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The family of “Jack states” related to antisymmetric Jack polynomials are the exact zero-energy ground
states of particular model short-range many-body repulsive interactions, defined by a few nonvanishing leading
pseudopotentials. Some Jack states are known or anticipated to accurately describe many-electron incompressible
ground states emergent from the two-body Coulomb repulsion in the fractional quantum Hall effect. By extensive
numerical diagonalization, we demonstrate the emergence of Jack states from suitable pair interactions. We find
empirically a simple formula for the optimal two-body pseudopotentials for the series of most prominent Jack
states generated by contact many-body repulsion. Furthermore, we seek a realization of arbitrary Jack states in
realistic quantum Hall systems with Coulomb interaction, i.e., in the partially filled lowest and excited Landau
levels in quasi-two-dimensional layers of conventional semiconductors such as GaAs or in graphene.
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I. INTRODUCTION

More than three decades after its discovery [1], the frac-
tional quantum Hall effect (FQHE) remains one of the most
intriguing phenomena in condensed-matter physics. Present
understanding [2–4] of this remarkable collective behavior of
strongly correlated quasi-two-dimensional (2D) electrons in
a high magnetic field has involved many new concepts, most
importantly that of Jain composite fermions (CFs) [5], i.e.,
bound states of electrons and vortices of the many-electron
wave function, weakly interacting through residual forces and
filling effective Landau levels (LLs) of greatly reduced de-
generacy. An important direction in FQHE studies has always
been the attempt to find model wave functions describing
incompressible many-electron phases realized in real exper-
imental conditions. Famous examples are the Laughlin [6],
Moore-Read [7] (Pfaffian), and Read-Rezayi [8] (parafermion)
wave functions corresponding to the particular LL filling
factors ν = 1/3, 1/2, and 3/5, respectively. While all these
wave functions can be elegantly understood in terms of either
noninteracting or simply correlated CFs [4,9,10], the original
ideas often came from somewhere else.

All model FQHE wave functions describe a partially filled
(lowest or higher) LL, in some cases folded with respect to
spin or multiple (iso)spins, but in this work we will assume
full LL polarization and ignore this additional degeneracy. As
a partially filled higher LL can be mapped onto the lowest LL
(with the same filling factor ν and the same pseudopotential
[11] expressing pair interaction energy V as a function of
relative pair angular momentum m), the wave functions are
often defined in the latter. And as the single-electron orbitals of
the lowest LL are (in symmetric gauge) simply the monomials
in the complex coordinate z = x + iy indexed by angular
momentum, φm(z) ∼ zm, the relevant many-electron wave
functions are sought in the form of antisymmetric complex
polynomials (of an infinite number of variables zi and an
infinite degree, connected through a finite ν).

A broad class of FQHE wave functions called “Jack states”
has been derived from the theory of symmetric polynomi-
als [12–15]. The above-mentioned Laughlin, Pfaffian, and
parafermion states are all members of the Jack family, cor-
responding to rather simple root occupations [100], [1100],
and [11100], respectively, and their identification as such
provided new insight [16–20] and an explicit construction
method based on the recursion relations between the Jack
expansion coefficients in the relevant (Slater determinant) basis
[21,22].

A useful property of the above three and some other
Jack states important in the context of the FQHE is that
they are exact zero-energy ground states of certain model
many-body interactions. A notion of a pair pseudopotential
can be extended [23–25] to a many-body interaction in an
isolated LL: the K-body pseudopotential V (m) is the K-body
interaction energy V as a function of K-body relative angular
momentum m. In this language, the Laughlin, Pfaffian, and
parafermion wave functions are generated by a two-, three-, and
four-body contact repulsion corresponding to pseudopotentials
with only one nonzero (positive) leading coefficient, and other
wave functions are generated analogously by more complex
many-body pseudopotentials [7,8,23–26].

In this paper, we examine two questions: (i) Can Jack
states, which are generated exactly by particular short-range
many-body repulsion, emerge also as approximate ground
states of suitable two-body repulsion? (ii) Do various Jack
states describe Coulomb ground states in different LLs (in
conventional semiconductors or in graphene), and thus are they
a relevant description of the incompressible quantum liquids
of the FQHE?

We perform extensive numerical calculations by means of
exact diagonalization in Haldane spherical geometry [11] to
obtain the quasicontinua of ground states of arbitrary short-
range two-body pseudopotentials V (m) for many relevant
finite systems of N electrons at magnetic flux 2Q. Then
we use the theory of Jack polynomials to semianalytically
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construct the Jack states on the plane [21,22], and then through
stereographic projection [27] we transform them into spherical
geometry. In some cases we also employ many-body (for up to
K = 5) exact diagonalization [23] to compute the Jack states
directly on a sphere. Finally, we compare the Jack states with
the maps of two-body ground states and with the Coulomb
ground states by studying the overlaps and pair-correlation
functions. Indirect comparison of Jack and Coulomb ground
states through the maps of overlaps with ground states of
arbitrary pair interaction allows a more secure conclusion about
their connection, especially when the direct overlap is not
convincingly high or it is sensitive to small variation of the
Coulomb interaction.

The main result answers the above question (i): We demon-
strate that Jack exact ground states of short-range K-body
repulsions are in general accurately reproduced by the suitable
short-range two-body interaction. In particular, we find a
simple formula for the pair pseudopotentials mimicking the
many-body contact repulsion, linking the range m of the former
with the order K of the latter. Furthermore, regarding question
(ii), we show that ground states of the long-range Coulomb
pseudopotential are represented with excellent accuracy by a
suitable short-range model, but only few (already known) Jack
states can emerge in realistic Coulomb systems in GaAs or
(monolayer) graphene.

The paper is organized as follows: In Sec. II we briefly
overview Jack polynomials and standard tools used in the
symmetric function theory, and we discuss Jack states in
the context of many-body interactions. The main results are
presented in Sec. III in the form of a series of tables and maps
of overlaps. These data are then used to indicate what pair
pseudopotentials generate Jack states, and what Jack states are
viable trial functions for the FQHE. In Sec. IV we conclude
our studies.

II. JACK STATES

The Jack polynomial [12–15,21,22,28–34], called simply
a “Jack” and denoted by J α

λ , is a symmetric polynomial
indexed by the partition λ and the real number α. The partition
is a sequence λ = (λ1,λ2, . . . ) of non-negative integers in
nonincreasing order. The nonzero elements of the sequence are
called parts of partition λ. The number of parts is the length of
partition λ and it is denoted by �(λ). The symbol m(λ,i) denotes
the number of parts of partition λ equal to i. The natural order
is a partial order on the set of partitions. Partition μ precedes
λ in natural order when ∀k � 1 :

∑
i<k λi � ∑

i<k μi , and
this relation is denoted λ � μ. The addition of two partitions
is defined by adding parts indexed by the same numbers
(λ + μ)i = λi + μi . In the context of the FQHE, it is useful
to represent partitions in the occupation-number configuration
λ = [m(λ,0) m(λ,1) . . . ].

Monomial symmetric functions, i.e., “monomials,”
mλ(z1,z2, . . . ,zN ) ≡ mλ, are defined as

mλ = [m(λ,0)! · · ·m(λ,1)! · · ·m(λ,N )!]−1

×
∑
σ∈SN

z
λσ (1)

1 z
λσ (2)

2 · · · zλσ (N)

N . (1)

The monomials are standard basis in the ring of symmetric
functions. Jacks J α

λ can be defined as eigenfunctions of the
differential Laplace-Beltrami operator HLB indexed by a real
number α,

HLB(α) =
N∑

i=1

(zi∂i)
2 + 1

α

∑
1�i<j�N

zi + zj

zi − zj

(zi∂i − zj ∂j ). (2)

Its eigenvalues are given by

Eλ =
�(λ)∑
i=1

(
λ2

i + 1

α
(N + 1 − 2i)λi

)
. (3)

When expanded in the monomial basis, Jacks reveal nonzero
coefficients only for the monomials indexed by partitions
preceding the Jack’s root partition: J α

λ = ∑
μ�λ mμuλμ(α)

[vλμ(α) ∈ R]. The normalization condition vλλ = 1 makes
coefficients vλμ inverse polynomials in α that have no roots
for α > 0. Furthermore, for a fixed partition λ, the Jack J α

λ is
well-defined for all but a finite number of negative values of α

(called poles). The recursion formula for the coefficients of a
Jack in the monomial basis has been derived [21,22].

Jack fermionic polynomials [19,20] Sα
μ are antisymmetric

analogs of Jack symmetric polynomials. They are defined as a
product of a symmetric Jack and the Vandermonde determinant
(multiplication by the Vandermonde determinant is a canonical
isomorphism of the ring of symmetric polynomials on the ring
of antisymmetric polynomials),

Sα
λ+δ(z1, . . . ,zN ) = J α

λ (z1, . . . ,zN )
N∏

i<j

(zi − zj ), (4)

where δ = (N − 1,N − 2, . . . ,1,0). Fermionic Jacks are
eigenvectors of the fermionic Laplace-Beltrami operator

H F
LB(α) = Hkin +

(
1

α
− 1

)
Hint, (5)

where

Hkin =
N∑

i=1

(zi∂i)(zi∂i) (6)

and

Hint =
∑

1�i<j�N

zi + zj

zi − zj

(zi∂i − zj ∂j ) − 2
z2
i + z2

j

(zi − zj )2
. (7)

The recursion formula for fermionic Jacks in terms of Slater
determinants has been derived [19,20].

The standard basis in the ring of antisymmetric polynomials
is Slater determinants slμ,

slμ(z1,z2, . . . ,zN ) =
∑
σ∈Sn

sgn(σ ) · · · zμ1
σ (1) · · · zμ2

σ (2) · · · zμN

σ (N).

(8)

Jack states are FQH states related to the Jack polynomials.
As was pointed out earlier [16–18,35], the analysis of the
angular momentum operator imposes a certain necessary
condition on both the partition and the real parameter of
valid Jack states. Bernevig and Haldane [16–18] considered
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a condition of uniformity on the sphere (highest weight and
lowest weight) for bosonic wave functions and established
what follows. The real parameter is αk,r = −(k + 1)/(r − 1)
for (k + 1) and (r − 1) both positive and coprime, the partition
length equals λ�(λ) = (r − 1)s + 1, and the partition itself is of
the form λ = [n0,0s(r−1),k,0r−1,k,0r−1,k, . . . ,k]. Here, 0r−1

means a sequence of r − 1 zeros and n0 is a certain natural
number. Such a partition is denoted as λ0

k,r,s . The case of s = 1
provides many FQH ground states, and the cases s > 1 are
related to quasiparticle states. In this paper, we focus on the
ground states. We denote the partitions by λ0

k,r,s=1 = λ0
k,r . The

Jacks indexed by λ0
k,r and αk,r are related to boson FQH states

at filling factor ν = k/r .
For example, the bosonic Laughlin wave function for the

state ν = 1/q (q even) can be represented as a product of the
Gaussian and the following symmetric Jack:



q

L =
N∏

i<j

(zi − zj )q = J
α1,q

λ0(1,r). (9)

As it trivially follows, fermionic Laughlin wave functions for
state 1/q also are Jack states for partition λ0(1,q) and the
real parameter α1,q−1. The Laughlin wave function can be
described in terms of noninteracting composite fermions (see
the following subsection).

The Moore-Read (Pfaffian) state, which for bosons occurs
at ν = 1 and for fermions at ν = 1/2, and reads


m
MR = Pf

(
1

zi − zj

) N∏
i<j

(zi − zj )m+1, (10)

is well defined for even numbers of particles and can be written
as either bosonic or fermionic Jack:


0
MR = J

α2,2

λ0
(2,2)

or 
1
MR = S

α2,2

λ0
(2,2)+δ

. (11)

The other Jack states include the Read-Rezayi (parafermion)
state and the Gaffnian.

III. COMPARISON WITH TWO-BODY GROUND STATES

Let us now turn to resolving two principal questions of this
research announced already in the Introduction:

(Q1) Can Jack states, which are generated by particular
short-range multiparticle repulsion, emerge also as ground
states of suitable two-body Hamiltonians?

(Q2) In particular, do various Jack states describe Coulomb
ground states in different LLs (in conventional semiconductors
or in graphene), and thus are they a relevant description of the
incompressible quantum liquids of FQHE?

A. Exact diagonalization in spherical geometry

We have explored these questions by a systematic numerical
search of suitable two-body Hamiltonians. For all computa-
tions we used standard Haldane spherical geometry [11,27],
in which N electrons are confined to the surface of a sphere
of radius R, with radial magnetic field B being generated by a
Dirac magnetic monopole of strength 2Qhc/e, corresponding
to the magnetic length lB = R/

√
Q. In this geometry, consec-

utive LLs denoted as LLn appear in the form of single-particle

angular momentum shells (lengths l = Q + n, n = 0,1, . . . ;
projections |m| � l). In particular, the lowest LL with n = 0,
denoted as LL0, corresponds to angular momentum l = Q and
has degeneracy of 2Q + 1.

The N -electron Hilbert space is spanned by the configura-
tions |m1,m2, . . . ,mN 〉, and the two-body interaction matrix
elements are connected to a two-body Haldane pseudopo-
tential [11] V (m) ≡ Vm, which defines the pair interaction
energy V as a function of relative pair angular momen-
tum m = 1,3,5, . . . , through the Clebsch-Gordan coefficients
〈m′

1,m
′
2|V |m1,m2〉 = ∑

m 〈m′
1,m

′
2|L〉Vm〈L|V |m1,m2〉, where

L = 2l − m is the total pair angular momentum on a sphere.
Hamiltonians defined by interaction Vm are diagonalized

numerically with simultaneous resolution of total angular
momentum L using a variant of the nested Lanczos algorithm
(resolving L is important, as only the L = 0 ground states
have uniform charge distribution and hence they are possible
candidates for the nondegenerate ground states of the FQHE).
This is essentially the configuration-interaction method, with
the efficiency crucially dependent on the fast implementation
of the action of the Hamiltonian on a trial state vector. (Our
codes and today’s workstations allow diagonalization of two-
body Hamiltonians with dimensions up to several billion.)

B. Model Hamiltonians

The main calculation consisted of comparing a particu-
lar Jack state with the map of computed ground states of
fairly arbitrary pair Hamiltonians H . Since in the end we
aim to find connection of Jacks with the Coulomb ground
states of the FQHE, and since the latter are known to be
essentially determined by the short-range part of the relevant
Coulomb pseudopotential, we restrict our search of suitable
pair Hamiltonians to the model pseudopotentials that vanish
for m > 5 (except for the case of ν = 1/5 as explained in
Sec. III D 2). With the overall scale being irrelevant, we can
use an obvious normalization V1 + V3 + V5 = 1, leaving only
two independent parameters of the model and allowing a
convenient graphical representation of the results. So the main
results will be plotted in the form of triangular maps, where
each point corresponds to particular ratios between V1, V3, and
V5, with all higher pseudopotential coefficients vanishing. It is
quite obvious that with a suitable choice of V1 : V3 : V5 this
model will accurately reproduce Coulomb ground states of the
FQHE; here we are asking whether it can also reproduce the
Jack ground states of multiparticle repulsion.

For a comparison with Coulomb ground states, we have
used Haldane pseudopotentials Vm ≡ 〈L|V |L〉 of the Coulomb
interaction potential V (r) = 1/r , which are calculated sepa-
rately for each considered LL, in GaAs or graphene. In GaAs
we also consider finite layer width w, included by assuming
an infinite square-well potential, i.e., the density profile of the
form �(z) ∝ cos2 πz/w. There is a certain complication with
defining a pseudopotential for excited LLs in graphene on a
sphere; here we have used the definition of Ref. [36]. Following
standard convention, when considering higher LLs (in GaAs
or graphene), we map them onto the lowest LL with l = Q,
retaining the correct pseudopotentials Vm of the given (i.e.,
excited) LL.
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FIG. 1. Empty triangular map. Each point on the map corresponds
to a particular model interaction defined by the values of three
pseudopotentials (V1,V3,V5) determined by the distance from three
sides of the triangle, as marked by the green arrows in panel (a).
Several examples are shown with blue dots. Planar coordinates [x,y]
are explained in the text. The lines in panel (b) define the areas of
the triangle in which the pseudopotential is monotonic (or superhar-
monic) through the two (or three) indicated values of m. The light blue
part of the triangle represents the family of pseudopotentials that are
both decreasing and superharmonic throughout the short range. On
maps like these, in the following figures we will present overlaps of
the L = 0 ground state of the continuously varied pseudopotential
(V1,V3,V5) denoted as ψ(V1,V3,V5) with the particular states of
interest, such as the Jacks or Coulomb ground states.

C. Triangular maps

Let us begin by becoming familiar with the triangular map
used for the presentation of our main results. The “empty”
maps are shown in Fig. 1.

Each corner of the inner triangle (thick solid red line) in
Fig. 1(a) corresponds to one positive pseudopotential coef-
ficient Vm = 1, m = 1, 3, or 5, as indicated, and all others
vanishing. In other words, the three corners are (V1,V3,V5) =
(1,0,0), (0,1,0), and (0,0,1), the first of which is marked as
an example with a blue dot. Furthermore, the edges of the
triangle have two positive coefficients: (V1,V3,V5) = (x,1 −
x,0), (0,x,1 − x), and (x,0,1 − x), with 0 < x < 1. As an
example, we have indicated the pseudopotential (V1,V3,V5) =
(0.75,0.25,0.00). The interior of the triangle has all three
coefficients positive (each one proportional to the distance
from the respective edge, as shown with the green arrows),
with the indicated central point obviously corresponding to
(V1,V3,V5) = (1/3,1/3,1/3). We have also marked an ex-
ample of a general positive pseudopotential, (V1,V3,V5) =
(0.65,0.25,0.15), falling inside the triangle. Finally, the outside
of the thick solid triangle represents pseudopotentials with at
least one negative coefficient, and each side of the outer triangle
(thin dashed red line, with corners cut off to save space) marks
the value of V1, V3, or V5 = −0.1. Here, as an example, we have
indicated (V1,V3,V5) = (0.8, − 0.1,0.3). Moreover, in planar
coordinates [x,y], with the origin [0,0] marked with the gray
square at the bottom of Fig. 1(a) and the unit length of the inner
red triangle, x = (V5 − V3)/2 and y = V1/

√
3.

For each point on the map, i.e., for each pseudopotential
(V1,V3,V5), we have calculated the lowest state at L = 0 (i.e.,
uniform) of various systems (N,2Q). This state is denoted
by ψL=0

N,2Q(V1,V3,V5), or ψ(V1,V3,V5) for short. Thus, the
triangular map is not only the map of pseudopotentials but
also the map of the corresponding states ψ (i.e., of the types

of correlation), and in that map in the following figures we
will display the overlaps of ψ with the particular states of
interest, such as the Jack or Coulomb ground states, for a
specific finite-size system (N,2Q).

Correlations in a degenerate LL (and thus in particular
the emergence of a particular incompressible ground state)
mostly depend on the monotonicity and harmonicity [37]
of the pseudopotential over the range where it is strong
(i.e., usually for small m). The monotonicity conditions are
obvious; the red lines in Fig. 1(b), labeled as “monotonic
A-B” and corresponding to VA = VB , identify the areas on
the map with all possible orderings of V1, V3, and V5. The
“superharmonicity” through a series of three m = A < B < C

simply means a superlinear (convex) dependence over this
range, i.e., (VA − VB)/(B − A) > (VB − VC)/(C − B). The
name reflects the fact that a pseudopotential Vm, which is linear
in m, corresponds to a potential V (r), which is linear in r2 (i.e.,
“harmonic”) in any LL. The blue lines in Fig. 1(b) labeled as
“harmonic A-B-C” define the areas on the map with respect to
superharmonicity through m = 1, 3, and 5 and through m = 3,
5, and 7 (recall that V7 ≡ 0). Importantly, the pseudopotential
must be both monotonic and superharmonic at short range (as,
e.g., the Coulomb interaction in the lowest LL) to support
the Laughlin state of essentially free composite fermions at
ν = 1/3, while the harmonic behavior through m = 1, 3, and
5 (as, e.g., the Coulomb interaction in the second LL in GaAs)
results in composite fermion pairing and stabilizes the Pfaffian
ground state at ν = 1/2. Thus, it helps to keep in mind the
arrangement of red and blue lines on the map when relating
the short-range model (V1,V3,V5) with the actual Coulomb
pseudopotentials.

D. Results for Jack states generated by two-body repulsion

The main numerical results regarding the search for Jack
states in two-body (especially Coulomb) Hamiltonians are pre-
sented in the following sequence of maps. To identify different
Jacks, we adopted an abbreviated and N -independent nota-
tion for the root occupations, in which [100] ≡ [(100)N−11],
[11000] ≡ [(11000)(N−2)/211], etc., i.e., the sequence given in
square brackets [· · · ] is meant to be repeated so many times
as to give correct N and then appended so as to restore the
reflection symmetry.

1. Jack state [100] (Laughlin 1/3)

In Fig. 2, we have plotted a color map for the Jack
state [100], equivalent to the Laughlin ν = 1/3 state, and
generated as a unique zero-energy ground state of the two-body
pseudopotential with one nonvanishing (positive) coefficient,
V1, and all others vanishing.

This particular map corresponds to N = 11 and 2Q = 30,
which is the largest size we have for Jack state [100]; the maps
for smaller sizes are similar so they have not been shown (for
the same reason also for the other Jack states discussed in
the following sections, we will only show the maps for the
largest available systems). In the map, color contours indicate
the overlap of the Jack state with the lowest-energy uniform
(L = 0) eigenstate of the model Hamiltonian (V1,V3,V5) called
ψ(V1,V3,V5). The area of the map in which the ground state is
nonuniform/degenerate (i.e., has L > 0) has been marked by
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FIG. 2. Map of the overlap of Jack state [100] (i.e., the Laughlin
ν = 1/3 state, generated by two-body repulsion at m = 1) with the
lowest L = 0 states of all possible model short-range two-body
pseudopotentials, for the system with N = 11 and 2Q = 30. Each
point on the map corresponds to a particular pseudopotential and its
lowestL = 0 eigenstateψ(V1,V3,V5), as explained in Fig. 1. The color
at this point indicates the overlap of ψ with the Jack state [100]. Gray
dots mark the area on the map in which the absolute ground state has
L �= 0 (and ψ used to calculate the overlap with the Jack state is in fact
an excited state). Symbols represent the points of highest overlap of ψ

with the Jack state (diamond labeled “J”; this is simply the maximum
of the displayed map) or Coulomb wave functions (open and full dots
labeled “0” for LL0 and “1” for LL1 in GaAs, and square labeled “2g”
for LL2 in graphene, i.e., G-LL2; these maxima were determined from
analogous maps of overlaps with those specific Coulomb states, like
those in Fig. 3). More details are described in the main text.

small gray dots (which also coincide with the computational
grid used to calculate the map); in this dotted area, the
overlapped L = 0 model eigenstate lies above an unspecified
lower state with L > 0; only outside of this area (i.e., in the
undotted part of the map) is the overlapped L = 0 model state
the absolute ground state.

The black diamond symbol labeled “J” indicates the point
of maximum overlap, which in this case of course falls
exactly at the (1,0,0) corner of the map, where the generating
Hamiltonian and the model are identical (hence, the answer to
question Q1 is trivially positive for Jack state [100]).

The full and open black dots labeled “0” locate maximum
overlaps of ψ(V1,V3,V5) with the Coulomb ground states in
the lowest LL (LL0) of massive fermions (e.g., in GaAs) for
two extreme layer widths w/lB = 0 and 10, respectively (with
the intermediate widths forming an unmarked continuous trace
connecting the two dots). Similarly, the two dots labeled “1”
locate maximum overlaps with the Coulomb ground states
in the second LL (LL1) of massive fermions, for w/lB = 0
and 10.

For Dirac fermions (e.g., in graphene) we have only
considered an ideal 2D layer with w = 0. Different LLs of
graphene are denoted by G-LLn. However, as the Coulomb
pseudopotentials in LL0 and G-LL0 are identical, so the
maximum overlap for G-LL0 falls at the same point “0g” ≡ “0”
and has not been separately marked. In G-LL1 the Coulomb

FIG. 3. Maps similar to Fig. 2 and for the same system of N = 11
electrons at flux 2Q = 30 but showing overlaps of ψ(V1,V3,V5) with
the Coulomb ground states in a zero-width (w = 0) GaAs layer in
two different LLs: (a) LL0, (b) LL1.

pseudopotential is slightly softer at short range than in LL0, but
still sufficiently strong to produce an essentially identical (upon
mapping onto the lowest LL) ν = 1/3 ground state. So again,
the maximum overlap for G-LL1 falls at almost exactly the
same point as in LL0, “1g” ≡ “0,” and has not been separately
marked. Only for n > 1 are the Coulomb ground states in
graphene different and fall at different points on the map, for
example the black square for n = 2 has been explicitly labeled
as “2g.” Also in all of the following figures, the three Coulomb
points for LL0 (w = 0), G-LL0, and G-LL1 coincide at the
point collectively labeled “0,” so the equivalent labels “0g”
and “1g” will be omitted.

While the dots and squares only show the points of max-
imum overlap, we have calculated full maps of the overlaps
between each relevant Coulomb ground state and the model
ground states ψ(V1,V3,V5).

For example, Figs. 3(a) and 3(b) show the color contours
for massive fermions in LL0 and LL1 (with the points of
maximum overlap “J,” “0,” “1,” and “2g” of course the same as
in Fig. 2). As already mentioned, the short-range model with
the suitable choice of V1, V3, and V5 is able to reproduce all
considered Coulomb ground states with very high accuracy
(see Table I), so the dots and squares in all maps can be
considered as representing the exact Coulomb points (rather
than as approximations limited by the m � 5 model).

TABLE I. Locations and values of maximum overlaps between
the indicated Coulomb ground states in GaAs and graphene and the
lowest L = 0 eigenstates ψ(V1,V3,V5) of the model pseudopotential,
at filling factor ν = 1/3, for the system of N = 11 electrons at flux
2Q = 30.

Material n w/lB V1 V3 V5 Overlap

0 0.782 0.172 0.046 0.9999
0 5 0.759 0.188 0.053 0.9998

GaAs 10 0.747 0.196 0.057 0.9997
0 0.602 0.317 0.081 0.9934

1 5 0.609 0.302 0.089 0.9935
10 0.611 0.297 0.092 0.9929

0 0.782 0.172 0.046 0.9999
graphene 1 0 0.777 0.178 0.045 0.9999

2 0.450 0.437 0.113 0.9719
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FIG. 4. Map similar to Fig. 2 forN = 8 electrons at flux 2Q = 35,
showing overlaps of ψ(V3,V5,V7) with Jack state [10000] (i.e., the
Laughlin ν = 1/5 state, generated by two-body repulsion at m = 1
and 3). Note that we used V1 = ∞ for this map with the three corners
representing m = 3, 5, and 7. The additional square panel shows the
enlarged part indicated in the triangular map.

It is remarkable (but of course not surprising) that Coulomb
points “0,” “1,” and “2g” fall so far apart in the map while the
finite width moves them so relatively little (again, see Table I;
their placement relative to “monotonic” and “harmonic” lines
has also been indicated in Fig. 1). However, when matching
the Jack state with the Coulomb ground states via the maps
(V1,V3,V5), it must be realized that it is always a whole area of
high model/Jack or model/Coulomb match, extending around
the indicated maximum point. Since for the model/Coulomb
match both the maximum point and the surrounding contour
plot are very similar for any considered ν and N , we will not
show them for other cases.

2. Jack state [10000] (Laughlin 1/5)

Jack state [10000], equivalent to the Laughlin ν = 1/5
state, is the unique zero-energy ground state of the two-body
pseudopotential with positive V1 and V3, and all other coef-
ficients vanishing. So compared to Jack state [100] from the
previous section, it is still a two-body generating interaction,
but with the range extended to the next value of m. Below the
filling factor ν = 1/4, all considered Coulomb ground states
have negligible amplitude at pair angular momentum m = 1,
so we have calculated the map in coordinates (V3,V5,V7),
corresponding to a modified short-range model with V1 = ∞,
varying three coefficients at m = 3, 5, and 7, and Vm = 0 for
m > 7. All Coulomb points for ν = 1/5 are essentially exact in
this model, similarly to how it was for ν = 1/3 and (V1,V3,V5)
in Table I.

The overlap map for Jack state [10000] is shown in Fig. 4 for
N = 8 and 2Q = 35. The “J” point is exact at the top corner:
(V3,V5,V7) = (1,0,0), and all Coulomb points lie close to one
another, all in the red area of high overlap with the Jack state.
For LL0 and LL1 this confirms an earlier observation in, e.g.,
Fig. 2 of Ref. [38]. The dotted rectangular part of the map

FIG. 5. Map similar to Fig. 2 for N = 16 electrons at flux 2Q =
29, showing overlaps of ψ(V1,V3,V5) with Jack state [1100] (i.e., the
Pfaffian ν = 1/2 state, generated by three-body repulsion at m = 3).

containing all Coulomb points has been magnified to better
show relative placement.

3. Jack state [1100] (Pfaffian 1/2)

Jack state [1100], equivalent to the Moore-Read “Pfaffian”
ν = 1/2 state, is the unique zero-energy ground state of the
three-body pseudopotential with a single nonzero (positive)
coefficient at the relative triplet angular momentum m = 3.

In general, the relative K-body angular momentum takes
on values m = mmin, mmin + 2, mmin + 3, . . . , where the min-
imum value is mmin = K(K − 1)/2. For K > 2, the K-body
amplitudes and the corresponding K-body pseudopotentials
V (K)

m are uniquely defined only up to a certain mmax (e.g.,
mmax = 8 for K = 3), above which multiple states at the same
m exist, and V (K)

m becomes a matrix. Nonetheless, while in
this work we have not considered K-body pseudopotentials
extending beyond mmax, a model K-body interaction that is
repulsive at one or more leading values of m and vanishing for
the higher ones can be defined regardless of the dimension of
V (K)

m . Note that we have now added superscript (K) to Vm, but
with the convention that V (2) ≡ V , so that the notation used so
far also holds.

The overlap map for Jack state [1100] is shown in Fig. 5
for N = 16 and 2Q = 29. The “J” point is not exact, but
almost so, with the overlap reaching 0.971 (see Table II).
Interestingly, it has one negative coordinate, but the red area of
high Jack/model overlap reaches inside the positive triangle.
The positions and width dependencies of the Coulomb points
“0” and “1” confirm the known fact that Jack state [1100]
(Pfaffian, px ± ipy superfluid of paired composite fermions) is
likely a valid description of the half-filled LL1, with the match
improved by a finite width, while in LL0 the Coulomb points
fall into the dotted area of L > 0 indicating compressibility
(indeed, the half-filled LL0 is a composite fermion Fermi sea).
Also the “2g” Coulomb point falls in the dotted (and low
overlap) area, precluding the emergence of Jack state [1100]
in the half-filled G-LL2.
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TABLE II. Pair pseudopotentials Vm whose ground states have
maximum overlap with the indicated series of Jack states, generated
as unique zero-energy ground states of K-body contact repulsion
(corresponding to the K-body pseudopotential with a positive single
leading coefficient and all others vanishing). For each K , only Vm

at m < 2K − 1 were optimized and higher coefficients were set to
zero. The system sizes used in the calculation are [100], any size
(result is exact); [1100], N = 16 and 2Q = 29; [11100], N = 21 and
2Q = 32; and [111100], N = 24 and 2Q = 33.

Jack K V1 V3 V5 V7 V9 Overlap

[100] 2 1.00 0 0 0 0 1
[1100] 3 0.73 0.27 0 0 0 0.968
[11100] 4 0.59 0.30 0.11 0 0 0.968
[111100] 5 0.49 0.32 0.14 0.05 0 0.945

4. Jack state [11000] (Gaffnian 2/5)

Jack state [11000], equivalent to the “Gaffnian” ν = 2/5
state [39], is generated by the three-body pseudopotential
with two positive coefficients at m = 3 and 5, and all others
vanishing. Its overlap map is shown in Fig. 6 for N = 12 and
2Q = 26.

The “J” point lies now inside the triangle (see Table II),
and the maximum overlap has the same value of 0.971 as for
the Pfaffian. The “1” and “2g” Coulomb points lie in the low
overlap and L > 0 areas, but the placement of the “0” point
might suggest that Jack state [11000] (Gaffnian) is an accurate
description of the ν = 2/5 state in the lowest LL. However, this
is known [40] to be an artifact of the finite size: in finite systems,
Gaffnian and Jain ν = 2/5 states have high overlaps with each
other and with the Coulomb ground state, but the two models
are not equivalent, and in fact they describe distinct topological
orders in an infinite system, with the Jain state (of two filled
composite fermion LLs) offering the proper description.

FIG. 6. Map similar to Fig. 2 for N = 12 electrons at flux 2Q =
26, showing overlaps of ψ(V1,V3,V5) with Jack state [11000] (i.e., the
Gaffnian ν = 2/5 state, generated by three-body repulsion at m = 3
and 5).

FIG. 7. Map similar to Fig. 2 for N = 12 electrons at flux 2Q =
31, showing overlaps of ψ(V1,V3,V5) with (improper) Jack state
[110000] (i.e., the Haffnian ν = 1/3 state, generated by three-body
repulsion at m = 3, 5 and 6). The additional square panel shows the
enlarged part indicated in the triangular map.

5. Jack state [110000] (Haffnian 1/3)

The “Haffnian” ν = 1/3 state [25,41,42] generated by the
three-body pseudopotential with three positive coefficients at
m = 3, 5, and 6, and all others vanishing, corresponds to the
fermionic Jack polynomial with root partition [110000] and
α2,4 = −1, which has a pole, and hence is not a proper Jack
state. Nonetheless, it can still be attributed to root occupation
and has been included in our analysis. Its overlap map is shown
in Fig. 7 for N = 12 and 2Q = 31. In contrast to Pfaffian
or Gaffnian, the maximum model/Haffnian overlap reaches
a relatively low value of 0.63 at the “J” point (V1,V3,V5) =
(0.56,0.35,0.09). Remarkably, much higher overlaps are
reached in smaller systems: 0.93 at point (0.52,0.33,0.15) for
N = 10 and 2Q = 25; 0.97 at point (0.55,0.31,0.14) for N = 8
and 2Q = 19; and 0.998 at point (0.56,0.30,0.14) for N = 6
and 2Q = 13.

6. Jack state [11100] (Parafermion 3/5)

Jack state [11100], equivalent to the Read-Rezayi
“parafermion” ν = 3/5 state [8], is generated by the four-body
pseudopotential with one positive coefficient at the smallest
relative four-body angular momentum m = 6, and all others
vanishing. Its overlap map is shown in Fig. 8 for N = 21 and
2Q = 32.

The “J” point lies now inside the triangle, and the maximum
overlap has a high value of 0.968 (see Table II). It may be
worth stressing that for this Jack state (as for all Jack states
for which it is not clearly stated otherwise), both the position
and overlap of the “J” point are very similar in smaller systems
(we have also checked N = 18 at 2Q = 27, and N = 15 at
2Q = 22). Remarkably, the “J” point is surrounded by a rather
small (compared to other Jack states) undotted area of L = 0,
which, however, securely includes both “J” and “1” points (as
clearly seen in the inset showing the relevant part of the map
in magnification). It is also evident that increasing layer width
w of the Coulomb system improves the match of the Jack and
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FIG. 8. Map similar to Fig. 2 for N = 21 electrons at flux 2Q =
32, showing overlaps of ψ(V1,V3,V5) with Jack state [11100] (i.e.,
the parafermion ν = 3/5 state, generated by four-body repulsion at
m = 6). The additional square panel shows the enlarged part indicated
in the triangular map.

Coulomb (n = 1) states. This observation is consistent with
earlier analysis [8,24,38,43] of energies pointing to Jack state
[11100] as the most likely description of the ν = 13/5 (and,
by particle-hole conjugation, ν = 12/5) FQH state in GaAs. A
new conclusion is that Jack state [11100] is unlikely to emerge
in graphene (in any LL).

7. Jack state [111100] (Parafermion 2/3)

Jack state [111100], equivalent to the Read-Rezayi
“parafermion” ν = 2/3 state [8], is generated by the five-body
pseudopotential with one positive coefficients at the smallest
relative four-body angular momentum m = 10, and all others
vanishing. Its overlap map is shown in Fig. 9 for N = 24 and
2Q = 33.

When the search for maximum overlap is limited to the
(V1,V3,V5) plane, its value at the optimum “J” point is the
unimpressive 0.896. Moreover, the “J” point falls into the dot-
ted area, meaning that the pair Hamiltonian best reproducing
this Jack state has a lower state at L > 0.

However, we are guided by the observation that an accurate
reproduction of Jack states [100], [1100], and [11100] by
a pair Hamiltonian requires (suitable) repulsion at m = 1
(corner of the triangle); m = 1 and 3 (edge of the triangle);
and m = 1, 3, and 5 (inside of the triangle). Thus, we can
anticipate that adding variable V7 to the search space should
lift the model/Jack overlap close to unity. With normalization
V1 + V3 + V5 + V7 = 1, this corresponds to a search for an
optimum match inside a tetrahedron (pyramid) with a base cor-
responding to V7 = 0. Indeed, a considerably higher overlap of
0.945 is reached inside the pyramid, at (V1 + V3 + V5 + V7) =
(0.49,0.32,0.14,0.05). The relevant part of the V7 = 0.05
section of the 3D overlap map is shown as an inset in Fig. 9;
its scale is the same as that of the main (V7 = 0) map, and the
maxima lie almost exactly one above the other. Not only has
the overlap increased when going from V7 = 0 to 0.05, but also
the L = 0 (undotted) area has greatly expanded, including the

FIG. 9. Map similar to Fig. 2 for N = 24 electrons at flux 2Q =
33, showing overlaps of ψ(V1,V3,V5) with Jack state [111100] (i.e.,
the parafermion ν = 2/3 state, generated by five-body repulsion at
m = 10). The upper additional square panel shows the enlarged part
indicated in the triangular map. The lower additional rectangular panel
shows part of the (V1,V3,V5) map for V7 = 0.05 (see the explanation
in the main text).

whole shown area of the map. We will return to these facts in
Sec. III D 8.

The location of the Coulomb points on the map suggests
that it is possible that Jack state [111100] will emerge in LL1.
This may seem like an attractive hypothesis to explain the
ν = 7/3 FQHE, and its weakness compared with ν = 1/3
in the lowest LL. However, the ν = 7/3 state has already
recently been explained [44] as a Laughlin state with strong
composite fermion excitonic effects, so the relevance of Jack
state [111100] is doubtful (although further studies aimed
specifically at this problem might be interesting). On the other
hand, our map suggests that Jack state [111100] is unlikely to
form in LL0 in GaAs or in any LL in graphene.

8. General result for K-body contact repulsion

The above state-by-state analysis suggests a general relation
between the order K of the contact interaction [defined by the
K-body pseudopotential with only a single non-negative and
positive coefficient atm = mmin ≡ K(K − 1)/2] and the range
of the model pair interaction able to accurately reproduce the
same (Jack) ground state: The pair Hamiltonian must have
suitable positive coefficients at m < 2K − 1. The sequence of
pair pseudopotentials most accurately generating Jack states
[100], [1100], [11100], and [111100] based on our overlap
maps has been listed (along with the overlaps) in Table II. These
pseudopotentials have been optimized only at m < 2K − 1,
with higher coefficients set to zero, i.e., best fits to [100],
[1100], [11100], and [111100] are searched at the corner, side,
base, and in the whole tetrahedron of the (V1,V3,V5,V7) model.
For each Jack state we used the map for the largest system
available.

Inspection of Table II reveals that the ratios of consecutive
pseudopotential coefficients are (to an excellent approxima-
tion) V1:V3:V5:V7 = 1:0:0:0, 3:1:0:0, 6:3:1:0, and 10:6:3:1 for
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TABLE III. Similar to Table II but for pair pseudopotentials
defined by Eq. (12) and overlaps given for systems of different size
N (indicated as a subscript at each overlap).

Jack K V1 V3 V5 V7 V9 Overlap(N)

[100] 2 1 0 0 0 0 1(any)

[1100] 3 3 1 0 0 0 0.949(16) 0.950(14) 0.945(12)

[11100] 4 6 3 1 0 0 0.967(21) 0.871(18) 0.971(15)

[111100] 5 10 6 3 1 0 0.909(24) 0.964(20) 0.954(16)

K = 2, 3, 4, and 5. In Table III we list overlaps calculated for
systems of different sizes N for pair pseudopotentials defined
by this simple regularity, i.e., given by (apart from the irrelevant
normalization)

V (K)
m ∼ (2K − 1 − m)(2K + 1 − m). (12)

All the overlaps in Table III are nearly as high as those
in Table II, confirming the validity of the regularity and
suggesting that it may also be valid for higher K’s.

It is noteworthy that for K = 3 the proposed formula agrees
with the results of the recent paper discussing the mean-field
approximation of three-body interactions [45].

Equation (12) and Table III express the main result of this
work: The ground state of a contact many-body (K-body)
repulsion is accurately reproduced by a two-body pseudopoten-
tial with coefficients taken from the following simple sequence:
1,3,6,10, . . . .

Several of these pseudopotentials have been plotted in
Fig. 10, normalized so that V1 ≡ 1. While the most interesting
dynamics (the emergence of Jack ground states) is induced
by these pseudopotentials at rather high filling factors ν =
1 − 2/(K + 1), it should also be noted that they are all super-
harmonic at each m, where they are positive, so they support the
formation of composite fermions and a series of Laughlin states
at ν � (2K − 1)−1. However, their superharmonicity weakens
with increasing K (as is clearly seen for a large K = 9), and for
m 
 K the pseudopotential (corresponding to an infinite-body

1 3 5 7 9 11
m

0.0

0.2

0.4

0.6

0.8

1.0

V

[100] (k=1)
[1100] (k=2)

[11100] (k=3)
[111100] (k=4)

(k=9)

FIG. 10. Pseudopotentials from Table III, normalized to V1 ≡ 1,
with an additional one for a rather high K = 9 given by Eq. (12).

TABLE IV. Overlaps of the indicated Jack states with different
Coulomb ground states in the zero angular momentum channel (L =
0). Consecutive columns are as follows: root occupation [· · · ] and
filling factor ν, electron number N , magnetic flux on the sphere 2Q,
dimension of the relevant N -body subspace with zero total angular
momentum projection (Lz = 0), and the overlaps with Coulomb states
in the n = 0 and 1 LLs in GaAs (LLn) and in the n = 1 and 2 LLs in
graphene (G-LLn). The layer width for each Coulomb system is zero,
except for LLwide

1 corresponding to w/lB = 3.

Jack N 2Q dim LL0 LL1 LLwide
1 G-LL1 G-LL2

[100] 11 30 1×106 0.9922 0.7030 0.8199 0.9901 0.0093
ν = 1/3 12 33 8×106 0.9909 0.5030 0.7141 0.9885 0.0003

13 36 4×107 0.9898 0.5445 0.7332 0.9871 0.0013

14 39 3×108 0.9887 0.5771 0.7411 0.9858 0.0013
[10000] 7 30 5×104 0.9768 0.9818 0.9776 0.9792 0.9800
ν = 1/5 8 35 4×105 0.9589 0.9678 0.9603 0.9631 0.9641

9 40 4×106 0.9334 0.9453 0.9345 0.9388 0.9374
10 45 4×107 0.9228 0.9386 0.9250 0.9302 0.9320

[1100] 14 25 2×105 0.7223 0.6935 0.8155 0.7298 0.2584
ν = 1/2 16 29 2×106 0.7459 0.7795 0.8443 0.7517 0.0895

18 33 3×107 0.6355 0.6766 0.7633 0.6410 0.1322
20 37 4×108 0.3703 0.6736 0.7829 0.3756 0.1687

[11000] 10 21 2×103 0.9715 0.2748 0.3326 0.9713 0.0369
ν = 2/5 12 26 3×104 0.9646 0.2119 0.2900 0.9642 0.0726

14 31 7×105 0.9582 0.1600 0.2777 0.9574 0.0067
16 36 1×107 0.9526 0.1096 0.2691 0.9516 0.0091

[110000] 8 19 4×103 0.3131 0.6709 0.6194 0.3192 0.7220
ν = 1/3 10 25 1×105 0.1521 0.7205 0.7297 0.1515 0.6952

12 31 3×106 0.1096 0.5182 0.4603 0.1107 0.4613
14 37 1×108 0.0619 0.1074 0.0500 0.0623 0.5866

[11100] 15 22 1×104 0.8315 0.9836 0.9801 0.8338 0.2060
ν = 3/5 18 27 2×105 0.5399 0.9369 0.8995 0.5458 0.3584

21 32 5×106 0.5689 0.8990 0.9316 0.5714 0.1332
24 37 1×108 0.3442 0.8100 0.8792 0.3468 0.1408

[111100] 20 27 6×104 0.6186 0.8675 0.8563 0.6161 0.5082
ν =2/3 24 33 2×106 0.7349 0.7697 0.7832 0.7358 0.1139

contact repulsion) becomes linear in m:

V
(K)
m
K ∼ 1 − m − 1

K
, (13)

i.e., harmonic, and as such it does not induce any correlations
whatsoever [46–49].

We have also noticed that the number of pair pseudopoten-
tial coefficients needed to accurately generate the same ground
state as the K-body pseudopotential with k � 1 positive
coefficients also grows with increasing k. A trivial example is
the Laughlin ν = (2k + 1)−1 series of Jack states with K = 2,
but our maps show the same effect for the Pfaffian-Gaffnian-
Haffnian sequence with K = 3.

9. Jack states in Coulomb systems

Summarizing our results regarding the possible emergence
of Jack ground states in realistic systems of electrons inter-
acting by Coulomb forces in an arbitrary (n = 0,1, . . . ) LL
in GaAs or graphene, we can state the following. As is well
known, Jack states [100] and [10000] (i.e., Laughlin states at
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FIG. 11. Pair correlation functions g(r), with distance r expressed
in units of magnetic length lB of select Jack and Coulomb ground
states (or their particle-hole conjugates). (a) ν = 1/3: dotted red
curve, Jack state [100] (Laughlin state) calculated for N = 14 and
2Q = 39; blue solid curve and blue open dots, (improper) Jack state
[110000] (Haffnian) and Coulomb ground state in G-LL2 for N = 14
and 2Q = 37; green dashed curve, conjugate of Jack state [111100]
(antiparafermion) for N = 10 and 2Q = 33. (b) ν = 2/5: orange
dotted curve, Jack state [11000] (Gaffnian) for N = 16 and 2Q = 36;
purple solid curve and purple open dots, conjugate of Jack state
[11100] (antiparafermion) and Coulomb ground state in LL1 (for a
fairly wide layer of w/lB = 3) for N = 14 and 2Q = 37.

ν = 1/3 and 1/5) are robust FQH states in LL0 (in GaAs) and in
G-LL0 and G-LL1 (in graphene). Moreover, Jack state [10000]
should also form in LL1 and G-LL2. As is also well known,
Jack state [1100] (i.e., Pfaffian at ν = 1/2) should occur in
LL1 (and nowhere else). Judging from our maps alone, Jack
state [11000] (Gaffnian at ν = 2/5) might look like a good
candidate in LL0, but it is known [40] that it has higher energy
than Jain’s state of composite fermions filling two effective
LLs. Jack state [110000] (Haffnian at ν = 1/3) might seem like
a possible candidate for the LL1 (to explain FQHE in GaAs at
ν = 7/3 or 8/3), but earlier studies [38,50] have not confirmed
a complete series of gapped L = 0 Coulomb ground states at
the corresponding flux 2Q = 3N − 5. Furthermore, Haffnian
is not a proper Jack, and it has been argued to be compressible
[25,41,42]. Jack state [11100] (parafermion at ν = 3/5) is
likely to occur in LL1 and thus to underlie FQHE at ν = 12/5
and 13/5 in GaAs. Finally, Jack state [111100] (parafermion at
ν = 2/3) could occur in LL1 and explain FQHE at ν = 7/3 and
8/3 in GaAs, but certainly far more thorough studies would be
needed to rival the current picture [44] of adiabatic connection
to the Laughlin state at these fillings.

The list of overlaps in Table IV is complemented with
Fig. 11 showing a comparison of pair correlation functions
g(r) of different Jack and Coulomb ground states (or their
particle-hole conjugates). In the left panel (a) for ν = 1/3,
it is well known that Jack state [100] (Laughlin state) has

almost the same correlations as the Coulomb ground state in
LL0 (not shown). But it is quite remarkable how accurately
the (improper) Jack state [110000] (Haffnian) matches the
Coulomb ground state in G-LL2 (providing far stronger sup-
port for their connection than merely moderate overlaps of
Table IV). On the other hand, the conjugate of Jack state
[111100] (antiparafermion) shows strong long-range oscilla-
tions and is rather different from any considered Coulomb
ground state. In the right panel (b) for ν = 2/5, it is well
known that Jack state [11000] (Gaffnian) has almost the
same correlations as the Coulomb ground state in LL0 (not
shown) and that it is nonetheless topologically distinct from
the composite fermion state, which is known to offer a correct
description for this Coulomb system. But it is remarkable how
accurately the conjugate of Jack state [11100] (Read-Rezayi
parafermion state) matches the Coulomb ground state in LL1,
especially in a sufficiently wide layer (in the figure we used
w/lB = 3); in this case, their apparent connection is also
consistent with other evidence (overlaps and energies).

IV. CONCLUSIONS

We examined a series of FQHE wave functions based on
fermionic Jack polynomials that are also the ground states
of particular short-range multiparticle repulsion. Our analysis
revolved around the examined overlaps of trial wave func-
tions and ground states of suitable two-body Hamiltonians.
Our results reveal that Coulomb ground states (for both
massive/Schrödinger electrons in GaAs and massless/Dirac
electrons in graphene, and including their variation with the
LL index and layer width) are represented with excellent
accuracy by pair model pseudopotentials with only a few
suitable leading coefficients. Jack states (or, in general, the
ground states of short-range K-body repulsive interactions)
are also reproduced with high accuracy by the short-range pair
model. In particular, we found a simple formula (12) for a
two-body pseudopotential with K − 1 leading coefficients that
accurately reproduces Jack states [11 · · · 100] generated by the
contact K-body repulsion. Options for finding Jack states in
realistic Coulomb systems in GaAs or monolayer graphene
are probably limited to the obvious Laughlin states and the
commonly accepted Pfaffian and parafermion states.
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