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Abstract

The energy and photoluminescence (PL) spectra of a two-dimensional electron gas (2DEG) interacting with a valence-band
hole are studied in the high-magnetic-7eld limit as a function of the 7lling factor � and the separation d between the electron
and hole layers. For d smaller than the magnetic length �, the hole binds one or more electrons to form neutral (X 0) or charged
(X−) excitons, and PL probes the lifetime and binding energies of these complexes rather than the original correlations of
the 2DEG. The low-lying states can be understood in terms of Laughlin-type correlations among the constituent negatively
charged Fermions (electrons and X−’s). For d, large compared to �, the electron–hole interaction is not strong enough to bind
a full electron, and fractionally charged excitons hQEn (bound states of the hole and one or more Laughlin quasielectrons)
are formed. The PL selection rule associated with rotational invariance (conservation of L) is only weakly violated in the
interacting plasma, and the position and oscillator strengths of PL lines can be predicted and compared with numerical
calculations. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In order to obtain a better understanding of the pho-
toluminescence (PL) process in fractional quantum
Hall (FQH) systems, it is important to understand the
nature of the low-lying eigenstates of the interacting
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electron–hole system. In this note, we study the eigen-
states of a system consisting of N electrons con7ned
to a plane z=0 and interacting with one another and
with a valence-band hole (h) con7ned to a plane z=d,
where d is measured in units of the magnetic length
�=(˜c=eB)1=2. The cyclotron energy ˜!c is assumed
to be much larger than the Coulomb energy e2=�, so
that only the lowest Landau level enters our calcula-
tions. Energy spectra obtained by exact numerical di-
agonalization for a nine-electron–one-hole system are
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presented for d=0, 1.5, and 4, and for �= 1
3 plus

n=0, 1, 2, or 3 Laughlin quasielectrons (QEs). The
low-energy eigenstates can be interpreted in terms of
excitonic complexes (or the hole) weakly interacting
with the remaining electrons.
For d�1, the hole binds one or two electrons to

form a neutral (X 0) or charged (X−) exciton. The X 0

in its ground state is eHectively decoupled from the
remaining N − 1 electrons in a “multiplicative” state
[1–3] whose energy is that of N − 1 electrons shifted
by the X 0 binding energy. In contrast, the X− is a
charged Fermion, and it has Laughlin-like correlations
with the remaining N − 2 electrons [4–6]. For d�1,
the potential of the hole is a weak perturbation on the
eigenstates of the N -electron system. The low-lying
eigenstates can be understood in terms of the angular
momenta of the Laughlin QEs and of the hole. For
intermediate values of d (16d6 2), the potential
of the hole is not strong enough to bind an electron,
but it is not a weak perturbation on the eigenstates
of the N -electron system, either. In this case the hole
binds one or more Laughlin QEs to form fractionally
charged excitons (FCXs). We denote a bound state of
the hole and n QEs as hQEn.
There are two separate symmetries which dictate

the rules for radiative recombination of an electron–
hole pair. The most important one is translational
invariance, which in the Haldane spherical geometry
becomes rotational invariance. It requires the total
angular momentum L and its z-component to be con-
served in the radiative recombination process. Here
L denotes the total angular momentum of the sys-
tem, not just that of the excitonic complex involved
in the recombination process. The second symme-
try is called the “hidden symmetry” [7,8]. It results
from the fact that the commutator of the interaction
Hamiltonian with the photoluminescence operator
L̂=

∫
d2r �̂e(r)�̂h(r) is proportional to L̂, when-

ever the magnitude of the electron–hole interaction
|Veh| is equal to that of the electron–electron inter-
action |Vee|. Due to this symmetry, when d is equal
to zero, only “multiplicative” states can undergo ra-
diative recombination. Therefore, when d�1, the
PL spectrum contains information about the X 0,
while for d¿ 1 it contains information about the
elementary excitations of the Laughlin Ouid and
their interactions with one another and with the
hole.

2. Energy spectra

In Fig. 1 we present the examples of energy spec-
tra of the nine-electron–one-hole system obtained by
exact diagonalization in the spherical geometry. The
separation d between the electron and hole planes is
accounted for by taking Veh(r)=− e2(r2 +�2d2)−1=2.
The radial magnetic 7eld is given by 4�R2B=2S�0,
where R is the radius of the sphere, �0 = hc=e is the
quantum of the Oux, and the “monopole strength” 2S
is equal to an integer. In diHerent frames, the values
of 2S are 21 (a–a′′), 22 (b–b′′), 23 (c–c′′), and 24 (d–
d′′), and they correspond to the Laughlin �= 1

3 state
with 3, 2, 1, and 0 QE excitations, respectively. The
interplanar separation equals d=0 (a–d), 1.5 (a′–d′),
and 4 (a′′–d′′).

2.1. Strong coupling

For d=0, X 0 and X− bound states occur. Due to the
“hidden symmetry”, the multiplicative states contain-
ing an X 0 have the same spectrum as the eight-electron
system shifted by the X 0 binding energy. The CF
model [9,10] tells us that the eHective monopole
strength seen by one CF in a system of N ′ =N−1=8
electrons near �= 1

3 is 2S∗ =2S − 2(N ′ − 1). S∗

plays the role of the angular momentum of the lowest
CF shell (Landau level), therefore S∗ =3:5, 4, 4.5,
and 5 for the multiplicative states in frames (a), (b),
(c), and (d) of Fig. 1, respectively. Since the lowest
shell can accommodate 2S∗ + 1 CFs, it is exactly
7lled in Fig. 1(a), but there are 1, 2, and 3 excess
CFs for Fig. 1(b), (c), and (d), respectively. The
excess CFs go into the next shell as Laughlin QEs
with lQE = S∗ + 1, giving one QE with lQE =4 (b),
two QEs each with lQE =4:5 (c), and three QEs each
with lQE =5 (d). The angular momenta of the lowest
band of multiplicative states are obtained by the ad-
dition of the angular momenta of the QE excitations,
remembering that they are identical Fermions. This
gives L=0 (a), L=4 (b), L=0⊕ 2⊕ 4⊕ 6⊕ 8 (c),
and L=0⊕ 2⊕ 3⊕ 42⊕ 5⊕ 62⊕ 7⊕ 8⊕ 9⊕ 10⊕ 12
(d). These states are shown as points surrounded by
a small circle in all frames for d=0. In the absence
of QE–QE interactions (i.e. for mean-7eld CFs) all
the states in the lowest CF band of each spectrum
would degenerate, but QE–QE interactions remove
this degeneracy. Higher-energy multiplicative states
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Fig. 1. Energy spectra of the nine-electron–one-hole system for the monopole strength 2S =21, 22, 23, 24 (from top to bottom), and for
the interplane separation d=0, 1.5, 4 (from left to right). Lines and open symbols mark the low-energy states containing diHerent bound
excitonic complexes.
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that appear in the 7gure contain additional QE–QH
pairs.
For the non-multiplicative states we have one X−

and Ne =N − 2 remaining electrons. The generalized
CF picture [4] allows us to predict the lowest en-
ergy band in the spectrum in the following way. The
eHective monopole strength seen by the electrons is
2S∗

e = 2S − 2(Ne − 1)− 2NX− , while that seen by the
X− is 2S∗

X− =2S − 2Ne. Here, we have attached to
each Fermion (electron and X−) two 7ctitious Oux
quanta and used the mean-7eld approximation to de-
scribe the eHective monopole strength seen by each
particle (note that a CF does not see its own Oux). The
angular momentum of the lowest CF electron shell is
l∗0 = S∗

e , while that of the CF X
− shell is l∗X− = S∗

X−−1
[11,12]. For the system with Ne = 7 and NX− =1 at
2S =21, 22, 23, and 24, the generalized CF picture
leads to: one QH with lQH =3:5 and one X− with
l∗X− =2:5, giving a band at 16L6 6 for Fig. 1(a);
two QHs with lQH =4 and one X− with l∗X− =3 giv-
ing L=0⊕1⊕23⊕33⊕44⊕53⊕63⊕72⊕82⊕9⊕10
for Fig. 1(b); three QHs with lQH =4:5 and one X−

with l∗X− =3:5 giving L=0 ⊕ 14 ⊕ 26 ⊕ 37 ⊕ · · ·
⊕113⊕122⊕13⊕14 for Fig. 1(c); and four QHs with
lQH =5 plus one X− with l∗X− =4 giving L=03 ⊕
16 ⊕ · · · ⊕ 162 ⊕ 17⊕ 18 for Fig. 1(d). In the 7gure,
we have restricted the values of L and of E, so that
not all the states are shown.

2.2. Weak coupling

For d�1, the electron–hole interaction is a
weak perturbation on the energies obtained for the
N -electron system [13–15]. The numerical results can
be understood by adding the angular momentum of
the hole, lh = S, to the electron angular momenta ob-
tained from the simple CF model. The predictions are:
for 2S =21 there are three QEs each with lQE =3:5
and the hole has lh = 10:5; for 2S =22 two QEs each
with lQE =4 and lh = 11; for 2S =23 one QE with
lQE =4:5 and lh = 11:5; and for 2S =24 no QEs and
lh = 12. Adding the angular momenta of the identical
Fermion QEs gives Le, the electron angular momenta
of the lowest band; adding to Le the angular momen-
tum lh gives the set of allowed multiplets appearing
in the low-energy sector. For example, in Fig. 1(b′′)
the allowed values of Le are 1 ⊕ 3 ⊕ 5 ⊕ 7, and the
multiplets at 7 and 3 have lower energy than those at 1

and 5. Four low-energy bands appear at 46L6 18,
86L6 14, 66L6 16, and 106L6 12, resulting
from Le = 7, 3, 5, and 1, respectively.

2.3. Intermediate coupling

For d ≈ 1, the electron–hole interaction results in
formation of bound states of a hole and one or more
QEs. In the two-electron–one-hole system, the X 0 and
X− unbind for d ≈ 1, but interaction with the sur-
rounding unbound electrons in a larger system can
lead to persistence of these excitonic states beyond
d=1. For example, the band of states at d=0 in Fig.
1(a) that we associated with an X− interacting with a
QH persists at d=1:5 in Fig. 1(a′). However, it ap-
pears to cross another low-energy band that extends
from L=3 to 8. This latter band can be interpreted in
terms of three QEs interacting with the hole as was
done in the weak-coupling limit shown in Fig. 1(a′′).
The other bands of the weak-coupling regime (those
beginning at L=5, 6, 7, 8, and 9) have disappeared
into the continuum of higher states as a result of the
increase of Veh.
For 2S =22, the lowest band can be interpreted in

terms of one X− interacting with two QHs of the gen-
eralized CF picture. The X− has l∗X− =3 and the QHs
each have lQH =4. The allowed values of L2QH are
7, 5, 3, and 1, and the “molecular” state QH2 which
has the smallest average QH–QH distance would have
lQH2

= 7. This gives a band of X−+QH2 states going
from L= lQH2

− l∗X− =4 to lQH2
+ l∗X− =10. A higher

band might result from the 2QH state at L2QH =5 in-
teracting with the X− to give 26L6 8. The lower
band beginning at L=4 could also be interpreted as a
hole interacting with two QEs of the nine-electron sys-
tem (each QE having lQE =4). This would produce a
band of states with 46L6 18 (arising from lQE2

= 7
and lh = 11). Since the states with L¿ 8 merge with
the continuum, we cannot determine which of these
descriptions are more appropriate for d ≈ 1:5 based
on the energy spectra alone (to do so we must analyze
the eigenstates).
For 2S =23, there are two low-lying bands. The 7rst

contains a hole with lh = 11:5 and a QEwith lQE =4:5.
This gives rise to a band extending from L=7 to 16.
The second band contains an additional QE–QH pair.
The cost of energy in creating this additional pair is
comparable to the energy gained through the interac-
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tion of the additional QE with the hole. The lowest
hQE2 state occurs at lhQE2

= lh − lQE2
= 3:5 (this re-

sults from choosing l2QE = 8, the largest value from
the set of allowed L2QE = 8, 6, 4, 2, and 0) and adding
lhQE2

to lQH =3:5 to obtain a band with 06L6 7.
The state with L=7 is missing, undoubtedly due to
the large QE–QH repulsion at lQE–QH =1 [16].
For 2S =24, the ground state at d=1:5 contains

one hole with lh = 12 and QE–QH pair with lQE =5
and lQH =4. The hole and QE bind giving a set of
states with lhQE satisfying 7= lh − lQE6 lhQE6 lh +
lQE =17. The most strongly bound state has lhQE = 7.
Adding lhQE = 7 to lQH =4 gives band 36L6 11
marked in Fig. 1(d′). This band has lower energy than
the Laughlin state of nine electrons and the hole which
occurs at L= lh = 12.

3. Photoluminescence

Exact numerical diagonalization gives both the
eigenvalues and the eigenfunctions. The low-energy
states |i〉 of the initial N -electron–one-hole system
have just been discussed. The 7nal states |f〉 contain
N ′ =N − 1 electrons and no holes. The recombina-
tion of an electron–hole pair is proportional to the
square of the matrix element of the photolumines-
cence operator L̂. We have evaluated |〈f|L̂|i〉|2
for all of the low-lying initial states and have found
the following results [17,18]. (i) Conservation of the
total angular momentum L is at most weakly vio-
lated through the scattering of “spectator” particles
(electrons or quasiparticles) which do not participate
directly in the recombination process if the 7lling fac-
tor � is less than or equal to approximately 1

3 . (ii) In
the strong-coupling region, the neutral X 0 line is the
dominant feature of the PL spectrum. The X−QH2
state has very small oscillator strength for radiative
recombination. (iii) For intermediate coupling, the
hQE2 and an excited state of the hQE (which we de-
note by hQE∗) are the only states with large oscillator
strength for photoluminescence.
At zero temperature (T =0), all initial states must

be ground states of the N -electron–one-hole system.
At 7nite but low temperatures, excited initial states
contribute to the PL spectrum. The photoluminescence
intensity is proportional to

wi→f =
2�
˜ Z−1∑

i;f
e−i�Ei |〈f|L̂|i〉|2

× (Ei − Ef − ˜!); (1)

where �−1 = kBT andZ=
∑

i e
−�Ei . It is worth illus-

trating how the hQE2 → QH + ˜! process satis7es
the PL=0 selection rule. An initial state containing
one hole and two QEs of an N -electron system must
have 2S =3(N −1)−2=3N −5. Each QE will have
lQE = 1

2 (N − 1) and the hole has lh = S = 3
2N − 5

2 .
The most strongly bound hQE2 state has lQE2

= 2lQE−
1=N − 2 and lhQE2

= lh − lQE2
= 1

2 (N − 1). The 7nal
state contains N ′ =N − 1 electrons and a single QH
with lQH = S − (N ′ − 1)= 1

2 (N − 1). Thus, the initial
and 7nal states each have L= 1

2(N−1), so the PL=0
selection rule is satis7ed. The same thing can be done
for the excited hQE∗ complex (with L larger by one
unit than the ground state of the hQE). It satis7es
the PL=0 selection rule, but the ground state hQE
does not.
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