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Using a simple model of a two-dimensional rectangular quantum box
we study the effects of size and anisotropy on the energy and photolumi-
nescence spectra of neutral and charged quantum dots. The competition
of symmetries and energy/length scales of the free exciton or trion and of
the confining potential is analyzed. The numerical calculations consisted
of the diagonalization of the few-electron-hole Hamiltonian matrices in the
full configuration-interaction basis, with the simultaneous resolution of the
conserved orbital and spin quantum numbers.

PACS numbers: 73.22.—f, 78.67.Hc, 71.35.—y, 71.35.Pq

1. Introduction

Quantum dots [1] are nanoscale semiconductor structures in which a small,
controlled number of interacting electrons and/or holes are confined to a small
area/volume of designed chemical composition, size, and shape. With the typical
dimensions of a few to several tens of nanometers, quantum dots are sufficiently
bigger than natural atoms for the interaction effects to play a major role, instead
of being completely dominated by the single-particle shell structure. On the other
hand, they are still small enough for the size quantization effects to be essential.
Hence, the optical properties of quantum dots are defined by the interplay of
confinement and interactions.

In this paper we study the effect of size and anisotropy of the confining
potential on the dynamics and recombination of confined excitonic complexes.
The main problem we looked at is the reduction of symmetry when going from
the isotropic Coulomb interaction responsible for the binding of an exciton or
trion in the absence of an external confinement to the lower symmetry of a small,
anisotropic dot. The isotropic to anisotropic transition is driven by the ratio of
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confinement and interaction length scales (dot dimension d versus the Bohr ra-
dius ap) and energy scales (characteristic shell spacing 7% /2md? and the Rydberg
Ry) and should in principle be observable in the size dependence of the photo-
luminescence (PL) spectrum. Presented general considerations should apply for
example to flat, anisotropic quantum dots made of GaAs (with ag &~ 10 nm and
Ry ~ 6 meV).

To incorporate size and anisotropy in the model we use very simple two-
-dimensional (2D) rectangular geometry [2, 3]. Our “quantum box” has spa-
tial dimensions a and b, with the aspect ratio 3 = b/a and the area d*> = ab
defining an average size d. The single particle wave functions are ¢, =
a= 1207124, (2 /a) P (y/b), where 1, (X) = V2sin(nrX). The energy levels are
simply Eum = Ben + B Lem, where €, = (nhn)?/2uqad? and pe and py, are the
electron and hole effective masses (we ignored hole mass anisotropy and used a
fixed ratio un/pe = 5).

Two-body interaction matrix elements (nj,mqy;ng, ma|V|ns, ms;ng, my)
were integrated using the following expansion of the Coulomb potential [4]:
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which allows us to separate the variables x and y, and reduces the problem to a
1D numerical integration over t.

The single-particle, Coulomb, and excitonic energy scales are related via Ry
a% = h*/2p (where p is the reduced mass, = = ps ' + p; ') and Ry ap = €?/2.
Defining d/apg = ¢ we obtain the important scaling relation:
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The total few-body Hamiltonian, H =3, &c}ci + Zijkl Vij;glc;rc;(-ckcl, writ-
ten here using composite spin-orbital indexes such as i = (n, m, o), is diagonalized
in a full configuration interaction (CI) basis including all spin configurations and
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all single-particle orbitals with 1 < n,m < npax. The calculation is carried out for
the exciton (X = e + h), positive and negative trions (X* = X 4 h or e), and for
a doubly charged state (X2~ = X + 2e), as a function of d and 3, and for different
4 < nmax < 10 (data shown in Figs. 2 and 3 were obtained by extrapolation to
Nmax = 00). The resulting eigenstates conserve two total parities (P, and P,) and
the length and projection of spin (S and S,) of two or more identical particles
(electrons or holes, depending on the complex). P,, P,, and S, are good quantum
numbers of the CI basis states, and S? is resolved simultaneously with the Lanczos
diagonalization of H (by S-projection on each Lanczos step) [5].

2. Results and discussion

In Fig. 1 we show two examples of the 2e 4+ h energy spectrum calculated
for the box size ¢ = 1 and anisotropies § = 1 and 2. Parities P = 0 (even) and
P =1 (odd) and the two-electron spin S = 0 (singlet) or S = 1 (triplet) of each
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eigenstate are indicated. Breaking of the P, — P, symmetry for 8 # 1 is evident.
The trion ground state, whose energy we denote by E'x-, is an even—even singlet,
ie., it has (P, P,,S) = (0,0,0) for all values of (o, 3). The exciton energy Ex
(also an even—even ground state) is obtained from the analogous e + h spectra.
The X and X~ binding energies are defined as Ax = E + Ey, — Ex (where E,

and E}, are single-electron and -hole ground states) and Ay- = Ex + E. — Ex-.
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Fig. 1. Trion energy spectra in an isotropic (a) or anisotropic (b) quantum box.
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Fig. 2. Relative difference in the exciton (a) and trion (b) binding energies due to the

box anisotropy dA/A (see the text), plotted as a function of the box average size g or

shorter side a (c).

In Fig. 2 we show the relative difference in the binding energy due to box
anisotropy, 0A/A = [A(B) — A(1)]/A(1), plotted as a function of box size. The ex-
citon and trion curves are markedly different, with the latter ones rapidly dropping
to zero beyond a critical box size. It is clear from the inset (c) that the anisotropy
effect depends on the shorter dimension of the box, a, being smaller than about
the free trion radius. Thus, two size/shape regimes can be identified: (i) a > ag,
with the trion moving freely inside the box and bouncing of the walls, with little
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Fig. 3. (a,b) Exciton and trion PL oscillator strengths I plotted as a function of the

box size g. (c) PL energy Epr, as a function of box anisotropy S.

effect of the shape or symmetry of the confinement; (ii) a < ap, with a quantized
trion center of mass motion (strong confinement) and a strong anisotropy effect.

In Fig. 3 we plot the PL oscillator strengths I and recombination energies
Ep1, (counted from the energy U of a noninteracting e-h pair). The Ix and Ix-
all start at unity at ¢ = 0, rise due to correlations in intermediate-sized boxes, and
scale very differently with the box size for ¢ > 1. Anisotropy affects I only for
intermediate box sizes, and the effect is rather insignificant. The Epp, of Fig. 3c is
also quite insensitive to 8. More interesting here is the exchange splitting of the
3e + h emission spectrum due to two possible spin states of the left-over pair of
electrons.

Acknowledgments

The authors thank Pawel Hawrylak for helpful discussions and acknowledge
partial support from grant N202-071-32/1513 of the Polish Ministry of Science and
Higher Education.

References

[1] L. Jacak, P. Hawrylak, A. Wdjs, Quantum Dots, Springer, Berlin 1998.
[2] G.W. Bryant, Phys. Rev. B 37, 8763 (1988).

[3] A. Barenco, M.A. Dupertuis, Phys. Rev. B 52, 2766 (1995).

[4] G.W. Bryant, Phys. Rev. B 31, 7812 (1985).

(5]

5] A. Wéjs, J.J. Quinn, Phys. Rev. B 75, 085318 (2007).



