the condition for the totally MPe-h ground state
uCNh

& is

n2nh512~2p11!21, ~4!

with p51, 2, . . . . At allother fillings~e.g.,n2nh5 1
3 ), the

ground state hasNX,Nh , i.e., contains a number of hole
that are bound in other~nonradiative! complexes thank50
excitons.

B. Charged exciton states

An example of a non-MPe-h ground state is the ‘‘dark’’
spin-triplet charged exciton (Xtd

2).30 The Xtd
2 is the only

bound 2e-h state in the lowest LL atd50. It is the most
stablee-h complex atnh<2n, but its binding energy de-
creases atd.0, when thee-h attraction ~at short range!
becomes smaller than thee-e repulsion. The dependence o
the 2e-h energy spectrum ond is shown in Fig. 1. The spec
tra are calculated in the spherical geometry for the LL d
generacy of 2S11541. The energy is measured from th
exciton energyEX , so that for the bound states~the states
below the dashed lines! it is the negative of theX2 binding
energy, DX25EX2E. Open and full symbols distinguish
singlet- and triplet-electron spin configurations, and ea
state withL.0 represents a degenerate multiplet withuLzu
<L. The Zeeman energy of the singlet states is not includ
The angular momentumL calculated on a sphere translat
into the angular momentum quantum numbers on a plan
such a way34,52 that each LL atL50, 21, 22, . . . ~con-
taining states withK50, 1, 2, . . . , i.e., with M5L2K
5L, L21, L22, . . .! is represented by a multiplet atL
5S1L. Thus, the low-energy multiplets in Fig. 1 atL
3-4
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520, 19, and 18 represent the planar LL’s atM<L50,
M<L521, andM<L522, respectively.

It is important to realize that the recombination of an is
lated Xtd

2 at d50 is forbidden because of two independe
symmetries.32–34 The DNX521 selection rule resulting
from the hidden symmetry, which allows recombinati
from a pair of MP states atL5S andE5EX only, is lifted at
d.0. However, the translational symmetry yielding cons
vation ofL andLz ~on a plane,M andK) holds at any value
of d. Because the electron left in the lowest LL after reco
bination hasl 5S (L50), only those 2e-h multiplets atL
5S (L50) are radiative. They are marked with shaded re
angles in all frames of Fig. 1. In larger systems contain
more than a singleX2, the translational symmetry is broke
by collisions, and weakXtd

2 recombination becomes possibl
The Xtd

2 binding energyDX
td
2, calculated by extrapolation

of data obtained for 2S<60, is about 0.052e2/l at d50
~very close to the value obtained earlier by Palacioset al.31

in the planar geometry!. As expected,DX
td
2 decreases with

increasing separation up tod'l, whenXtd
2 unbinds. Some-

what surprisingly, a new bound multiplet, a singletXsd
2 at

L5S22 (L522), occurs at finited. Its binding DX
sd
2

reaches maximum of about 0.013e2/l at d'0.8l. The Xsd
2

is a nonradiative~‘‘dark’’ ! state and should be distinguishe
from the radiative singlet stateXs

2 at L5S (L50), which is
the X2 ground state at low magnetic fields~and smalld).
The Xsd

2 is a 2e-h analog of the singletD2 state~two elec-
trons bound to a distant donor impurity! with the sameL5
22. A series of transitions between singlet and tripletD2

FIG. 1. The energy spectra~energyE vs angular momentumL)
of the 2e-h system on a Haldane sphere with the Landau le
degeneracy of 2S11541, for different values of the layer separ
tion d. The open and full circles distinguish states with singlet a
triplet electron-spin configurations.EX is the exciton energy andl
is the magnetic length.
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states with increasinguLu have been found when the distan
between the impurity and the electron layer were increase42

Bound states of larger excitonic ionsXn
25nX1e are also

possible at smalld. They all have completely polarized elec
tron and hole spins, and their binding energy,DX

n
25EX

1EX
n21
2 2EX

n
2, decreases with increasing size (n). The de-

pendence ofXtd
2 , Xsd

2 , andX2
2 binding energies~calculated

at 2S560) on separationd is shown in Fig. 2~a!. As it was
discussed in Sec. II, finite-size calculations give good
proximation to 2e-h energies only for the bound~finite-size!
states. While the binding energies are correct at the value
d for which D.0, they should asymptotically approach ze
for d→` instead of crossing it as in Fig. 2~a!. The average
e-e distancer ee5A^ree

2 & within the Xtd
2 andXsd

2 complexes
is plotted in Fig. 2~b!. BothX2 wave functions depend rathe
weakly ond in the range whereD.0 ~i.e., d<0.7l for Xtd

2

and 0.4l<d<1.2l for Xsd
2 ), but whend exceeds the critica

value (d50.8l for Xtd
2 and d51.3l for Xsd

2 ), r ee quickly
increases and theX2 unbinds into an exciton and an ele
tron. Similarly as for binding energies in Fig. 2~a!, we expect
the r ee curves in Fig. 2~b! to correctly describe theXtd

2 and
Xsd

2 states on an infinite plane only whenr ee is smaller than
R'5l.

IV. ELECTRON-HOLE STATES AT SMALL LAYER
SEPARATION: ELECTRON-CHARGED-EXCITON FLUID

A. Zero layer separation

In the following the 2DEG is assumed to be complete
spin-polarized because of large Zeeman splitting. We do
discuss effects due toXsd

2 and omit the spin subscript in th
triplet charged-exciton stateXtd

2 . It follows from Figs. 1 and
2 that X2 is the only spin-polarized bound 2e-h state atd
<l. SinceDX2.DX

2
2.DX

3
2. . . . in entire range ofd, the

excitonic ions larger thanX2 are unstable in the presence
excess electrons~e.g., X2

21e→2X2), and the low-lying
states atd,l and nh!n contain onlyX2’s and electrons
interacting with one another through effectiv
pseudopotentials.32,33 The pseudopotentialVeX2(L) ~the
e-X2 pair interaction energyV as a function of pair angula

l

d

FIG. 2. The binding energyD of the triplet- and singlet-charged
exciton states,Xtd

2 andXsd
2 , and of the charged biexciton,X2

2 , as a
function of layer separationd. EX is the exciton energy andl is the
magnetic length.
3-5
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momentumL) at d50 was shown33 to satisfy the ‘‘short
range’’ criterion45 at those values ofL that correspond to odd
‘‘relative’’ pair angular momentaR5 l e1 l X22L (R is
equal to the usual relative pair angular momentumm on a
plane!. As a result, generalized Laughlin correlations d
scribed in the wave function by a Jastrow prefactor) i j (ze

( i )

2zX2
( j ) )meX2 with even exponentsmeX2 occur in the two-

componente-X2 fluid. At certain values of the electron an
hole filling factor, these correlations result in incompressib
ity. For example, the@meemX2X2meX2#5@332# ground
state, first suggested by Halperin43 for the ↑2↓ spin fluid,
has been found numerically in the 8e-2h system.33 A gener-
alized ~multi-component! mean-field composite fermion
~CF! model has been proposed33 to determine the bands o
lowest-energy states at anyn andnh . In this model, effective
CF magnetic fields of different type~color! result that cannot
be understood literally. Rather, the model relies on t
simple facts:33,45 ~i! in the low-energy states of Laughlin
correlated many-body systems, a number of strongly re
sive pair states at the smallestR are avoided for each type o
pair ~here,e-e ande-X2); ~ii ! the states satisfying the abov
constraint can be found more easily by noticing that
avoiding of pair states with the smallestR is equivalent to
the binding of zeros of the many-body wave function~vorti-
ces!, which can be reproduced~for the purpose of multiplet
counting! by attachment of magnetic fluxes.

Let us apply the CF model to the system containingN
electrons and only one hole. While the correct picture of t
simple system is essential for understanding the natur
low energy states and~low-temperature! PL of a 2DEG in
the FQH regime, it has been interpreted incorrectly in a nu
ber of previous studies.27 In Fig. 3 we show the energy spec
tra for N57, 8, and 9 and 2S corresponding ton' 1

3 . The
full dots mark the multiplets obtained in the exact diagon
ization of theNe-h system and the open circles mark the M
states~with an l X50 exciton decoupled from theN21 elec-
tron fluid!.

In Figs. 3~a!, 3~c!, and 3~d! the N21 electrons in the
lowest energy MP state atL50 form the Laughlinn5 1

3

ground state. In Fig. 3~b!, there is one Laughlin quasihole i
the lowest MP state atL53. The non-MP low-energy state
in all frames contain anX2 with angular momentuml X2

5S21 andN22 electrons each withl e5S. The CF picture
in which two magnetic fluxes are attached to each particl
model the avoiding of theRee<2 andR eX2<1 pair states
yields effective angular momenta ofl e* 5 l e2(N22) and
l X2* 5 l e* 21. In Figs. 3~a!, 3~c!, and 3~d! the N22 electrons
leave one Laughlin quasihole (QHe) with angular momen-
tum l QHe

5 l e* in their (2l e* 11)-fold degenerate CF leve

and the X2 becomes a single Laughlin ‘‘quasielectron
(QEX2) with l QEX25 l X2* . The allowed angular momentaL

of the QHe-QEX2 pair in the lowest-energy states of the
(N22)e-X2 systems are obtained by addingl QEe

and l QEX2

of two distinguishable particles. The result isL51, 2, . . . ,
N23. Indeed, the multiplets at these values ofL form the
lowest band of non-MP states in Figs. 3~a!, 3~c!, and 3~d!,
separated from higher states by dashed lines. The de
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dence of energy onL within these bands can be interprete
as the QHe-QEX2 pseudopotential, and its increase withL
means that it is attractive~for a pair of opposite charges,L
increases with increasing average separation!. Hence, theL
51 ground states in Figs. 3~a!, 3~c!, and 3~d! are the exci-
tonic bound states of a QHe-QEX2 pair in the Laughline-X2

fluid. In this state, a Laughlin QH type excitation of char
1 1

3 e is bound to theX2, and the total charge of theX2QH
state isQ52 2

3 . A similar analysis for Fig. 3~b! gives l e*
53 andl X2* 52, yielding two QHe’s each withl QHe

53 and

one QEX2 with l QEX252. The allowed values ofL for such

three particles are 12, 22, 33, 42, 52, 6, and 7, exactly as
found for the lowest non-MP states in Fig. 3~b!.

The strongest indication that the lowest-energy bands
non-MP states in Fig. 3 contain anX2 interacting with ex-
cess electrons comes from direct comparison of exactNe-h
energies~dots! with the approximate energies of the (N
22)e-X2 charge configuration~pluses!. The (N22)e-X2

energies are calculated using an effectivee-X2 pseudopoten-
tial and theX2 binding energy. Since the results depend
unknown details ofVeX2 ~due to the density-dependent p
larization of theX2 in the electric field of electrons!, we
make a~rough! approximation, and instead ofVeX2 use the
pseudopotential of two distinguishable point charges w
angular momental e and l X2. The obtained spectra are qui
close to the original ones and all contain the low-lying ban
as predicted by the CF model. A much better fit is obtain
for VeX2 including (N-dependent! polarization effects.

FIG. 3. The energy spectra~energyE vs angular momentumL)
of the coplanar (d50) Ne-h systems on a Haldane sphere with t
Landau level degeneracy of 2S11: ~a! N57 and 2S515, ~b! N
57 and 2S516, ~c! N58 and 2S518, and ~d! N59 and 2S
521. Full dots: exactNe-h spectra; open circles: multiplicative
states; pluses: approximate energies of (N22)e-X2 states. The
nonmultiplicative states below the dashed lines are (N22)e-X2

states with Laughlin-Halperin@3*2# correlations.l is the magnetic
length.
3-6
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It is apparent that only two types of states exhaust
entire low-energy spectra shown in Fig. 3: the MP sta
containing a decoupledl X50 exciton and the non-MP state
containing anX2. None of the low-energy states can b
understood in terms of an excited (l XÞ0) exciton interacting
with the excessN21 electrons. In particular, the bands
lowest-energy states atL51, 2, . . . , N23 in Figs. 3~a!,
3~c!, and 3~d! do not describe dispersion of a so-call
‘‘dressed exciton’’X* ~charge neutral exciton with an en
hanced mass due to the coupling to QE-QH pair excitati
of the Laughlinn5 1

3 fluid of N21 excess electrons! as first
suggested by Apalkov and Rashba26 and reviewed in subse
quent papers. It is much more informative to interpret th
e-h states in terms of a well-definedX2 particle~with speci-
fiedQ52e, l 5S21, orL521, D as plotted in Fig. 2, and
t2150) interacting with excess electrons through t
well-defined32,33 pseudopotentialVeX2 yielding well-defined
Laughlin-Jastrowe-X2 correlations and Laughlin quasipa
ticle excitations of a two-component incompressible ‘‘refe
ence’’ state, than to say thatkÞ0 exciton is coupled in an
undefined way to the Laughlin quasiparticles of an elect
n5 1

3 state. The ‘‘dressed exciton’’ picture is simply wron
in describing the nature of the TQP of the system. For
ample, theX* has zero charge and continuous energy sp
trum instead ofQ52e and Landau quantized orbits of a
X2. The reason why the suggestive idea of anX* does not
work is that the coupling of akÞ0 exciton ~which has a
nonzero in-plane electric dipole momentm}k) to electrons
is too strong to be treated perturbatively.

B. Small layer separation

The knowledge of the nature of the TQP’s of any syst
is essential for understanding its response to an external
turbation. Since anX* is expected to behave differently tha
an X2 when electron and hole layers are separated, the
correct assumption of the ‘‘dressed exciton’’ picture atd
50 must result in incorrect interpretation of thee-h states at
d.0 as well.

At a small layer separationd,l, all bound e-h states
acquire a small electric dipole momentm, which is propor-
tional to d and oriented perpendicular the electron and h
planes. These dipole moments result in a repulsive dip
dipole interaction betweene-h complexes, which is propor
tional to d2/r 3 at distancer @d. While the electron-dipole
e-X repulsion is the reason for the decrease of the bind
energy of an isolatedX2 at 0,d!l, it can slightly extend
the stability range of anX2 embedded in a 2DEG~compared
to Fig. 2!.

In the range ofd values for which theX2 is bound, the
X2 dipole moment increases its total repulsion with electro
and otherX2’s. It is possible that this increased repulsio
could enhance the excitation gap of an incompressible fl
e-X2 state. Examples of different behavior of the gap a
shown in Fig. 4. In Fig. 4~a!, the 9e-h ground state atd
50.5l is the 7e-X2 state with@3*2# correlations (mX2X2 is
undefined for only oneX2). In the generalized CF picture
this state contains one QEX2 with l QE52 and a filled shell of
electron CF’s. In Fig. 4~b!, the 8e-2h ground state atd
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50.5l is the 4e-2X2 incompressible state@332#. In Fig.
4~c!, the 6e-3h ground state atd50.3l is the Laughlinn
5 1

5 state of threeX2’s ~here, pluses mark approximate 3X2

energies obtained by diagonalizing a system of three fer
ons each with energyEX2 and interacting throughVX2X2).
As shown in Fig. 4~d!, the excitation gaps of these thre
different Laughlin-correlated ground states behave diff
ently as a function ofd. In particular, the gap of then5 1

5

state ofX2’s increases significantly up tod50.7l.

V. ELECTRON-HOLE STATES AT LARGE LAYER
SEPARATION: HOLE WEAKLY COUPLED TO

ELECTRON FLUID

It was shown by Chen and Quinn28 that the opposite limit
of d@l is easier to understand than that ofd,l, because of
the vanishinge-h interaction. In this limit, the low-lying
states of the combined system are products of the Laugh
correlated 2DEG and the decoupled hole. The allowed an
lar momentaL of the lowest-energy band of the combine
e-h system result from addition of the angular momenta
the lowest-energy electron states~containing a number of
Laughlin quasiparticles! Le to the hole angular momentum
l h5S.

A decrease ofd to a few magnetic lengthsl does not yet
result in exciton binding because the length scaleD probed
by the potential of a distant hole exceeds the averagee-e

FIG. 4. ~a!, ~b!, and ~c! The energy spectra~energy E as a
function of angular momentumL) of electron-hole systems with
Laughline-X2 correlations:~a! 7e-X2 ground state with@3*2# cor-
relations in a 9e2h system at the layer separationd50.5l; ~b!
4e-2X2 incompressible ground state@332# in a 8e-2h system at
d50.5l; ~c! Laughlin n5

1
5 ground state of threeX2’s in a 6e-3h

system atd50.3l ~pluses show approximate 3X2 energies!. ~d!
The excitation gaps of ground states in frames~a!, ~b!, and~c! as a
function of d. l is the magnetic length.
3-7
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ARKADIUSZ WÓJS AND JOHN J. QUINN PHYSICAL REVIEW B63 045303
separation in the 2DEG. While thee-e interactions alone still
completely determine the~Laughlin! correlations of the
2DEG, the valence-band hole can now correlate with
quasiparticle excitations of the 2DEG due to their mu
lower density~compared to the electron density!. The hole
repels positively charged QH’s but can bind one or m
negatively charged QE’s~depending on the relative streng
of the h-QE and QE-QE interactions! to form fractionally
charged excitons~FCX!, or ‘‘anyonic ions,’’ hQEn .28 When
d is so large that the number of Laughlin quasiparticles in
2DEG is conserved by the weake-h interaction, a disconti-
nuity in the behavior of the system as a function of the m
netic field~or electron density! will occur at Laughlin filling
factors (2p11)21, because different types of TQP’s ca
form depending on whether QE’s are or are not present in
2DEG. The transition should be visible in PL, as the reco
bination of a free hole atn,(2p11)21 can be distinguished
from that of a hole bound into anhQEn complex at n
.(2p11)21.

VI. ELECTRON-HOLE STATES AT INTERMEDIATE
LAYER SEPARATION: FRACTIONALLY CHARGED

EXCITONS

The TQP’s of thee-h system at a particular layer separ
tion d are by definition the most stable bound complexes~the
ones with the largest binding energy! composed of smalle
elementary particles or quasiparticles: a valence hole and
ther electrons or Laughlin excitations of the 2DEG. To d
termine the most stable complexes at a particular value od,
the interactions between their subcomponents must be s
ied. Two-body interactions enter the many-body Hamilton
through their pseudopotentialsV(L), defined as the pair in
teraction energyV as a function of pair angular momentumL
~or another pair quantum number!.44,45 The e-e, e-h, QE-
QE, QH-QH, and QE-QH pseudopotentials are w
known44,45,55 and ~except fore-h) do not depend ond for
spatially separated electron and hole layers. The simple f
of single-particle wave functions in the lowest LL results
a very regular form ofVee(L) and Veh(L). On a sphere,
largerL corresponds to smaller~larger! average separation o
two charges of the same~opposite! sign, and thusVee in-
creases anduVehu decreases with increasingL.

The dependence ofVeh(L) on d can be expressed in term
of the effective strength (U) and range (D) of the Coulomb
potential of the hole~in its lowest-LL single-particle state!
seen by an electron. A measure ofU is the exciton binding
energyDX5Veh(0). Asshown in Fig. 5~a!, DX varies withd
roughly as DX(d)5(11d/l)21DX(0), which means that
the averagee-h separation in the exciton ground state
roughly r eh(d)5r eh(0)1d rather than Ar eh

2 (0)1d2. A
measure of the rangeD is an averagee-h distancer eh in the
exciton state whose energy is half of the binding energy
Fig. 5~b! we plot the normalized exciton pseudopotentials
a function of wave vector k5L/R. Since r eh is
proportional56 to k, and the valuek1/2 for which Veh(k1/2)5
2 1

2 DX in Fig. 5~b! increases roughly linearly withd, we
obtain the pair of relations,
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describing the perturbing potentialsVUD which can be
achieved in bilayere-h systems with differentd.

Laughlin quasiparticles have more complicated cha
density profiles than electrons or holes in the lowest LL. T
internal structure is reflected in the oscillations of the QE a
QH pseudopotentials at the values ofL corresponding to
small average separation between the QE or QH and
second particle. For example, despite Laughlin quasiparti
being charge excitations, neither QE-QE nor QH-QH int
action is generally repulsive.55,57 On the contrary, the QE2
molecule~the state with maximumL, i.e., minimum QE-QE
separation! is either the ground state or a very weakly excit
state of two QE’s~numerical results for finite systems are n
conclusive!.55

In order to calculate the pseudopotentialsVhQE(L) and
VhQH(L) associated with the interaction between Laugh
quasiparticles~QE or QH! of a n5 1

3 fluid and a hole moving
in a parallel plane separated by an arbitrary distanced, we
use the following procedure. A finiteNe-h system is diago-
nalized at the monopole strength 2S corresponding to a
single QE or QH in the 2DEG~in the absence of the inter
action with the hole!. To assure that the interaction betwe
the hole and the 2DEG is weak compared to the ene
«QE1«QH ('0.1e2/l for an infinite system! needed to create
additional QE-QH pairs in the 2DEG, the charge of the h
is set toe/e where e@1. This guarantees that the lowe
band ofNe-h states contain exactly one QE or QH intera
ing with the hole. The pseudopotentialsVhQE(L) and
VhQH(L) are calculated by subtracting from the lowe
eigenenergies the constant energy of the 2DEG and the
ergy of interaction between the hole and the uniform-den
n5 1

3 fluid, and multiplying the difference bye. If e is suf-
ficiently large, the pseudopotentials calculated in this w
@and shown in Figs. 6~a! and 6~b!# do not depend one and
describe the interaction between the hole of full charge1e
and the Laughlin quasiparticle.

FIG. 5. The normalized binding energy of a free excito
DX(d)/DX(0), as afunction of (11d/l)21 ~a!, and the normalized
electron-hole pseudopotentialsVeh(k)/(2DX) as a function of
wave vectork ~b!. d is the separation between electron and h
layers, andl is the magnetic length.
3-8
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A similar procedure has been used to calculate
pseudopotentialsVeQH(L) andVeQE(L) of the interaction be-
tween quasiparticles and an electron moving in a para
layer @Figs. 6~c! and 6~d!#, and the pseudopotentia
VhQEn

(L) and VeQEn
(L) involving the QE2 and QE3 mol-

ecules~Fig. 7!. From such calculation, the binding energi
and PL oscillator strengths of allhQEn FCX’s are obtained
to determine under what circumstances~layer separation,
density, temperature, etc.! various FCX’s can occur and con
tribute to the PL spectrum.

The pseudopotentials of a single QE and QH of a sev
electron fluid (N57) interacting with a hole or an electro
on a parallel layer are shown in Figs. 6~a! and 6~b! for a
number of different layer separationsd. The allowed pair
angular momentaL result from addition of individual angu
lar momenta of the quasiparticles,55 l QE5 l QH5N/2, and the
particles in the second layer,l e5 l h5S. Since the length
scaleD probed by the potential of the hole~electron! de-
creases when it is brought closer to the 2DEG, structure
pears ford,l in all pseudopotentials~at L corresponding to
small average separation!. For example, theh-QE ground
state ford,l occurs atL. l h2 l QE, i.e., not at the minimum
allowed averageh-QE separation. Similarly as in QE-Q
and QH-QH pseudopotentials55 @see also Figs. 6~e! and 6~f!
for N57], the oscillations of particle-quasiparticle pseud
potentials reflects structure in QE and QH charge densit

All pseudopotentials in Figs. 6 and 7 have been arbitra
shifted in energy so that they vanish for the pair state of
largest average separation. The more accurate estimate o
h-QE pseudopotential parameters at the two smallest va
of L, i.e., the binding energyD of the hQE andhQE* com-

FIG. 6. The pseudopotentials~pair energyV as a function of pair
angular momentumL) of the interaction between quasiparticle
@quasielectron~QE! and quasihole~QH!# of the seven-electron
Laughlin n5

1
3 state and an additional charge~electron or hole! on

a parallel layer separated byd. The QE-QE and QH-QH pseudopo
tentials forN57 are shown in inset frames~e!,~f!. «QE and«QH are
the QE and QH energies andl is the magnetic length.
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plexes with the smallest and the next smallest averageh-QE
separation~the hQE* complex is important in discussion46

of PL! gives the curves plotted in Fig. 8. The interaction
the 2DEG atn' 1

3 with an additional charge~hole or elec-
tron! can be considered weak only at aboutd.1.5l. In this
regime, the 2DEG responds to the perturbation introduced
a distant charge by screening it with already existing Lau
lin quasiparticles to form bound FCX’s,hQE, or eQH. A
discontinuity occurs atn5 1

3 , because the QE’s that can b
bound to a hole exist only atn. 1

3 , and the QH’s that can be
bound to an electron occur only atn, 1

3 . Fig. 8 shows that at
d,1.5l the energy ofh-QE ~ande-QH) attraction exceeds
«QE1«QH, and the QE-QH pairs are spontaneously crea
in the 2DEG to screen the hole~or electron! charge at any
value ofn' 1

3 .
Whether only one QE-QH pair will be spontaneously c

ated to formhQE, or if larger FCX’s will occur~e.g.,hQE
→hQE21QH) depends onVhQE2

and VhQE3
. SinceVQE-QE

has a minimum atL52l QE21 (R51) and a maximum at
L52l QE23 (R53), two or three QE’s can form QE2 or
QE3 molecules. Even if the QE2 and QE3 molecules are not
the absolute two- or three-QE ground states in the absenc
an additional attractive potential, they both will be met
stable due to the energy barrier atR53, i.e., a finite energy
gap to separate two QE’s. Both QE2 and QE3 can bind to a
hole, and~because of the barrier inVQE-QE) the resulting
FCX’s, hQE2, and hQE3, are expected to be quite stab
even atd@l.

The pseudopotentials describing interaction of the Q2
and QE3 molecules with a hole and an electron are shown
Fig. 7. Somewhat unexpectedly, they show that QE2 is more

FIG. 7. The pseudopotentials~pair energyV versus pair angular
momentumL) of the interaction between molecules consisting
two or three quasielectrons (QE2 and QE3) of the Laughlinn5

1
3

state and an additional charge~electron or hole! on a parallel layer
separated byd. «QE and«QH are the QE and QH energies andl is
the magnetic length.
3-9
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strongly attracted to the hole than QE3, which suggests tha
the hQE3 is not stable (hQE3→hQE21QE). Since the
h-QE2 attraction is also stronger thanh-QE in Fig. 6, both
hQE andhQE2 are stable FCX’s.

The binding energiesD of all hQEn complexes calculated
in the 8e-h system are plotted as a function ofd in Fig. 8.
The binding energyD of an hQEn state is defined as th
energy of attraction between the hole andn QE’s. For the
excitonic statehe @in which a hole binds a whole ‘‘real’’
electron to form ane–h pair weakly coupled to the remain
ing N21 electrons at 2S53(N22), i.e., atn5 1

3 ] with en-
ergyEhe , Dhe is defined as a difference betweenEhe and the
state in which the hole is completely decoupled from allN
electrons~which at 2S53(N22) form a state with three
Laughlin QE’s!. Note thatDhe is not equivalent to the bind
ing energy of a free exciton~it is not equal to thee-h attrac-
tion but also includes the energy needed to remove an e
tron from the Laughlin state so that it can be bound to
hole!.

ThehQE2 is the most strongly bound FCX in entire rang
of d ~at least up tod510l), and hence it is expected to form
in the presence of excess QE’s atn. 1

3 . It can be seen in Fig
8 thatDhQE2

.«QE1«QH at d,l, and two QE-QH pairs are

spontaneously created in the 2DEG to formhQE2 even at
n, 1

3 . However, at such smalld, neutral (X) and charged
excitons (X2) composed of a hole and one or two ‘‘real
electrons of charge2e ~rather than Laughlin QE’s of charg
2 1

3 e) are more stable complexes thanhQE2. The transition
from fractional to ‘‘normal’’ exciton phase occurs atd

FIG. 8. The binding energyD of fractionally charged excitons
hQEn as a function of layer separationd, calculated for the 8e-h
system with a fixed number of Laughlin quasiparticles in t
8e-electron system (e@1; see text!. l is the magnetic length. The
he state contains an exciton and originates from the multiplica
state atd50. In the shaded part of the graph, thehe has the largest
binding energy and thehQEn complexes do not form.
04530
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'1.5l, that is at the crossing ofDhQE2
andDhe in Fig. 8 ~the

shaded rectangle marks the ‘‘normal’’ exciton phase!.

VII. NUMERICAL ENERGY SPECTRA AT
INTERMEDIATE LAYER SEPARATION

The hypothesis of the existence of bound FCX sta
hQEn put forward in the preceding section was based so
on the analysis of theh-QE and QE-QE interactions betwee
the involved constituent particles. The binding energiesD
were calculated for the modelhQEn wave functions, neglect-
ing possible coupling to additional charge excitations
duced in the 2DEG. However, theh-QE attraction respon-
sible for thehQEn binding results from thee-h attraction
that, depending ond, can be too weak~compared to QE-QE
interaction! for the FCX’s to bind, or too strong~compared
to the Laughlin gap«QE1«QH) for the assumed FCX-2DEG
decoupling to hold. In the latter case, thehQEn states could
interact sufficiently strongly with the 2DEG to induce an
bind additional QE’s~as shown in Sec. VI, atd,l the bind-
ing of FCX’s becomes weaker than theX binding and the
transition to the ‘‘normal’’ excitonic phase occurs!.

To demonstrate that the FCX states indeed occur in
e-h system at appropriate values ofd, we have calculated the
Ne-h spectra as a function of both 2S andd. For the identi-
fied hQEn states, these calculations also show the effects
the coupling to the 2DEG on their binding energy~for the
optical lifetimes see Ref. 46! and establish thehQEn com-
plexes as valid TQP’s of thee-h system over a wide range o
d. Let us stress that although similar spectra~for smallerN)
have been studied before,23–28,32,33the present understandin
of the low-lying states in terms of theX2 andhQEn TQP’s
interacting with excess electrons is different and follo
from the discussion in the preceding sections.

Using a modified Lanczos algorithm, we were able
diagonalize Hamiltonians of dimensions beyond;106. This
allowed calculation of energy and PL spectra ofNe-h sys-
tems with N<9 and at the values of 2S up to 3(N21),
corresponding to the hole interacting with the Laughlinn
5 1

3 state ofN electrons. The examples of 9e-h spectra~en-
ergy E as a function of angular momentumL) are shown in
Fig. 9. The frames on the left and right show data forS
522 and 23, respectively, and the layer separationd/l varies
between 0.5 and 2. The low-lying states containing differ
X2QHn or hQEn quasiparticles are marked with lines an
open symbols.

Let us begin with the system at 2S522. At smalld, the
X2 occurs and the 7e-X2 fluid has Laughlin@3*2# correla-
tions. One can use the CF picture and calculate the effec
electron andX2 CF angular momenta,l e* 5S2(N22)54
andl X2* 5 l e* 2153. The seven electrons leave two Laugh
quasiholes QHe ~which we will denote here simply by QH!
each with angular momentuml QHe

5 l e* in their CF shell, and

the X2 becomes a single Laughlin ‘‘quasielectron’’ QEX2

~denoted simply byX2) with angular momentuml QEX2

5 l X2* . The two QH states can haveL2QH52l e* 2R51, 3, 5,
or 7. Adding allowed L2QH to l X2* gives allowed total

e
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X2-2QH angular momentaL50, 1, 23, 33, . . . , 9, and 10.
Indeed, these multiplets form the lowest-energy band
states atd<0.5l in Fig. 9~a!. The lowest state in this ban
~the 9e-h ground state! is the boundX2QH2 state, at angular
momentuml X2QH2

5u l QH2
2 l X2* u54. At d50 ~not shown!,

the X2QH2 state has lower energy than the lowest-MP st
~containing ak50 exciton decoupled from one Laughlin Q
of the eight-electron system! at the sameL54.

As seen in Figs. 9~c! and 9~d!, at d.l, the low-energy
band of states develops atL>4. These states contain a
hQE interacting with the second QE. Clearly, this interact
is attractive, because~i! VhQE-QE increases as a function ofL,
and~ii ! hQE and QE have opposite charge, and thus largeL
means larger average separation. The lowest state of
hQE-QE band is the boundhQE2 state, whose angular mo
mentuml hQE2

54 results from addition of twol QE5S2(N

21)1154 to obtainl QE2
57, and then adding to itl h5S

511. Note that becausehQE2 has the same angular mome
tum L5 1

2 (N21) asX2QH2, the transition from one state t
the other is continuous. It is most apparent from the dep
dence of PL intensity46 on d that it occurs aboutd'1.66l.

Let us now turn to the system at 2S523. At smalld, the
low-energy states contain anX2 interacting with three QH’s

FIG. 9. The energy spectra~energyE vs angular momentumL)
of the 9e-h system calculated on a Haldane sphere with monop
strengths 2S522 ~left! and 23~right! for different layer separations
d/l between 0.5~top! and 2~bottom!. l is the magnetic length.
04530
f
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of the Laughlin@3*2# state of the 7e-X2 fluid. The general-
ized CF picture usesl e* 5S2(N22)5 9

2 and l X2* 5 l e* 21
5 7

2 , and predictsL51, 24, 36, . . . , 13 forthis band. This
band of X2-3QH states is not well separated from high
states in Fig. 9~e! for d50.5l, but ~at least at smallerL) it
can be easily identified in the spectrum atd50 ~not shown!.
The angular momentum of a boundX2QH3 results from
adding l QH3

53l e* 23 to l X2* to obtain l X2QH3
5u l QH3

2 l X2* u
57. Although most likelyX2QH3 is the lowest state atL
57 in Fig. 9~e!, it has higher energy than other states a
thus it is unstable~due to the short range of QH-QH
repulsion;55 see also Fig. 6~f! for the QH-QH pseudopoten
tial in a seven-electron system!.

At d.l, the X2 unbinds and theX2-3QH band under-
goes reconstruction. Atd>l, two competing low-energy
bands occur in the spectra in Figs. 9~f!–9~h!. One describes
the hole withl h5S5 23

2 and the QE withl QE5S2(N21)
115 9

2 interacting through a pseudopotential similar to th
in Fig. 6~a!. This band hasL>u l h2 l QEu57, and the lowest
two states~at L57 and 8! arehQE andhQE*. The second
band involves an additional QE-QH pair and describes
hQE2 with l hQE2

5u l h2 l QE2
u5u l h2(2l QE21)u5 7

2 interact-

ing with the QH withl QH5S2(N21)5 7
2 . The angular mo-

menta L obtained by addingl hQE2
and l QH satisfy u l hQE2

2 l QHu<L< l hQE2
1 l QH, i.e., 0<L<7. Because of the

‘‘hard core’’ of VQE-QH ~the QE-QH state atL51 does not
occur45!, the hQE2-QH state at the highest value ofL is
forbidden, and thehQE2-QH band hasL50, 1, 2, . . . , 6.
We showed in Sec. VI that creation of an additional QE–Q
pair to bind the second QE tohQE and formhQE2 is ener-
getically favorable atd<l @see the crossing ofDhQE2

and

2(«QE1«QH) in Fig. 8#. Indeed, in Fig. 9, thehQE state
crosses thehQE2-QH band and becomes the 9e-h ground
state atd'l.

Let us stress that in addition to those shown in Fig. 9,
have calculated and analyzed a large number of energy s
tra at other values ofN, 2S, andd. In every case, we were
able to understand the low-lying states in terms of appro
ateX2QHn andhQEn quasiparticles, and observed a simil
reconstruction of the spectrum atd of the order ofl. The
data regarding the stability of different FCX’s, extracte
from the 8e-h spectra similar to those in Fig. 9, are presen
in Fig. 10. We have checked that the curves plotted here
N58 are very close to those obtained forN57 or 9, so that
all important properties of an extended system can be un
stood from a rather simple 8e-h computation. In two frames
for eachhQEn we plot ~a! the excitation gapE* 2E above
the hQEn ground state, and~b! the binding energyD. The
excitation gaps are obtained from the spectra at 2S53(N
21)2n in which isolatedhQEn complexes occur. The bind
ing energyD is defined in such a way thatEhQEn

5EQEn

1Vh2LS2D, whereEhQEn
is the energy of theNe-h system

in statehQEn calculated at 2S53(N21)2n, EQEn
is the

energy of theNe system in state QEn calculated at the sam
2S53(N21)2n, andVh-LS is the self-energy of the hole in
Laughlin n5 1

3 ground state at 2S53(N21). As described

le
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in Sec. VI,Vh-LS is calculated by setting the hole charge to
very small fraction of1e so that it does not perturb th
Laughlin ground state.

The lines in Fig. 10 show data obtained from the spec
similar to those in Fig. 9, i.e., including all effects ofe-h
interactions. For comparison, with symbols we have sho
the data plotted previously in Fig. 8, where very small h
chargee/e was used in the calculation to assure that, at a
d, the obtained low-energy eigenstates are given exactly
the hQEn wave function. Atd.l, very good agreemen
between binding energies calculated fore51 ~lines! and e
@1 ~symbols! confirms our identification ofhQEn states in
low energyNe-h spectra. Atd,l the two calculations give
quite different results that confirms that the description
actualNe-h eigenstates in terms of the hole interacting w
Laughlin quasiparticles of the 2DEG is inappropriate~the
correct picture is that of a two-componente2X2 fluid!.

The formation ofhQEn complexes atd larger than about
1.5l can be seen most clearly in the dependence46 of their
PL intensity ond. Althoughd is the only tunable paramete
in an e-h system, the transition from ‘‘integrally’’ to ‘‘frac-
tionally’’ charged exciton phase occurs in the phase spac
two parameters,D andU, which define the perturbation po
tentialVUD . Different combinations ofU andD are possible
in systems where the hole is replaced by an electrode~STM!
or a charged impurity.41,42 The relation betweenU andD in
realistic e-h systems depends somewhat on the magn
field and electron density~because of the asymmetr
inter-LL scattering for electrons and holes!, and/or on the
widths of electron and hole layers. We have calculated si
lar dependences to those in Fig. 10 for thee-h interaction
multiplied by a constant,e21Veh , and found that the phas
transition occurs in every case. The critical layer separa
depends one and equalsd/l50.84, 1.66, 2.25, 2.61, an
2.95, fore2150.5, 1, 1.5, 2, and 2.5, respectively.

The analysis of the characteristics ofhQEn complexes
plotted in Fig. 10~and the good agreement of the actu
binding energies with those obtained fore@1) confirms that
the most important bound complex to understand PL ad
>2l is hQE2, which has the largest binding energyD, and
significant excitation energyE* 2E. The hQE is also a

FIG. 10. The excitation gapE* 2E ~a!, and binding energyD
~b! of fractionally charged excitonshQEn as a function of layer
separationd, calculated for the 8e-h system.EX is the exciton
energy andl is the magnetic length. Thehe state contains an
exciton and originates from the multiplicative state atd50.
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fairly strongly bound complex with large excitation energ
but the charge neutral ‘‘anyon exciton’’ suggested by Ras
et al.27 is not bound. It will be shown in a subseque
publication46 that the hQE2 complex has a significant PL
oscillator strength, while neitherhQE nor hQE3 are radia-
tive. Finally, the radiative excitonic state~charge neutrale-h
pair weakly coupled to the 2DEG! breaks apart atd.2l.

VIII. CONCLUSION

Using exact numerical diagonalization, we have stud
energy spectra of a 2DEG in the FQH regime interact
with an optically injected valence-band hole confined to
parallel 2D layer. Depending on the separationd between the
electron and hole layers, different response of the 2DEG
the hole has been found. Atd smaller than a magnetic lengt
l, the hole binds one or two electrons to form neutral (X) or
charged (X2) excitons. TheX’s are weakly coupled to the
2DEG, and theX2’s with the remaining electrons form
two-component fluid with Laughlin correlations. One or tw
of the QH excitations of this fluid can bind to anX2 to form
a X2QHn complex. The PL spectrum at smalld depends on
the lifetimes and binding energies of theX and X2 states,
rather than on the original correlations of the 2DEG. N
anomaly occurs in PL at the Laughlin filling factorn5 1

3 , at
which the FQH effect is observed in transport experimen

At d larger than about 2l, the Coulomb potential of the
distant hole becomes too weak and its range becomes
large to bind individual electrons and form theX or X2

states. Instead, fractionally charged excitonshQEn are
formed, consisting of one or two Laughlin QE’s bound to t
hole. Different hQEn complexes have different optica
properties46 ~recombination lifetimes and energies!, and
which of them occur depends critically on whether QE’s a
present in the 2DEG. Hence, discontinuities occur in the
spectrum atn5 1

3 .
The crossover between the ‘‘integrally’’ and ‘‘fraction

ally’’ charged exciton phases in ane-h system can be viewed
as a change in the response of a 2DEG to a more gen
perturbation potentialVUD defined in terms of its character
istic energy (U) and length (D) scales. An analogous tran
sition will occur in other similar systems, in which the 2DE
is perturbed by a charged impurity41,42or an electrode. How-
ever, a difference between the response to negatively
positively charged probes is expected because of very dif
ent QE-QE and QH-QH interactions at short range.

Our results invalidate two suggestive concepts propo
to understand the numericalNe-h spectra and the observe
PL of a 2DEG. First, in contrast with the works of Wan
et al.,25 and Apalkov and Rashba,26 we have shown that the
‘‘dressed exciton’’ states with finite momentum (kÞ0) do
not occur in the low-energy spectra ofe-h systems at smal
d. The coupling ofkÞ0 excitons to the 2DEG is too stron
to be treated perturbatively, and does more than renorma
tion of the exciton mass. Rather, it causes instability ok
Þ0 excitons and formation of charged excitonsX2. Second,
we have shown in contrast with the work of Rashba a
Portnoi,27 that the charge-neutral ‘‘anyon excitons’’hQE3
are not stable at any value ofd ~they are also nonradiative46!.
3-12
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Tötemeyer, Phys. Rev. B50, 11 259~1994!.

7S. Takeyama, H. Kunimatsu, K. Uchida, N. Miura, G. Karcz
wski, J. Jaroszynski, T. Wojtowicz, and J. Kossut, Physica
246-247, 200 ~1998!; H. Kunimatsu, S. Takeyama, K. Uchida
N. Miura, G. Karczewski, T. Wojtowicz, and J. Kossut,ibid.
249-251, 951 ~1998!.

8L. Gravier, M. Potemski, P. Hawrylak, and B. Etienne, Phys. R
Lett. 80, 3344~1998!.

9A. Pinczuk, B. S. Dennis, L. N. Pfeiffer, and K. West, Phys. Re
Lett. 70, 3983~1993!.

10K. Kheng, R. T. Cox, Y. Merle d’Aubigne, F. Bassani, K. Sam
nadayar, and S. Tatarenko, Phys. Rev. Lett.71, 1752~1993!.

11H. Buhmann, L. Mansouri, J. Wang, P. H. Beton, N. Mori, M
Heini, and M. Potemski, Phys. Rev. B51, 7969~1995!.

12A. J. Shields, M. Pepper, M. Y. Simmons, and D. A. Ritch
Phys. Rev. B52, 7841~1995!.

13G. Finkelstein, H. Shtrikman, and I. Bar-Joseph, Phys. Rev. L
74, 976 ~1995!; Phys. Rev. B53, 1709~1996!.

14M. Hayne, C. L. Jones, R. Bogaerts, C. Riva, A. Usher, F.
Peeters, F. Herlach, V. V. Moshchalkov, and M. Henini, Ph
Rev. B59, 2927~1999!.

15H. A. Nickel, G. S. Herold, T. Yeo, G. Kioseoglou, Z. X. Jian
B. D. McCombe, A. Petrou, D. Broido, and W. Schaff, Phy
Status Solidi B210, 341 ~1998!.

16J. G. Tischler, B. A. Weinstein, and B. D. McCombe, Phys. S
tus Solidi B215, 263 ~1999!.

17T. Wojtowicz, M. Kutrowski, G. Karczewski, J. Kossut, F.
Teran, and M. Potemski, Phys. Rev. B59, 10 437~1999!.

18Z. X. Jiang, B. D. McCombe, and P. Hawrylak, Phys. Rev. Le
81, 3499~1998!.

19S. A. Brown, J. F. Young, J. A. Brum, P. Hawrylak, and
Wasilewski, Phys. Rev. B54, 11 082~1996!.

20Y. Kim, F. M. Munteanu, C. H. Perry, D. G. Rickel, J. A. Sim
mons, and J. L. Reno, Phys. Rev. B61, 4492 ~2000!; F. M.
t.

.

v.

.

.

t.

.

.

.

-

.

Munteanu, Y. Kim, C. H. Perry, D. G. Rickel, J. A. Simmon
and J. L. Reno,ibid. 61, 4731~2000!.

21I. V. Lerner and Yu. E. Lozovik, Zh. E´ksp. Teor. Fiz.80, 1488
~1981! @Sov. Phys. JETP53, 763 ~1981!#.

22A. B. Dzyubenko and Yu. E. Lozovik, Fiz. Tverd. Tela~Lenin-
grad! 25, 1519~1983! @Sov. Phys. Solid State25, 874 ~1983!#.

23A. H. MacDonald and E. H. Rezayi, Phys. Rev. B42, 3224
~1990!.

24A. H. MacDonald, E. H. Rezayi, and D. Keller, Phys. Rev. Le
68, 1939~1992!.

25B.-S. Wang, J. L. Birman, and Z.-B. Su, Phys. Rev. Lett.68, 1605
~1992!.

26V. M. Apalkov and E. I. Rashba, Phys. Rev. B46, 1628~1992!;
48, 18 312~1993!.

27E. I. Rashba and M. E. Portnoi, Phys. Rev. Lett.70, 3315~1993!;
V. M. Apalkov, F. G. Pikus, and E. I. Rashba, Phys. Rev. B52,
6111 ~1995!; M. E. Portnoi and E. I. Rashba,ibid. 54, 13 791
~1996!.

28X. M. Chen and J. J. Quinn, Phys. Rev. Lett.70, 2130 ~1993!;
Phys. Rev. B50, 2354~1994!; 51, 5578~1995!.

29B. Stebe and A. Ainane, Superlattices Microstruct.5, 545~1989!.
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